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Abstract. We present a new method that combines the efficiency of
testing with the reasoning power of satisfiability modulo theory (SMT)
solvers for the verification of multithreaded programs under a user spec-
ified test vector. Our method performs dynamic executions to obtain
both under- and over-approximations of the program, represented as
quantifier-free first order logic formulas. The formulas are then analyzed
by an SMT solver which implicitly considers all possible thread inter-
leavings. The symbolic analysis may return the following results: (1) it
reports a real bug, (2) it proves that the program has no bug under the
given input, or (3) it remains inconclusive because the analysis is based
on abstractions. In the last case, we present a refinement procedure that
uses symbolic analysis to guide further executions.

1 Introduction

One of the main challenges in testing multithreaded programs is that the absence
of bugs in a particular execution does not necessarily imply error-free operation
under that input. To completely verify program behavior for a given test input,
all executions permissible under that input must be examined. However, this is
often an infeasible task considering the exponentially large number of possible
interleavings of a typical multithreaded program. A program with n threads, each
executing k statements, can have up to (nk)!/(k!)™ > (n!)* thread interleavings,
a dependence that is exponential in both n and k.

In this paper we address this challenge by an approach called Trace-Driven
Verification (TDV) that combines the efficiency of testing with the reasoning
power of satisfiability modulo theory (SMT) solvers. TDV performs dynamic
executions to obtain approximations, represented as quantifier-free first order
logic (FOL) formulas, of the program under verification. The formulas are then
analyzed by an SMT solver which implicitly considers all possible thread inter-
leavings. The symbolic analysis may return one of the following results: (1) it
reports a real bug, (2) it proves that the program has no bug under the given in-
put, or (3) it remains inconclusive because the analysis is based on abstractions.
In the last case, we present a refinement procedure that uses symbolic analysis
to guide further executions. The features of TDV include:
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— Implicit consideration of thread interleavings. As explicit enumeration
of executions is intractable, the alternative we present is to capture thread
interleavings implicitly as a set of constraints in a satisfiability formula.
These constraints belong to the family of quantifier-free first order logic
formulas for which efficient SMT solvers are available.

— Integration of dynamic executions and symbolic analysis. At any
given time, TDV analyzes only the statements that appear in a particular
execution under a user-specified test vector. It may report a real bug, or
prove that the program behaves as expected under all thread interleavings
stimulated by the given input. In either case, TDV avoids the analysis of
statements that do not appear in an execution. However, it is also possible
that the symbolic analysis, being an abstraction of program behavior, re-
mains inconclusive. In such a case, TDV uses the symbolic analysis result to
guide future concrete executions.

— Abstraction with both under- and over-approximations. Based on
an execution, TDV infers both under- and over-approximations of the entire
program. The under-approximation is complete so that any bug detected in
the model is a real bug; while the over-approximation is sound so that it can
be used to prove the absence of bugs.

The rest of the paper is organized as follows. After giving the algorithm
overview in Section 2, we present the symbolic encoding of program traces in
Section 3. The refinement procedure is illustrated in Section 4. In Section 5 we
outline several encoding and algorithmic optimizations to improve scalability.
We discuss related work in Section 6. Finally we present experimental results in
Section 7 and conclude the paper in Section 8.

2 Algorithm Overview

Consider a multithreaded program P where threads communicate via shared
variables. Without loss of generality, we assume there is at most one shared
variable access at a program statement®. Then each statement constitutes an
atomic computational step, at which granularity the thread scheduler can switch
control between threads during the execution.

Consider the program, shown in Fig. 1, that consists of two concurrently
running threads. In a typical testing environment, even if we run the program
multiple times under the test input a = 1,b = 0, we may obtain the same exe-
cuted trace m; = (1,2,5,6,7) where the integer values indicate the line numbers.
In general, an executed trace is an ordered sequence of program statements ex-
ecuted by the different threads. Although 71 does not cause an assertion failure

3 If there are multiple shared variable accesses in one statement, we can introduce
additional local variables and split the statement into multiple statements such that
each statement has at most one shared variable. For example, consider a statement
a = x + y with shared variables x,y and local variable a. It can be split into two
statements t = y and a = x + t with the help of a temporary local variable t.



