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1. Introduction

If X ⊂ Pn is an irreducible projective variety, then the homogeneous coordinate ring Γ(X)
has a natural grading, and it is reasonable to ask how the size of the graded components Γ(X)m

varies with m. Geometrically, this is tantamount to asking how many hypersurfaces of each
degree m contain X, for such a hypersurface is given by a homogeneous polynomial of degree m
in I(X)– that is, an element of I(X)m– and the dimension of Γ(X)m is equal to the codimension
of I(X)m in k[X0, . . . , Xn]m. We will define a function hX , called the Hilbert function of the
projective variety, that records this data. The first surprising feature of the Hilbert function
is that it is extremely well-behaved; for large values of m, hX(m) agrees with a polynomial.
Furthermore, this polynomial encodes a host of numerical invariants of X. We will discuss one
such invariant, namely the degree of the projective variety. While our definition of degree via
the Hilbert function will suffer from a lack of geometric motivation, we will prove that, at least
in certain cases, it coincides with a more intuitive notion of the degree of a variety.

2. The Hilbert Function

Let X ⊂ Pn be a projective variety, and let Γ(X) = k[X0, . . . , Xn]/I(X) denote its homoge-
neous coordinate ring. We define a function hX : N→ N by

hX(m) = dimk(Γ(X)m),

where the subscript denotes the mth graded piece. The function hX is called the Hilbert function
of the variety X.

In some specific cases, it is possible to compute the Hilbert function directly. For example,
if X = {p1, p2, p3} consists of three points in P2, then there are two possible Hilbert functions.
We have

hX(1) = dimk(Γ(X)1) = codimk(I(X)1, k[X0, X1, X2]1) = 3− dimk(I(X)1).

Here, I(X)1 is the space of homogeneous linear polynomials vanishing at p1, p2, and p3.
There is no such polynomial unless the three points are colinear, in which case the space is
1-dimensional, generated by the line on which they lie. Thus,

hX(1) =

{
2 if p1, p2, p3 are colinear,

3 otherwise.

On the other hand, hX(2) = 3 regardless of the configuration of the points. Indeed, by choosing
representatives v1, v2, v3 ∈ A3 \ {0} for the three points, one defines a map

ϕ : k[X0, X1, X2]2 → k3
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by evaluation at v1, v2, and v3. Multiplying a homogeneous linear polynomial vanishing at p1 but
not p3 by one vanishing at p2 but not p3 gives a homogeneous quadratic polynomial vanishing at
the first two points but not the third. In the same manner, one can find homogeneous quadratic
polynomials vanishing at any two of the three points; it follows that the image of ϕ contains the
standard basis vectors, and hence ϕ is surjective. Thus,

hX(2) = codimk(I(X)2, k[X0, X1, X2]2) = dim(k[X0, X1, X2]2)− dimk(kerϕ) = dimk(k3) = 3,

as claimed. The same proof shows that hX(m) = 3 for all m ≥ 2, so we have completely
determined the Hilbert function of X.

Let us consider a higher-dimensional example, lest we give the impression that Hilbert func-
tions are only computable in rather uninteresting cases. Suppose X is the rational normal curve;
that is, X is the image of the d-fold Veronese embedding νd : P1 → Pd. Then ν∗d gives an identi-
fication between homogeneous polynomials of degree m on X and homogeneous polynomials of
degree dm on P1. Thus, Γ(X)m

∼= k[X0, X1]dm, so that

hX(m) = dimk(k[X0, X1]dm) =

(
dm+ 1

1

)
= dm+ 1.

Generalizing this example, one sees that if Y is the image of the d-fold Veronese embedding
Pn → PN , then Γ(Y )m

∼= k[X0, . . . , Xn]dm, so

hY (m) = dimk(k[X0, . . . , Xn]dm) =

(
dm+ n

n

)
=
dn

n!
mn + · · · .

Two natural observations present themselves at this moment. First, the Hilbert function ex-
hibits quite controlled behavior; in the second two examples considered above, it is a polynomial
function, while in the first example it at least agrees with a polynomial (namely a constant) for
m ≥ 2. Additionally, the degree of this polynomial in each case coincides with the dimension of
the variety. These are not accidental features, but are general properties enjoyed by the Hilbert
function of any projective variety.

