Question 3: Computing the girth of a graph

December 31, 2003

We consider here the problem of computing the girth, g(G), of connected undirected graph G = (V, E), i.e., the minimum length of a cycle (contained) in a graph G, or infinity if G has no cycle.

Throughout this notes, the term *cycle* refers to a simple closed walk and the term *path* refers to a simple non-closed walk. The usual BFS algorithm ignores vertices that have already been explored. On the other hand, if we reach an already-explored vertex at depth r, then G must contain a cycle of size $\leq r$; that is, the girth of G is at most r. Conversely, if G contains an r-cycle C and we start the BFS algorithm at some vertex $v \in V(C)$, then we are guaranteed to reach an already-explored vertex by the rth stage. Therefore, we can compute the girth g(G) of G as

 $\min_{v \in V(G)} \left(\begin{array}{c} \text{minimum depth at which a vertex appears for the} \\ \text{second time, when we run a BFS starting at } v \end{array} \right).$

We now present an algorithm to compute the girth of a graph. Our algorithm will use a BFS approach from each vertex of the graph.

When searching from vertex v - that is, constructing a rooted tree with root v - we need to keep track of the parent of each other vertex; otherwise we might mistakenly identify a closed walk as a cycle.

Algorithm GIRTH(G)

(1) $g(G) \leftarrow \infty$	► the size of the smallest cycle already found.
(2) for every $v \in V(G)$ do	
(3) $S \leftarrow \emptyset; R \leftarrow \{v\}; \operatorname{Parent}(v) \leftarrow \operatorname{NULL}; D(v)$	$v) \leftarrow 0$ $\blacktriangleright D(w) = d(v, w).$
(4) while $R \neq \emptyset$ do	
(5) choose $x \in R$	
(6) $S \leftarrow S \cup \{x\}; R \leftarrow R \setminus \{x\}$	
(7) for every $y \in N(x) \setminus \{\text{Parent } (x)\} \text{ do}$	$\blacktriangleright N(u) = \big\{ w \in V (u, w) \in E \big\}.$
(8) if $y \notin S$ then	
(9) Parent $(y) \leftarrow x$	
(10) $D(y) \leftarrow D(x) + 1$	
(11) $R \leftarrow R \cup \{y\}$	
(12) else	
(13) $g(G) \leftarrow \min \left\{ g(G), \ D(x) + D(y) \right\}$	$+1$ }
(14) return $g(G)$	

Clearly, the running time of this algorithm is O(V(V+E)) = O(VE).