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Abstract. The probabilistic generalization of formal concept analysis,
as well as it’s comparison to standard formal analysis is presented. Con-
struction is resistant to noise in the data and give one an opportunity
to consider contexts with negation (object-attribute relation which al-
lows both attribute presence and it’s absence). This generalization is
obtained from the notion of formal concepts with its definition as fixed
points of implications, when implications, possibly with negations, are
replaced by probabilistic laws. We prove such fixed points (based on
the probabilistic implications) to be consistent and wherefore determine
correct probabilistic formal concepts. In the end, the demonstration for
the probabilistic formal concepts formation is given together with noise
resistance example.

Keywords: formal concept analysis, probability, data mining, associa-
tion rules, noise

1 Introduction

In the formal concept analysis (FCA) [1, 2], formal concepts are used as classifi-
cation units. The main task of FCA consists in construction of a complete lattice
of formal concepts. But FCA induces a potentially dreadful combinatorial com-
plexity and the structures obtained even from small-sized datasets can become
prohibitively huge. Noise in data constitutes a primary factor of complication as
it favors the existence of many similar but distinct concepts, which may exces-
sively inflate the lattice with superfluous information that significantly impaired
readability. Hence, the translation of empirical data into clean and relatively
readable structures remains the most important problem. There are some works
where concepts formation considered in the presence of noise [3, 4]. But all these
papers base on the complete lattice of formal concepts.

In this paper we consider the problem: is it possible to construct the clean and
relatively readable structure of idealized or refined concepts directly without the
construction of complete lattice of formal concepts. If we consider the complete
lattice of formal concepts as a “photo” of data, then the structure of “idealized”
concepts may be considered as a “picture” of data.

For solution of this problem we introduce the probabilistic generalization
of formal concepts. The first step was made in [5, 6], where the probabilistic
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generalization of the formal concepts without negations was developed. Here we
introduce the probabilistic generalization of the formal concepts with negations
for many-valued contexts. For that purpose we utilize, as in [5, 6], the definition
of a formal concept in terms of fix-points of implications. Then we define a
probability measure and generalize implications into probabilistic implications,
so that they minimize the intent of concepts and eliminate random attributes.
After that we define a probabilistic formal concept as a fix-point of probabilistic
implications. For that purpose we prove the consistency of these fixed points.
Resulting fixed points don’t directly depend on data and are defined in pure
probabilistic terms and thus produce a “picture” of data. At the end of paper
the results of the experiment that illustrate the formation of probabilistic formal
concepts are presented.

2 Formal Concept Analysis

Here we give a short review of the formal concept analysis. For details we refer to
[1, 2]. FCA examines the set of objects G, which have properties from a fixed set
M . We say that “the object g has the property m” by using a relation I ⊆ G×M .

Definition 1. Formal context is a triple (G,M, I), where G and M are sets of
the arbitrary nature and I ⊆ G×M is a binary relation.

On the formal context (or simply context) we define the operation ′ as follows:

Definition 2. A ⊆ G, B ⊆M , g ∈ G. Then:

1. A′ = {m ∈M | ∀g ∈ A, (g,m) ∈ I}
2. B′ = {g ∈ G | ∀m ∈ B, (g,m) ∈ I}
3. g′ = {g}′ = {m ∈M | (g,m) ∈ I}

Definition 3. Pair (A,B) is called a formal concept, if B expresses all common
features for objects in A, and A - objects that have all attributes from B. In other
words, A′ = B and B′ = A.

Here and further we delve a bit into the theory of FCA [1, 2, 7], but only just
as much as it is necessary for the design of construction, proposed in the article.

Lemma 1. Suppose A1 ⊆ A2 ⊆ G,B1 ⊆ B2 ⊆M . Then

1. A′2 ⊆ A′1, B′2 ⊆ B′1
2. A ⊆ A′′, B ⊆ B′′
3. (A,B) - concept ⇒ B′′ = B

In fact, usually objects are not formed from attributes in a completely arbi-
trary manner. Attributes form numerous relationships, which can be described
in terms of implications. In definitions below B,C are subsets of attributes ⊆M .
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Definition 4. Implication is a pair (B,C) which we write as B → C. Implica-
tion B → C is true on K = (G,M, I), if ∀g ∈ G(B * g′ or C ⊆ g′). The set of
all true implications will be denoted as Imp(K).