3. The Hilbert Polynomial

The goal of this section is to prove the following theorem:

Theorem 1. Let X ⊂ Pn be an embedded projective variety of dimension r. Then there exists
a polynomial pX such that hX(m) = pX(m) for all sufficiently large m, and the degree of pX is
equal to r.

The polynomial pX is called the Hilbert polynomial of X. We should remark that there is
nothing special about the fact that Γ(X) is the coordinate ring of a projective variety. In fact, if
M is any finitely-generated graded module over the ring S = k[X0, . . . , Xn] (that is, M =

⊕
Md

and Sd ·Me ⊂Mde for all d, e), then one can define the Hilbert function of M exactly as above,
and the same proof will show that this function eventually agrees with a polynomial.

We will require three lemmas:

Lemma 2. If P ∈ Q[z] is a polynomial such that P (n) ∈ Z for all sufficiently large integers n,
then there exist integers c0, . . . , cr such that

P (z) = c0

(
z

r

)
+ c1

(
z

r − 1

)
+ · · ·+ cr.
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Proof. Observe that (
z

r

)
=

1

r!
zr + · · · ,

so we can write zr in the form c0
(

z
r

)
+ c1

(
z

r−1

)
+ · · ·+ cr with ci ∈ Q. It follows that we can write

any polynomial with rational coefficients in this form, so all we need to show is that if P (n) ∈ Z
for all sufficiently large integers n, then in fact ci ∈ Z.

The proof is by induction on the degree of P . If deg(P ) = 0, then P (z) = cr, and since
P (n) is eventually an integer we must have cr ∈ Z. If P (z) = c0

(
z
r

)
+ · · · + cr for r > 1,

then let ∆P (n) = P (n + 1) − P (n) denote the successive difference function of P . Since
∆
(

z
r

)
=
(

z+1
r

)
−
(

z
r

)
=
(

z
r−1

)
, we have

∆P (z) = c0

(
z

r − 1

)
+ c1

(
z

r − 2

)
+ · · ·+ cr−1.

But ∆P (z) is a polynomial of degree r − 1 with rational coefficients that is also eventually an
integer, so by induction, c0, . . . , cr−1 ∈ Z. Since P (n) ∈ Z for all n � 0, it follows that cr ∈ Z,
as required. �

A polynomial P ∈ Q[z] such that P (n) ∈ Z for all sufficiently large integers n is known as a
numerical polynomial.

Lemma 3. If f : Z→ Z is any function for which there exists a numerical polynomial Q(z) such
that the successive difference function ∆f(n) = f(n+ 1)− f(n) is equal to Q(n) for all n� 0,
then there exists a numerical polynomial P such that f(n) = P (n) for all n� 0. Furthermore,
deg(P ) = deg(Q) + 1.

Proof. By Lemma 2, we can write

Q(z) = c0

(
z

r

)
+ c1

(
z

r − 1

)
+ · · ·+ cr

with ci ∈ Z. Let P (z) = c0
(

z
r+1

)
+ c1

(
z
r

)
+ · · · + cr. Then ∆P = Q, so ∆(f − P )(n) =

∆f(n) − ∆P (n) = 0 for all n � 0. So for sufficiently large n, (f − P )(n) is a constant, say
(f − P )(n) = cr+1. This implies that

f(n) = P (n) + cr+1

for all n� 0, and hence f(n) eventually agrees with a numerical polynomial. The last statement
is immediate from the proof. �

For the third lemma, we require a bit of notation. If M is a graded S-module and r ∈ Z, then
M [r] denotes the S-module obtained from M by shifting the degrees by r; that is M [r]s = Mr+s

for all s.

Lemma 4. Let M be a finitely-generated graded module over a Noetherian ring S. Then there
exists a filtration

0 = M0 ⊂M1 ⊂ · · · ⊂M r = M

by graded submodules such that for all i,

M i/M i−1 ∼= (S/pi)[`i]

as graded S-modules, where pi is a homogeneous prime ideal of S and `i ∈ Z.



4 EMILY CLADER

Proof. Let Σ denote the collection of graded submodules of M that admit such a filtration. This
set is nonempty, since the zero module certainly has the required filtration. Therefore, since M
is a finitely-generated module over a Noetherian ring and hence is a Noetherian module, the
collection Σ has a maximal element M ′.