Thread 1: Thread 2:

foo (int a) { bar (int b) {

1 y=a+1; 6 if (b >=0)

2 if (y<2) 7 y=b+1;
3 complexA(); 8 else

4 else 9 complexB();
5 assert(y >= 2); }

}

Fig. 1. A program with the shared variable y and local variables a, b.

on Line 5, we cannot conclude the absence of assertion failures in this program
as this input admits other interleavings of these two threads. Table 1 shows the
set IT(my) of all 10 possible interleavings of 7. For each trace in the table, the
bottom row indicates whether the assertion on Line 5 holds (h) or fails (f). How-
ever, not all the interleavings in IT () are valid executions. Closer examination
of mg and w9 shows that they are infeasible traces, due to the violation of pro-
gram semantics. In particular, after y is updated by Thread 2 on Line 7, it is
not possible for Thread 1 to follow the Else branch on Line 2. Let I1p(m) be
the set of interleavings derived from m; that are consistent with the semantics
of the program P. We have IIp(m) = {m, 7o, 73, 74, 75, 77, Tg, T10}- We call a
trace m; € I p(m)\{m} an induced trace of my.

Table 1. I1(m): all the thread interleavings of m1. The two interleavings marked with
an asterisk are invalid since they violate program semantics.

Step |71 |72 | w3 | ma | W5 | W | ™7 | W | ™o | M0

11 1 1 |1 |1 |1 6| 6| 6| 6
2 12 2 6/ 6/ 6(1 |1 |1 7
3 15 6| 62 |2 72 12 71
4 6(5 715 72 |5 72 |2

5 | 7 75 715 |5 75 |5 |5
assert| h | h | f | h | f | f|h | f | f]|h

In order to check for assertion failures not only in 71 but also in its induced
traces, we construct an FOL formula () that implicitly models all the traces
in IT,(m) (see Section 3.1 for details). A satisfying assignment to ¢(7) indicates
a true assertion failure and can be used to identify the particular thread inter-
leaving that produces it. If ¢(7) is unsatisfiable, however, we cannot conclude
correctness because () is an under-approximation of program behavior. To
understand the reason consider a statement assert(Ceompiesa) inside complexA()
on Line 3 in Fig. 1. Given the executed trace m; = (1,2,5,6,7), o(m1) itself
cannot reveal any assertion failure inside complexA() since the assert (Ceompleza)
statement does not even appear in any traces of IT,(m). On the other hand,
there exist valid executions that execute complexA() (e.g. 7' = (1,6,7,2,3,...)).
Thus an assertion failure is still possible under the test input a = 1,6 = 0.
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Fig. 2. Trace-driven verification flow.

To insure correctness (absence of assertion failures), all execution traces per-
missible under that input must be examined. We relax, or abstract ¢(m), by
making changes to and dropping some of its constraints (see Section 3.2 for de-
tails). This leads to ¥ (7), an FOL formula that represents an over-approximation
to the program behavior under the specified input. If ¢)(7) is unsatisfiable, we can
provably conclude the absence of assertion failures for all thread interleavings
under the specified input. Otherwise we need to check if the reported violation
is true or spurious. In the latter case, TDV performs refinement by modifying
the control flow in order to examine other executions of P under the same test
input.

As illustrated in Fig. 2, TDV consists of the following steps:

1. Run the program under a given user input to obtain an initial execution
trace .

2. Using an encoding along the lines illustrated in Section 3.1, construct an
FOL formula ¢(7).

3. Using an SMT solver, check the satisfiability of ¢(7).

— If p(n) is found to be satisfiable, a real bug is found. Based on the
solution to ¢(m) we can report to the user the specific scheduling that
exposes the bug.