Definition 5. Implication B → C is called a non-trivial on K, if C * B
and B′ 6= ∅. The set of all non-trivial truth implications on K we denote as
ntImp(K).

Definition 6. For any set of implications L we can construct the operator of
direct inference fL that add conclusions of all implications to the set-operand

fL(X) = X ∪ {C | B ⊆ X, B → C ∈ ntImp(K)}

Successively applying the operator of direct inference to any set X, we are
gradually approaching it’s closure [1, 6].

Definition 7. Operator clL, closing the set X relative to the operator of direct
inference is clL(X) = f∞L (X).

Theorem 1. For any set B ⊆M the following is accomplished [2]:

1. fImp(K)(B) = B ⇔ B′′ = B;
2. If B′ 6= ∅, then fntImp(K)(B) = B ⇔ B′′ = B.

3 Many-valued contexts. Formulae on binary contexts

Definitions of the previous section present in a set-theoretical notions about
attributes and objects. In variety of practical problems this hardly limits the
space of possible models and reality interpretations, and sometimes as well -
results [6, 8]. This is a case for combinations of attributes and reasoning in terms
of implications [8].

There are several different approaches to extend the I relation. Some classic
examples can be found in [7, 8]. In this chapter we enrich contexts, providing for
each pair (g,m) the degree of belonging the attribute to the object.

We extend context I relation with value-dependent component. Let each
attribute m has its own domain Vm. To describe the degree of belonging the
attribute to object we need to know the value v ∈ Vm of the attribute m on
object g. For such value we assume that (g,m, v) ∈ I.

Definition 8. Let G - set of objects and M - set of attributes, and each attribute
has a set of possible attribute values Vm. Many-valued context K is a triple

(G,M, {Im : G→ Vm | m ∈M})

In fact Im(g) maps the object g to value of the attribute m on g. It is not
difficult to envision how the many-valued contexts and ordinary contexts are
connected. Each attribute with its specific value can be considered as a new
independent attribute. That is, for each attribute m, consider the set of pairs
(m, v) where m ∈ M and v ∈ Vm. Relation of the object g to take quality v on
m attribute can now be described as (g, (m, v)) ∈ I.
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Definition 9. As a nominally scaled context of K = (G,M, {Im}) we call
K∗ = (G,M∗,∪I∗m), where M∗ = {(m, v) | m ∈ M,v ∈ Vm}, and I∗m =
{(g, (m, v)) | Im(g) = v}. For brevity, we say that g ∈ G has the attribute
mv, if Im(g) = v or, equivalently, (m, v) ∈ g′ within the K∗.

All constructions naturally transeferred to the nominally scaled K∗, as well
as statements and theorems, which are presented in classic analysis of formal
concepts. Particularly we can talk about formal concepts, defined on many-
valued contexts. It is enough to replace occurrences of m by mv in the relevant
cases. Further referring to the classic’s structures on K, we mean exactly the
same constructions relative to K∗. For example,

Definition 10. Formal concept on many-valued context K is a pair (A,B),
where A ⊆ G, B ⊆M∗, such that (A,B) - formal concept for K∗.

It is natural to consider the proposed structure in the simplest case. In this
case, each attribute we interpret in the form of predicate, identifying the a value
of 1 with presence of corresponding attribute and 0 - with its absence.

Definition 11. Binary context is a many-valued context, where ∀m(Vm = {0, 1}).
Here and further m and m stay for (m, 1) and (m, 0) respectively.

Our immediate task is to build on an arbitrary binary context of a formal
system based on the first-order logic.

Definition 12. For a binary context K = (G,M) define a signature σ = (R,F, ρ):

1. Set of predicates R - precisely the set of all Im, stating the presence of the
corresponding attribute or its negation;

2. Empty set of functional symbols F = ∅ (and so does ρ);

All notions, such as atom, term, letter, formula and so on, are determined
in a classical manner of formal systems. Formula of defined signature operates
with logical connectives &,∨,→,¬ and predicates. We denote the resulting sets
of atoms, letters, formulae and sentences as At(K), Lit(K), For(K), Sen(K),
respectively.

Basic set D = {g} together with the predicates forms a model, futher labelled
with Kg. The fact of truth of the formula Φ on the model of an object g we denote
as follows: g � Φ⇔ Kg � Φ. GΦ ⊆ G = {g ∈ G | g � Φ} is called the support for
Φ. If GΦ = G, then Φ - contextual tautology.

