Question 3: Computing the girth of a graph

December 31, 2003

We consider here the problem of computing the girth, $g(G)$, of connected undirected graph $G=(V, E)$, i.e., the minimum length of a cycle (contained) in a graph G, or infinity if G has no cycle.

Throughout this notes, the term cycle refers to a simple closed walk and the term path refers to a simple non-closed walk. The usual BFS algorithm ignores vertices that have already been explored. On the other hand, if we reach an already-explored vertex at depth r, then G must contain a cycle of size $\leq r$; that is, the girth of G is at most r. Conversely, if G contains an r-cycle C and we start the BFS algorithm at some vertex $v \in V(C)$, then we are guaranteed to reach an already-explored vertex by the r th stage. Therefore, we can compute the girth $g(G)$ of G as

$$
\min _{v \in V(G)}\binom{\text { minimum depth at which a vertex appears for the }}{\text { second time, when we run a BFS starting at } v} .
$$

We now present an algorithm to compute the girth of a graph. Our algorithm will use a BFS approach from each vertex of the graph.

When searching from vertex v - that is, constructing a rooted tree with root v - we need to keep track of the parent of each other vertex; otherwise we might mistakenly identify a closed walk as a cycle.

Algorithm Girth (G)

(1) $g(G) \leftarrow \infty$
the size of the smallest cycle already found.
(2) for every $v \in V(G)$ do

$$
\begin{align*}
& S \leftarrow \emptyset ; R \leftarrow\{v\} ; \operatorname{Parent}(v) \leftarrow \text { NULL } ; D(v) \leftarrow 0 \tag{3}\\
& \text { while } R \neq \emptyset \text { do } \\
& \quad \text { choose } x \in R \tag{5}\\
& \quad S \leftarrow S \cup\{x\} ; R \leftarrow R \backslash\{x\} \tag{6}\\
& \text { for every } y \in N(x) \backslash\{\text { Parent }(x)\} \text { do } \\
& \quad \text { if } y \notin S \text { then } \tag{8}\\
& \quad \text { Parent }(y) \leftarrow x \tag{9}\\
& \quad D(y) \leftarrow D(x)+1 \tag{10}\\
& \quad R \leftarrow R \cup\{y\} \tag{11}\\
& \quad \text { else } \tag{12}\\
& \quad g(G) \leftarrow \min \{g(G), D(x)+D(y)+1\} \tag{13}
\end{align*}
$$

(14) return $g(G)$

Clearly, the running time of this algorithm is $O(V(V+E))=O(V E)$.

