
Question 3: Computing the girth of a graph

December 31, 2003

We consider here the problem of computing the girth, g(G), of connected undirected graph
G = (V,E), i.e., the minimum length of a cycle (contained) in a graph G, or infinity if G has no
cycle.

Throughout this notes, the term cycle refers to a simple closed walk and the term path refers
to a simple non-closed walk. The usual BFS algorithm ignores vertices that have already been
explored. On the other hand, if we reach an already-explored vertex at depth r, then G must
contain a cycle of size ≤ r; that is, the girth of G is at most r. Conversely, if G contains an r-cycle
C and we start the BFS algorithm at some vertex v ∈ V (C), then we are guaranteed to reach an
already-explored vertex by the rth stage. Therefore, we can compute the girth g(G) of G as

min
v∈V (G)

(
minimum depth at which a vertex appears for the
second time, when we run a BFS starting at v

)
.

We now present an algorithm to compute the girth of a graph. Our algorithm will use a BFS
approach from each vertex of the graph.

When searching from vertex v - that is, constructing a rooted tree with root v - we need to
keep track of the parent of each other vertex; otherwise we might mistakenly identify a closed walk
as a cycle.

Algorithm Girth(G)

(1) g(G) ←∞ I the size of the smallest cycle already found.

(2) for every v ∈ V (G) do

(3) S ← ∅; R ← {v}; Parent(v) ← NULL; D(v) ← 0 I D(w) = d(v, w).

(4) while R 6= ∅ do

(5) choose x ∈ R

(6) S ← S ∪ {x}; R ← R \ {x}
(7) for every y ∈ N(x) \ {Parent (x)} do I N(u) =

{
w ∈ V | (u,w) ∈ E

}
.

(8) if y /∈ S then

(9) Parent (y) ← x

(10) D(y) ← D(x) + 1

(11) R ← R ∪ {y}
(12) else

(13) g(G) ← min
{
g(G), D(x) + D(y) + 1

}

(14) return g(G)

Clearly, the running time of this algorithm is O
(
V (V + E)

)
= O(V E).

1