Lemma 2. Note that G¬Φ = G \GΦ, GΦ&Ψ = GΦ ∩GΨ , GΦ∨Ψ = GΦ ∪GΨ

4 Probability and rules on the context

Now we need the definition of probability on binary context.
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Definition 13. Consider probability measure µ on the set G in the Kolmogorov
meaning, so G can be interpreted as a set of elementary events. Let us introduce
the contextual probability measure:

ν : For(K)→ [0, 1], ν(Φ) = µ(GΦ) = µ({g | g � Φ})

Definition 14. By statistically insignificant objects (subsets) we call g ∈ G
(A ⊂ G) such that µ(g) = 0 (µ(A) = 0). Formula Φ is called a ν-consistent, if
ν(Φ) > 0. Formula Φ is called an almost tautology, if ν(Φ) = 1.

Proposition 1. Context measure ν has the following properties:

1. If Φ - is a classical tautology, then Φ – contextual tautology, ν(Φ) = 1;
2. If ¬(Φ&Ψ) is almost a tautology on K, then ν(Φ ∨ Ψ) = ν(Φ) + ν(Ψ);
3. ν(Φ&Ψ) ≤ ν(Φ).

� 1. Φ - is generally valid, so it is true on any model. In particular, ∀g ∈
G(Kg � Φ), so 
 Φ. Therefore ν(Φ) = µ({g | g � Φ}) = µ(G) = 1.

2. Remember that ν(Φ ∨ Ψ) = µ(GΦ∨Ψ ) = µ(GΦ ∪ GΨ ). Inclusion-exclusion
principle asserts µ(GΦ ∪ GΨ ) = µ(GΦ) + µ(GΨ ) − µ(GΦ ∩ GΨ ). The last one is
zero due to the fact of ¬(Φ&Ψ) is almost a tautology: µ(GΦ∩GΨ ) = µ(GΦ&Ψ ) =
ν(Φ&Ψ) = 0. At last, ν(Φ ∨ Ψ) = µ(GΦ) + µ(GΨ ) = ν(Φ) + ν(Ψ).

3. GΦ&Ψ = GΦ ∩ GΨ ⊆ GΦ; due to the axioms of measure: ν(Φ&Ψ) =
µ(GΦ&Ψ ) ≤ µ(GΦ) = ν(Φ). �

In this section, we always assume that L = Lit(K), K - binary context and
ν - contextual measure on it. We follow the way proposed in [9–11].

Definition 15. For the set of letters M ⊆ L we construct the composition:
&M = &

P∈M
P . For the case of M = ∅ let &M = 1. Similarly, we construct the

negation: ¬M = {¬P | P ∈M}.

Formulae of the form of simple conjunctions F = mi1&mi2 ...&mik have one
property that interlinks formulae structure and derivation operator of the clas-
sical FCA. In fact, the carrier GF coincides with {mij}′. In this sense, we can
identify the set of letters with their representation in the form of a set of at-
tributes {mij}.

Moreover, the formula mi1&mi2 ...&mik → m = &{mij} → m describes the
same process as the implication on the context in classical sense, ({mij}, {m}).
According to this it is natural to define a class of implications similar to the
FCA, but inside the class of formulae. We call them as rules.

Definition 16. 1. Rule is the formula R = (H1&H2...&Hk ⇒ T ), where
T,Hi ∈ L, T /∈ {H1, H2, ...Hk}.

2. For the rule R under head(R) we mean the set {H1, H2..., Hk}, and tail(R) =
T . If head(R1) = head(R2) and tail(R1) = tail(R2), then R1 = R2.

3. The length of the rule is a power of its premise: len(R) = |head(R)|.
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Definition 17. The probability of the rule R is the value

η(R) = ν(tail(R)|head(R)) =
ν(&head(R)&tail(R))

ν(&head(R))

The rule is global if the expression in the denominator equals to one. If the
expression in the denominator is zero, the probability of rule remains undefined.

Definition 18. Rule R1 is a sub-rule of R2, or R1 is more general then R2, if
head(R1) ⊂ head(R2) and tail(R1) = tail(R2). This fact we denote as R1 � R2.

Definition 19. The rule R1 is a generalization of the rule R2, i.e. R1 � R2,
when R1 � R2 or R1 = R2.