Let M ′′ = M/M ′. If M ′′ = 0, we are done. If not, then the set

I = {Im = Ann(m) | m ∈M ′′ nonzero and homogeneous }
is a nonempty set of ideals in S. So since S is Noetherian, I has a maximal element Im. We
claim that Im is prime. Since m is a homogeneous element of M ′′, Im is a homogeneous ideal,
and hence an element of S lies in Im if and only if each of its homogeneous components does;
therefore, it suffices to prove that a product of elements outside Im does not lie in Im in the case
where those elements are homogeneous. Let a and b be homogeneous elements of S for which
ab ∈ Im but b /∈ Im. Then bm is a nonzero homogeneous element of M ′′, so Ibm ∈ I. Clearly
Im ⊂ Ibm, so by maximality, Im = Ibm. But ab ∈ Im, hence abm = 0. This says that a ∈ Ibm, so
a ∈ Im, as required.

This proves that Im is a homogeneous prime ideal of S, which we will denote by p. Suppose
that m ∈M`. Then the submodule A ·m ⊂M ′′ is isomorphic as a graded module to (S/p)[−`].
Letting N ⊂M be the inverse image of A ·m in M , we have

N/M ′ ∼= A · n ∼= (S/p)[−`].
Thus, N has a filtration 0 ⊂ M ′ ⊂ N of the form claimed in the statement of the lemma. But
M ′ ( N , so this contradicts the maximality of M ′, and hence completes the proof. �

We are now ready to prove the theorem:

Proof of Theorem 1. We will actually prove a slightly more general statement: If M is a finitely-
generated graded module over the ring S = k[X0, . . . , Xn], and hM(m) = dimk(Mm) denotes its
Hilbert function, then there exists a polynomial pM(z) such that hM(m) = pM(m) for all suffi-
ciently large integers m. Moreover, the degree of this polynomial is equal to dim(V (Ann(M)),
where V (Ann(M)) denotes the variety in Pn defined by the homogeneous ideal Ann(M). In case
M = Γ(X) = S/I(X) for a projective variety X, we have V (Ann(M)) = V (I(X)) = X, so this
indeed generalizes the theorem.

Suppose that

0→M ′ →M →M ′′ → 0

is a short exact sequence of S-modules and the claim is true for both M ′ and M ′′ Then hM =
hM ′ + hM ′′ , so hM is eventually a polynomial. Furthermore,

V (Ann(M)) = V (Ann(M ′)) ∪ V (Ann(M ′′)),

so

dimV (Ann(M)) = max(dimV (Ann(M ′)), dimV (Ann(M ′′))) = deg(pM ′ + pM ′′) = deg pM ,

and hence the claim is also true for M .
Therefore, by induction on the pieces of the filtration in Lemma 4, it suffices to prove the

claim for modules of the form (S/p)[`] with p a homogeneous prime ideal of S and ` ∈ Z. In
fact, the degree shift simply yields a change of variables z 7→ z + ` in the Hilbert function, so it
suffices to prove the claim for M = S/p.
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One case must be treated slightly differently than the rest. If p = (X0, . . . , Xn), then hM(m) =
0 for all m > 0, and hence we can take pM ≡ 0. Under the convention that the degree of the zero
polynomial and the dimension of the empty set are both −1, we have deg(pM) = dim(V (p)), as
required.

Assume, now, that p 6= (X0, . . . , Xn). Choose any Xi /∈ p, and consider the exact sequence

0→M [−1]
·Xi−−→M →M/XiM → 0.

Then, since all the above homomorphisms are homogeneous of degree zero, we have

hM/XiM(m) = hM(m)− hM(m− 1) = ∆hM(m− 1).

Furthermore,

V (Ann(M/XiM)) = V (p) ∩ V (Xi).

