Question 3: Computing the girth of a graph

December 31, 2003

We consider here the problem of computing the girth, g(G), of connected undirected graph
G = (V, E), i.e., the minimum length of a cycle (contained) in a graph G, or infinity if G has no
cycle.

Throughout this notes, the term cycle refers to a simple closed walk and the term path refers
to a simple non-closed walk. The usual BFS algorithm ignores vertices that have already been
explored. On the other hand, if we reach an already-explored vertex at depth r, then G must
contain a cycle of size < r; that is, the girth of G is at most r. Conversely, if G contains an r-cycle
C and we start the BFS algorithm at some vertex v € V(C'), then we are guaranteed to reach an
already-explored vertex by the rth stage. Therefore, we can compute the girth g(G) of G as

min

minimum depth at which a vertex appears for the
VeV (Q) ’

second time, when we run a BFS starting at v

We now present an algorithm to compute the girth of a graph. Our algorithm will use a BFS
approach from each vertex of the graph.

When searching from vertex v - that is, constructing a rooted tree with root v - we need to
keep track of the parent of each other vertex; otherwise we might mistakenly identify a closed walk
as a cycle.

Algorithm GIRTH(G)

(1) 9(G) — » the size of the smallest cycle already found.
(2) for every v € V(G) do

(3) S «— 0; R« {v}; Parent(v) + NULL; D(v) < 0 » D(w) = d(v,w).
(4) while R # () do

(5) choose z € R

(6) S —Su{z}; R R\ {z}

) for every y € N(x) \ {Parent (x)} do > N(u) = {weV|(u,w) € E}.
(8) if y ¢ S then

9) Parent (y) « x

(10) D(y) — D(z) +1

(11) R — RU{y}

(12) else

(13) 6(G) — min {g(G), D(x)+ D(y) +1}

(14) return g(G)

Clearly, the running time of this algorithm is O(V(V + E)) = O(VE).