Definition 20. The rule R1 is a refinement of the rule R2, R1 > R2, if R2 � R1

and η(R1) > η(R2).

Theorem 2. Let R is a non-global rule on the context K with measure ν.

1. Probability of R is less or equal of the probability of corresponding implica-
tion:

η(R) ≤ ν(head(R)→ tail(R))

2. R is almost a tautology if ⇔ η(R) = ν(R) = 1.

� Let H = &head(R), T = tail(R) and consider the difference ν(H)(η(R) −
ν(H → T )). Note thatH → T = T∨¬H = (T&H)∨¬H, while (T&H)&¬H = 0.
Hence, by lemma 4, ν(H → T ) = ν(T&H) + ν(¬H). Thus the difference can be
transformed as

ν(H)(η(R)− ν(H → T )) = ν(H&T )− ν(H&T )ν(H)− ν(¬H)ν(H) =

ν(H&T )ν(¬H)− ν(H)ν(¬H) = −ν(H&¬T )ν(¬H) ≤ 0

Further, equality to 0 is achieved only if ν(H&¬T ) = 0. However, this is

equivalent to the ν(H&T ) = ν(H)−ν(H&¬T ) = ν(H) and η(R) = ν(H&T )
ν(H) = 1.

Here we conclude that R is almost a tautology �

Corollary 1. If the measure µ does not permit insignificant objects, then the
set of almost tautologies turns into a set of tautologies, and η(R) = 1 ⇔ R -
contextual tautology.

Definition 21. R is a probability law, if it is a refinement of every of its sub-
rule, i.e. (R′ � R)⇒ (R > R′).

Now we prove some technical points we need to continue our working with
the rules.

Lemma 3. If addition of the letter H into the premise of the rule R reduces it’s
probability, η(&head(R) & H ⇒ tail(R)) < η(R), then ¬H increases it.
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Lemma 4. For any rule R there exists its generalization R′ such that R′ is
probabilistic law, and ν(R′) ≥ ν(R).

� Consider the set Π = {A | ν(A) ≥ ν(R), A � R}. So as R ∈ Π, then Π 6= ∅.
Hence, there is a minimal element in the sense of relation �, call it S = minΠ.
Condition 2 of the lemma holds for S by construction of Π.

Suppose S is not a law, i.e. here exists sub-rule S′, such that ν(S′) ≥ ν(S)
and S′ � S, given S � R we conclude that S′ � R. From the other side,
ν(S′) ≥ ν(S) ≥ ν(R), where it follows that S′ ∈ Π, contradicting the minimality
of S. �

5 Refinement theorem

Now we apply the proposed in [10, 12] technics to defined rules.

Definition 22. Pseudo rule is a formula R = ((P1&...&Pk) & ¬(N1&...&Ns)⇒
T ); for pseudo rule R, head(R) = (P1&...&Pk) & ¬(N1&...&Ns) and tail(R) =
T ; letters Pi we call the positive part of the premise and letters Nj we call the
negative part; probability of the pseudo rule R is the value

η(R) = ν(tail(R)|head(R)) =
ν(&head(R) & tail(R))

ν(&head(R))

Theorem 3. (about refinement) Let S = ((&A)&¬(&B)) ⇒ T ) be a pseudo
rule, R = ((&A)⇒ T ) the corresponding rule without negative part and moreover
η(S) > η(R). Then for R there is refinement rule R′ > R formed with the help
of the negative part of pseudo rule S.

� For brevity, we denote A = &A, B = &B. Let us write the probability of
pseudo rule S as:

η(S) = ν(T | A & ¬B) = ν(T | A & (¬B1 ∨ ... ∨ ¬Bm)) (1)

Next we represent the disjunction as disjunction of conjunctions:

¬B1 ∨ ... ∨ ¬Bm =
i=(1,...,1,0)
∨

i=(0,...,0)
(Bi11 & ... & Bimm )

where 0 in multi-index indicates the presence of negation, and 1 - its absence. All
multi-indices are included in a lexicographic order except for the last (1, ..., 1),
which corresponds to the conjunction B1 & ... & Bm.