So V (Ann(M/XiM)) is a hypersurface in V (p), and hence dim(V (Ann(M/XiM))) = dim(V (p))−
1. Therefore, by induction on dim(V (Ann(M))) = dim(V (p)), we may assume that hM/XiM

eventually agrees with a polynomial of degree equal to dim(V (Ann(M/XiM))).
By the above, this implies that ∆hM eventually agrees with a polynomial whose degree is

dim(V (Ann(M/XiM))). So by Lemma 3, hM eventually agrees with a polynomial of degree

dim(V (Ann(M/XiM))) + 1 = dim(V (p)) = dim(V (Ann(M))),

as claimed. �

4. The Degree of a Projective Variety

One of the most useful features of the Hilbert polynomial is that it allows us to define the
notion of degree. If X ⊂ Pn is an embedded projective variety of dimension r, the degree of X
is defined to be r! times the leading coefficient of pX(m).

Proposition 5. Let X ⊂ Pn be an embedded projective variety.

(a) The degree of X is a positive integer.
(b) If X = V (F ) is a hypersurface of degree d (in the sense that F is a homogeneous polynomial

of degree d), then the degree of X is d.
(c) If X = {p1, . . . , pd} is a finite collection of distinct points, then the degree of X is d.

Proof. Since pX is a numerical polynomial of degree r, Lemma 2 implies that we can write it as

pX(m) = c0

(
m

r

)
+ · · ·+ cr =

c0
r!
zr + · · · ,

where ci ∈ Z. Therefore, deg(X) = c0 is an integer. It is positive because for m � 0,
pX(m) = hX(m) is positive.

For part (b), we explicitly compute the Hilbert function of X = V (F ). If S = k[X0, . . . , Xn]
and Γ(X) = S/(F ) is the homogeneous coordinate ring of X, we have an exact sequence

0→ S[−d]
·F−→ S → Γ(X)→ 0.

These homomorphisms are homogeneous of degree zero, so

hX(m) = dimk(Γ(X)m) = dimk(Sm)− dimk(Sm−d).



6 EMILY CLADER

One computes directly that

hX(m) =

(
m+ n
n

)
−
(
m+ n− d

n

)
=

1

n!

(
(mn +

n(n+ 1)

2
mn−1 + · · · )− (mn +

n(−2d+ n+ 1)

2
+ · · · )

)
=

d

(n− 1)!
mn−1 + · · · .

Since we know that a hypersurface has dimension n− 1, it follows that deg(X) = d, as claimed.
Part (c) is equivalent to the claim that hX(m) = d for all m� 0. The proof of this assertion is

almost identical to the proof that hX(m) = 3 for all m ≥ 2 in the case where X consists of three
points in P2. Specifically, choose representatives v1, . . . , vd in An+1 for the points p1, . . . , pd ∈ Pn,
and define a a map

ϕ : k[X0, . . . , Xn]m → kd

by evaluation at v1, . . . , vd. As long asm ≥ d−1, this is surjective. Indeed, for any j ∈ {1, . . . , d},
we can construct a homogeneous polynomial of degree d−1 vanishing at each of the points except
for pj by multiplying linear forms Li vanishing at pi but not pj. By raising some Li’s to powers,
we can increase the degree of this polynomial to m. We find, therefore, that each of the standard
basis vectors lies in the image of ϕ, and hence ϕ is surjective. So for m ≥ d− 1, we have

hX(m) = dimk(k[X0, . . . , Xn]m)− dimk(ker(ϕ)) = dimk(kd) = d,

as claimed. �

An important observation should be made at this point: the degree of a projective variety is
highly dependent on its embedding in projective space. For example, from our computation of
the Hilbert function hX(m) = dm+ 1 of the rational normal curve X given previously, it follows
that the degree of the rational normal curve is d. On the other hand,

hP1(m) = dimk(k[X0, X1]m) =

(
m+ 1

1

)
= m+ 1,

so deg(P1) = 1. But νd : P1 → Pd is an isomorphism onto its image! Thus, while the degree
of a projective variety is clearly invariant under linear automorphisms of Pn, it is not invariant
under isomorphisms in general.