Then the conditional probability (1) can be rewritten as

η(S) = ν(T |
i=(1,...,1,0)
∨

i=(0,...,0)
(A & Bi11 & ... & Bimm )) (2)

Suppose the theorem’s statement is false and any generalization R′ � R, formed
via appending some subset from {B1, ..., Bm} to premise, will fail as a refinement.
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This means that all inequalities like ν(T |A & Bi11 & ... & Bimm ) ≤ ν(T | A) are
true, if corresponding probabilities are defined. Since ν(A &¬B) 6= 0, there is at
least one multi-index (i1, ..., im), for which it is true. Then

ν(T &A & Bi11 & ... & Bimm ) ≤ ν(T | A)ν(A & Bi11 & ... & Bimm );

ν(T |
i=(1,...,1,0)
∨

i=(0,...,0)
(A & Bi11 & ... & Bimm )) =

ν(∨ T & A & Bi11 & ... & Bimm )

ν(∨ A & Bi11 & ... & Bimm )
=∑

ν(T &A & Bi11 & ... & Bimm )∑
ν(A & Bi11 & ... & Bimm )

≤ ν(T | A)
∑

ν(A & Bi11 & ... & Bimm )∑
ν(A & Bi11 & ... & Bimm )

= ν(T | A);

The last, according to (2), means that η(S) ≤ η(R) – is a contradiction with the
theorem premise. So, our assumption is false and for one of the rules we have
ν(T | A & Bi11 & ... & Bimm ) > ν(T | A). �

6 Semantic probabilistic inference

We define another key concept for this work - the ratio of semantic probabilistic
inference on the set of rules [10, 13, 11].

Definition 23. The rule R is semantically probabilistic inferred from the rule
R′, R′ @ R if: R, R′ - probabilistic laws, len(R) = len(R′) + 1, R > R′.

Definition 24. Probabilistic law R is the strongest, if ∀R′ ¬(R @ R′).

Definition 25. Semantic Probabilistic Inference (SPI) is a sequence of rules
R0 @ R1 @ R2 ... @ Rm, such that: len(R0) = 0, Rm – the strongest
probabilistic law.

In other words, SPI requires the procedure of inference from start to finish.

Definition 26. A maximal specific law for the predicate T is called as the
strongest probabilistic law, if it has the maximal conditional probability among
all the other strongest probabilistic laws with the conclusion T .

The set of maximal specific laws on the context K we denote as MSRK or
MSR, if there is no ambiguity. Designation MSR(T ) stays for those subsets from
MSR for which the conclusion is T .

Lemma 5. For any rule R with tail(R) = T , which probability is defined, there
always exists a maximal specific law W with the same conclusion T , such that
η(R′) ≥ η(R).

� By lemma 4 there is a generalization R′ for the rule R which is a probabilistic
law. But for R′ there exists the strongest probabilistic law R′′ such that η(R′′) ≥
η(R′). For R′′, there is a maximum of the set of the strongest probabilistic laws,
i.e. maximal specific law R′′′ and η(R′′′) ≥ η(R′′) ≥ η(R′) ≥ η(R). W = R′′′ still
has same tail(W ) = T and so it is the sough for. �
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7 Classes of rules

In [10, 14] classes of rules presented. They are used to justify the correctness of
the semantic probabilistic inference. Slightly modifying these definitions, we will
receive the comparable results.

Definition 27. R ∈M1(T )⇔ ((∅⇒ T ) � R ⇒ R > (∅⇒ T ))

Definition 28. R ∈ M2(T ) ⇔ R ∈ M1(T ) and (∀R′ ∈ M1(T ))[R � R′ ⇒
η(R′) ≤ η(R)]

Definition 29. M1 =
⋃

T∈Lit(K)

M1(T ); M2 =
⋃

T∈Lit(K)

M2(T )

In other words, class M1 requires rules to be meaningful, thus enable them to
make sense compared with the unconditional approval of T . Class M2 requires
that the rule can not be more specific (no matter how we have expanded the
rule R, we can never improve the estimation of its probability). We have the
following relationship:

Proposition 2. MSR ⊂M2 ⊂M1.

� The second inclusion is obvious. Let R ∈ MSR. There is some SPI for R ac-
cording to definition 27, starting with the unconditional rule R′ = ∅⇒ tail(R).
If the premise of R is not empty, then ∅ ⇒ tail(R) � R and from the chain of
semantic probabilistic inference relations it follows that R > R′ and R ∈M1. If
the premise R is empty, then the last is automatically fulfilled.