There are many other ways to define the degree of a projective variety besides the one we have
presented here. While ours has the advantage of being fairly easy to compute, its geometric
meaning is entirely mysterious. To contrast, if X ⊂ Pn has dimension r, one can define the
degree of X as the number of points of intersection of X with a general linear subspace of
dimension n − r. To get a sense of why this is reasonable, we observe that a general linear
subspace L of dimension n− r meets X in a finite collection of points. Indeed, it is sufficient to
prove this is true when X and L are subvarieties of An, since in general we can intersect each
with the standard affine charts. In the affine case, Noether Normalization implies that a general
projection An → Ar induces a finite map π : X → Ar. Such a projection comes from a general
coordinate change An → An followed by projection onto the last r coordinates; and after such
a coordinate change, the first n − r coordinates span a subspace L for which X ∩ L = π−1(0),
which is a finite collection of points by the finiteness of the morphism π.
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Of course, it is unclear why the number of points of intersection is independent of L once
L is sufficiently general, and even less apparent why this number should coincide with the
normalized leading coefficient of the Hilbert polynomial. We will prove in Proposition 6 that
the two definitions of degree agree in the case where X is a projective plane curve. Before doing
so, however, let us consider an example to solidify our intuition.

Let X = V (Y Z −X2) ⊂ P2. Since this is a hypersurface defined by a degree-2 polynomial,
Proposition 5(b) implies that its degree as defined by way of the Hilbert polynomial is 2. We
will show that a general line in P2 meets X in exactly 2 points. Looking at the affine chart
where Z 6= 0, the real picture makes this assertion plausible:

Figure 1: A general line meets V (Y Z −X2) ⊂ P2 in two points.

Let L be given by the equation aX + bY + cZ = 0. Assuming b 6= 0, it is easy to check that
X ∩ L is contained in the affine chart where Z 6= 0. On this affine chart, we have

X ∩ L ∼= {(X, Y ) ∈ A2 | Y = X2, bX2 + aX + c = 0}.
As long as a2 − 4bc 6= 0, this intersection consists of exactly 2 points. Thus, all lines L =
{aX + bY + cZ = 0} for which b 6= 0 and a2 − 4bc 6= 0 intersect X in exactly 2 points. These
are polynomial nonvanishing conditions, and hence define an open subset of the Grassmannian
of lines in P1, so a general line has the desired property.

Proposition 6. Let X = V (F ) ⊂ P2 be a curve of degree d (in the sense that F is a homogeneous
polynomial of degree d, or equivalently, the leading coefficient of hX is d). Then a general line
in P2 meets Y in exactly d points.

Proof. Denote a line L by {aX + bY + cZ = 0}. We will first prove that a general line has
the property that none of its intersections with X is either a singular point of X or a point of
tangency. Indeed, X has only finitely many singular points, and the condition that L not pass
through one of these is a polynomial nonvanishing condition on a, b, and c; thus, the condition
that L not pass through any of them is a finite collection of open conditions, hence is an open
condition on L.

As for the points of tangency, let

Y = {(p, L) ∈ P2 × (P2)∗ | p ∈ X, L is tangent to X at p}.
This is a closed subset of P2 × (P2)∗, because if L is as above, then the condition that L is
tangent to X at p is equivalent to[

∂F

∂X
(p) :

∂F

∂Y
(p) :

∂F

∂Z
(p)

]
= [a : b : c].
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Thus,

Y = V

(
F, b

∂F

∂X
− a∂F

∂Y
, c
∂F

∂Y
− b∂F

∂Z

)
,

which is closed. Since the projection π : P2 × (P2)∗ → (P2)∗ is a morphism between projective
varieties, it is a closed map, and hence the set π(X) is a closed subset of the Grassmannian
(P2)∗ of lines in P2. Its complement, which consists precisely of lines that are not tangent to X
at any point, is therefore an open set.

It follows that a general line indeed meets X transversally at nonsingular points. We claim
that such a line must intersect X in exactly d points. To prove this, first assume without loss
of generality that X∗ = {F (X, Y, 1) = 0} ⊂ A2 is still a plane curve of degree d; this can always
be achieved after a change of coordinates. After imposing one more open condition, we may
assume that L does not meet X in the hyperplane {Z = 0}. This reduces our problem to the
corresponding claim in the affine case. But in this case, we have seen as a corollary of Bézout’s
Theorem that, since Y∗ and L∗ meet transversally at nonsingular points, the number of points
of intersection is equal to

dimk

(
k[X, Y ]

(F∗, aX + bY )

)
.