Consider R � R′ ∈ M1 and assume that η(R′) > η(R). Lemma 5 implies
that there exists S ∈ MSR : η(S) ≥ η(R′) > η(R). This contradicts the maximal
specificity of R and therefore η(R′) ≤ η(R). Hence R ∈M2. �

Definition 30. As a system of the rules we will call any Π ⊆M2.

To investigate the formal concept of the binary context of K in the spirit
of the approach indicated in [5, 6], it is sufficient to understand the structure of
corresponding prediction operator’s fixed points on the nominally scaled context
K∗. Here we aim to study the fixed points for the probabilistic operator of
prediction on K, accounting the availability of negations in the formulae of a
special kind. Let L ⊂ Lit(K) be a arbitrary set of letters from context formal
system.

The defenition is completely similar to deterministic one (compare with de-
fenition 6). We strictly follows the generelization idea and the only difference
will be the nature of used implications: they are turned in probabilistic entities.

Definition 31. Operator of direct predictions on the system Π works as follows:

PrΠ(L) = L ∪ {T | ∃R ∈ Π : head(R) ⊆ L, tail(R) = T}

so PrΠ adds conclusions of all the implications, the premise of which is contained
in L and fullfilled on it, to the operand.

Definition 32. Closure of a set of letters L is the smallest fixed point of operator
of direct prediction: PRΠ(L) = Pr∞Π (L).
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8 Consistency theorem

The correctness for construction proposed in the previous section needs to be
proven, as in [10, 14, 15]. Correctness here is understood in two senses: in prob-
abilistic and logical. We show that both they are satisfied.

Definition 33. Set of letters L is called compatible, if &L – ν-consistent on K.

In fact, the set is compatible when there is a set of statistically significant
objects of GK , on which the formula &L is fulfilled. On ”normal” probability
contexts K (with no more than countable set of objects G, each of which is
statistically significant), the compatible sets L will be those sets (and with them
also the corresponding sets of attributes L from MK∗) for which L′ 6= ∅.

Object can not have both m ∈ MK∗ and m ∈ MK∗ simultaniously. It can
either possess or lack any attribute accordingly to binary context defenition.
Such attribute combinations looks very suspecious and leads to known logical
problems, consistency of attribute sets is a desirable property here.

Definition 34. Set of letters L – consistent, if it does not contain any atom T
simultaneously with its negation ¬T .

Proposition 3. If L – compatible, then L – consistent.

� Otherwise ∃T : T ∈ L and ¬T ∈ L, so ν(&L) ≤ ν(T & ¬T ) = 0. �
Let Π be any rule system and Pr be according prediction operator PrΠ . We

first show that the direct prediction retains the property of compatibility.

Theorem 4. (Compatibility) If L is compatible, then Pr(L) is also compatible.

� The proof is easy to obtain by looking at the refinement theorem. Consider
all rules that contribute to the formation of the direct prediction based on L:

T = {R ∈ Π | head(R) ⊆ L}. We enumerate all the elements of T in
an arbitrary manner, T = {T1, ...Tm}, and consider the sequence of sets Ui =
Ui−1 ∪ {tail(Ti)}, U0 = L. We show that each Ui is compatible.

U0 = L is obviously compatible by the premise of the theorem.
Let Ui is compatible. For brevity, let U = Ui,W = Ui+1, R = Ri+1 and

T = tail(R), H = head(R), N = U \ H. Suppose that W is inconsistent, i.e.
ν(&W ) = 0. Similarly to the refinement theorem, consider pseudo rule F =
(&H & ¬(&N))⇒ T . There are two cases:

1. case: ν(&head(F )) 6= 0. Then the probability of F is defined and

η(F ) =
ν(&H & ¬(&N) & T )

ν(&H & ¬(&N))
=
ν(&H & T )− ν(&H & (&N) & T )

ν(&H)− ν(&H & (&N))
=

ν(&H & T )− ν(&W )

ν(&H)− ν(&U)
=

ν(&H & T )

ν(&H)− ν(&U)
>
ν(&H & T )

ν(&H)
= η(R) > 0.

According to the refinement theorem, there is a rule S such that S > R,
which contradicts that the R is non-refineable (i.e., the fact that R ∈M2).
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2. case: ν(&head(F )) = 0. Then

ν(&head(F )) = ν(&H & ¬(&N)) = 0⇒ ν(&H & ¬(&N) & T ) = 0;

0 = ν(&H & (&N) & T ) = ν(&H & T )− ν(&H & ¬(&N) & T ) = ν(&H & T ).

The last means that η(R) = 0, which contradicts R ∈ M1 (0 = η(R) >
η(∅⇒ T ) ≥ 0). �

Corollary 2. If L – compatible, then PR(L) – also compatible.

Corollary 3. If L is compatible, then PR(L) – consistent.

9 About incompatible sets

The situation is quite clear for compatible sets. Direct prediction on the com-
patible set L and the closure of this set are compatible and consistent.

Let’s try to understand the structure of incompatible sets L. We will start
with a fairly trivial statement, which is the opposite to the compatibility theo-
rem.

Proposition 4. If L – incompatible, then PR(L) – is also incompatible.

� Assuming compatibility PR(L) we find that any subset, and in particular L,
is compatible. �

Somewhat more difficult is the question of the inconsistency of such closures.
For a more detailed study of the structure of incompatible systems of letters we
need the following concept.

Definition 35. We say that M is ν-maximal in L, M ⊆
ν
L, when M is maximal

by inclusion subset of L and M is compatible.

Definition 36. System of rules Π is called complete, if MSR ⊂ Π.

The following discussion focuses only on complete systems of rules. Require-
ment of completeness can be slightly relaxed, as it can be seen from the theorem
below, but we restrict ourselves to the most specific rules in this article. This
means we consider only PR = PRΠ operators, where Π is complete system. It
should be noted, that according to proposition 2 the system containing M2 are
complete.

Theorem 5. Let M ⊆
ν
L. Then M ∪ ¬(L \M) ⊆ PR(M).

� Let x belong to the left side of the formula. Case x ∈ M is obvious. Here
x ∈ PR(M) according to the definition of the closure.
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Now let x ∈ L \M . By definition, ν-maximal subsets of the set M ∪ {x}
is incompatible (otherwise obtain a new maximal set by inclusion). This means
that

ν(&M & x) = 0;

ν(&M & ¬x) = ν(&M)− ν(&M & x) = ν(&M);

Let R = (&M ⇒ ¬x). From the relations above it is easy to calculate the
probability of rule R:

η(R) =
ν(&M & ¬x)

ν(&M)
= 1;

Lemma 11 asserts there is a rule S ∈ MSR ⊂ Π, which is MSR-rule with
conclusion equal ¬x, so that for S is fulfilled ν(S) ≥ 1. Thus, the rule S inevitably
add ¬x into direct prediction of Pr(L). �

Theorem 6. Consider M ⊆
ν
L, N ⊆

ν
L and M 6= N . Then

1. ∃x : x ∈ PR(M) and ¬x ∈ PR(N);
2. PR(M) ⊇ PR(M ∩N) ⊆ PR(N) and PR(M) 6= PR(N).

� 1. M 6= N means, that ∃x ∈M \N (indeed M ⊂ N would be contrary to the
maximality of M). x ∈M ⇒ PR(M) and similarly to Theorem 6 ¬x ∈ PR(N).

2. PR(N) – is compatible and consistent, and ¬x ∈ PR(N); it means x 6∈
PR(N) and x ∈ PR(M)\PR(N). Then, M ∩N ⊂M , so PR(M ∩N) ⊆ PR(M).
�

The last two theorems conclude that there exists an injective mapping from
ν-maximal subsets of L to fixed points set, each completely covering the entire
set of atoms in L (containing them or their negations).

Inconsistency and compatibility of fixed points for compatible sets proved in
section above. For incompatible sets following theorem tends to be an answer.

Theorem 7. If L is incompatible, then PR(L) – inconsistent.

� Find ν-maximal subset of L and denote it as M . M 6= L, otherwise L would
have been compatible. Therefore, there exists x ∈ L \M . Set {x} is extended
to a maximal compatible N ⊆

ν
L. By construction, x ∈ N \M ⇒ M 6= N . By

Theorem 6, there exists y, such that y ∈ PR(M) and ¬y ∈ PR(N):

M ⊆ L
N ⊆ L

}
⇒

y ∈ PR(M) ⊆ PR(L)

¬y ∈ PR(N) ⊆ PR(L)

}
⇒ PR(L) - contradictory. �

10 Probabilistic formal concepts

The fixed points of PR operator are rather interesting and promising. However,
the purpose for their consideration was the motive of introduction of the prob-
abilistic analogous of formal concepts. Using the idea of Theorem 1, it is easy
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to offer as candidates [5, 6] for inclusion in intent of such concepts. We mean
exactly the fixed points of PR.