Either a or b is nonzero, so we may assume that b 6= 0. Then the above is equal to

dimk

(
k[X]

(F∗(X,−a
b
X))

)
= d,

since F∗(X,
−a
b
X) is a polynomial of degree d. Thus, a general line meets X in exactly d points,

as claimed. �

5. Bézout’s Theorem

We close by mentioning one important application of the notion of degree. Let X ⊂ Pn be
a projective variety of dimension r, and let H be a hypersurface not containing any irreducible
component of X. Write

X ∩H = Z1 ∪ · · · ∪ Zs,

where the Zj are irreducible varieties with corresponding homogeneous prime ideals pj. De-
fine the intersection multiplicity of X and H along Zj, denoted i(X,H;Zj), as the length of
(k[X0, . . . , Xn]/(I(X) + I(H)))pj

as a k[X0, . . . , Xn]pj
-module, that is, the length of the longest

increasing chain of k[X0, . . . , Xn]pj
-submodules.

In case X and H are both projective plane curves (with no common components), each Zj

is a point, and the definition of intersection mutliplicity at each such point agrees with the the
intersection numbers we have previously defined for plane curves. To prove this, we will make
use of the following algebraic fact:

Lemma 7. Let A be a local ring with maximal ideal m, and suppose that A contains an isomor-
phic copy of A/m. Let `A(M) denote the length of an A-module M . Then

`A(M) = dimA/m(M).

Proof. The proof is by induction on dimA/m(M). As a base case, suppose that dimA/m(M) = 1.
Then M ∼= A/m, and the fact that m is maximal implies that the longest chain of A-submodules
of A/m is {0} ( A/m, which has length 1.



HILBERT POLYNOMIALS AND THE DEGREE OF A PROJECTIVE VARIETY 9

Assume, now, that dimA/m(M) > 1. We claim that M has a proper nontrivial submodule.
For if not, choose any nonzero element x ∈ M . Then A · x = M , since otherwise A · x would
be a proper nontrivial submodule. Thus, M ∼= A/I for I = Ann(x). But since A/m ⊂ A, M is
also an (A/m)-module, so this implies that m ⊂ I and hence that m = I by maximality. This
contradicts our assumption that dimA/m(M) > 1.

Thus, we can choose a proper nontrivial submodule N of M . Consider the short exact
sequence

0→ N →M →M/N → 0.

The dimensions over A/m of both N and M/N are strictly smaller than that of M , so by
induction we have dimA/m(N) = `A(N) and dimA/m(M/N) = `A(M/N). Since both dimension
and length are additive functions, this implies the same equality for M , and thus completes the
proof. �

Proposition 8. Let X = V (F ) ⊂ P2 and H = V (G) ⊂ P2 be plane curves over an algebraically
closed field with no common components. For any point p in X∩H, the intersection mutliplicity
i(X,H; p) is equal to the intersection number of X and H at p, defined as

dimk(Op(P2)/(f, g)),

where f and g are local equations for F and H at p.

Proof. Since both types of intersection numbers are local, it suffices to assume that X and H
are actually affine plane curves, with F,G ∈ k[X, Y ]. Let A = (k[X, Y ]/(F,G))m, where m is
the maximal ideal corresponding to p. Then i(X,H; p) is the length of A as a k[X, Y ]m-module.
Notice, however, that this is the same as the length of A as an A-module, since the A-module
structure is identical to the k[X, Y ]m-module structure except that (F,G)m acts trivially; hence,
a chain of k[X, Y ]m-submodules gives rise to a chain of A-submodules and vice versa. Thus, the
claim is that

`A(A) = dimk(A).

Now, A is a local ring. Denoting its maximal ideal by n, we observe that A/n is a ring-finite
extension of k. Since it is also a field, the algebraic Nullstellensatz implies that it is a module-
finite extension, so since k is algebraically closed, we have k = A/n. Thus, taking M = A, the
claim follows from the lemma. �

Having proved this, it is natural to expect that with these generalized intersection numbers
comes a generalization of Bézout’s Theorem. This is indeed the case, though a proof is beyond
the scope of the current paper:

Theorem 9. Let X ⊂ Pn be a variety of dimension ≥ 1, and let H be a hypersurface not
containing X. Let Z1, . . . , Zs be the irreducible components of X ∩H. Then

s∑
j=1

i(X,H;Zj) · degZj = (degX)(degH).
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