Selection for concept extent is a bit more complicated. But since all the sets
of letters, such that PR(M) = B, have a real connection to the closure, it is
logical to propose to collect all objects falling under them. That is:

Definition 37. By probabilistic formal concept on K we denote (A,B), such
that:

PR(B) = B, A =
⋃

PR(C)=B

GC

To distinguish probabilistic concepts from the usual ones in the sense of the
context of K∗, the last ones we call strict formal concepts. Our selection justified
by the following statement, relating probabilistic and strict formal concepts on
the same context.

Theorem 8. Let K be a binary context.

1. If (A,B) is strict concept on K, then there is a probabilistic concept (N,M)
such that A ⊆ N , and B ⊆M .

2. If (N,M) is the probabilistic concept on K, then there is a set of strict
notions C, such that

∀(A,B) ∈ C (PR(B) = M),

N =
⋃

(A,B)∈C

A.

� Suppose S = {S | PR(S) = M}.
1. Let M = PR(B). Then B ∈ S and A = GB ⊆

⋃
S
GS = N . Hence (A,B) is

desired.
2. On S we make a set of strict concepts C = {(S′′′, S′′) | S ∈ S}. From

lemma 1 it is easy to understand that B′′′ = B′, that is C = {(S′, S′′) | S ∈ S}
and all (A,B) ∈ C - are strict concepts. Hence N =

⋃
S
S′ =

⋃
(A,B)∈C

A It should

be added that M ∈ S and hence C 6= ∅. �
Probabilistic concept is like cluster unifying set of poorly distinguishable

strict concepts in terms of a system of rules Π.

11 Probabilistic concepts search

In this section we restrict ourselves to the case of finite context K. From the last
one, we can drop out statistically insignificant objects without loss of generality.

Assume that the system of rules Π on context K has already been found
by one of the algorithms, for example [11, 13]. Probabilistic concept definition
implies the following search procedure.
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1. On step k = 1 we generate the set C(1) = {PR(head(R)) | R ∈ Π}.
2. On step k > 1 in case of C(k−1) = ∅ algorithm finishes its execution and

output a list of detected probability concepts.
3. Else on step k > 1 the set A = {g ∈ G | PR(g′ ∩ B) = B} is calculated for

each B ∈ C(k−1). If A 6= ∅, pair (A,B) is added to list of found concepts.
4. The set C(k) = {PR(B ∪ C) | B,C ∈ C(k−1),PR(B ∪ C) 6∈ C(k−1)} is

generated.
5. Let k := k + 1 and go to step 2.

(a) Fix point for the digit 6 (b) Coding of the digits

Finally, we present one of many examples. Real example can be found in [16].
In [17] there is experiment for analyzing of postal envelopes digits. The data
contains 12 digits (2 options for each ”6” and ”9”). The context is based on 24
attributes, each of which has 7 values (for different shapes in the relevant sector
of the digit partition). Set G consists of 360 objects (30 copies of each digit) with
gap in information (each digit misses one randomly deleted attribute), which are
mixed, plus negative sample of 1050 objects with random attributes. There is no
attribute that designate which digit is the object representing. On these data,
73458 rules was found. Then the all fixed points were computed using set of all
rules, which turn up just 14. From them, 12 digits were exactly our numbers,
and for each of ”6” and ”9” were still two fixed points containing an extra space
in the features that distinguishes 2 options of those digits (”6” and ”9” are not
mixed up due to fixing top-bottom orientation while coding procedure).

12 Conclusion

Negations (and, in general, the values for attributes) in formal contexts, produce
a much more expressive system of concepts. This provides such properties (in
some sense) as correctness and completeness to proposed method.
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Our considerations and algorithm allows us to find consistent probabilistic
concepts, and, at the same time, do not lose strict concepts. Moreover, the pro-
posed method preserves a binary noise - the random binary noise imposed into
the values of attributes don’t change the set of concepts [5, 6].

The concept of fixed points may be rather natural applied for formalization of
classtering [17]. Therefore, the fix point theory and probabilistic formal concepts
may be used for the new Data Mining method development.
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