— If p(n) is found to be unsatisfiable, we relax ¢(m) to obtain (). This
allows us to examine sibling traces, i.e., traces that conform to the same
input but cover different statements.

e If¢)(7) is found to be unsatisfiable, we can conclude that the property
holds under all possible thread interleavings under the given test
input.

o If ¢(m) is found to be satisfiable, the SMT solver returns a counter-
example, which is used to guide new executions that are guaranteed
to touch new statements that have not appeared in previous execu-
tions.

3 Symbolic Encoding of Execution Traces

An executed trace is a sequence m = ((t1,11.01,Q1),--., (tn,ln.0n, @n)) that
lists the statements executed by the various threads. Each tuple (¢,l.0,Q) € 7
is considered to be an atomic computational step where ¢ is the thread id, [ is



the line number for the statement, o is an occurrence indezr that distinguishes
the different executions of the same statement, and @ is the statement type that
can be one of assign, branch, jump, fork, join or assert. In this paper we assume
all the executions eventually terminate?.

We consider three basic types of statements: assignment v = E where E
is an arithmetic expression, branch C7l.0 where C is a relational expression,
and jump goto l.o. Note that C?l.o only lists the destination if C' holds because
no two branches can be taken simultaneously in an executed trace®. Besides the
basic types, we also allow assert (C) for checking assertions, exit for signaling the
termination of a thread, and the synchronization primitives. fork(t) and join(t)
allow a thread to dispatch and wait for the completion of another Thread t.
Given a program written in a full-fledged programming languages like C, one can
use pre-processing [21] to simplify its executed traces into the basic statements
described above.

3.1 Under-Approximation FOL Formula ¢()

The key to the TDV algorithm is the construction of appropriate FOL formulas
that can be easily checked with SMT solvers.

Let Vi and Vi(t) denote the set of global and local variables in Thread
t, respectively. Let the set of variables visible to t be V(t) = Vg U Vi(¢). In
addition to program variables, we introduce a statement location variable L; for
each thread, whose domain includes all the possible line numbers and occurrence
indices. To model nondeterminism in the scheduler, we add a variable T whose
domain is the set of thread indices. A transition in Thread ¢ is executed only
when T = t. At every transition step we add a fresh copy for each variable. That
is, v[i] denotes the copy of v at the i-th step. Given an executed trace m, ¢(m)
consists of following constraints:

— Program transition constraint ¢, that expresses the effect of executing
a particular statement of the program by a particular thread. For each tuple
(t,1.0,Q) except when @ is exit, we assume the next tuple to be executed by
Thread ¢ is (¢,1'.0’,Q"). Once the last tuple (¢,1.0, exit) of Thread ¢ has been
executed, we use A to indicate the end of Thread t. Let d;;.,[i] denote the
constraints of (¢,l.0,Q) € 7 at step i. Fig. 3 shows the encoding for different
types of tuples. For example, the one for (¢,1.0,v = E) states that if Thread
t executes the statement at step ¢, the following updates occur at step i+ 1:

1. the next statement for Thread ¢ to execute is I’.0’;

2. the value of v at step ¢ + 1 is E|y_y; with all variables in E replaced
by their corresponding versions at step ; and

3. other visible variables remain unchanged.

4 For nonterminating programs, our procedure can be used as a bounded analysis tool
to search for bugs up to a bounded number of execution steps.

5 A conditional branch such as if C then [y :... else I : ... results in the executed
trace C7l; if the then branch is executed, and —=C?ly otherwise.



The program transition constraint d, is defined as

||

5e= N\ N\ Oeolil

i=1 (t,l.0)

assignment: (t, l.o, v =E)
TH=tAL[i] =l.o—
Lili+1]=1.0 Av[i+ 1] = Ely—vp AV (¢)\v[i + 1] = V(t)\v]i]
conditional branch: (t, lL.o, C?1".0")
Tl =tANL i) =lLoACly_vp — Le[i+ 1] =10 AV(0)[i +1] = V(1)[4]
thread termination: (t, l.o, exit)
Tli|=tANLfi] =lo— L [i+ 1] = AANV()[i + 1] = V(1)[7]
unconditional jump: (t, l.o, goto 1'.0%)
T[] =tALfi]=lo— L i+ 1] =1".0' AV()[i + 1] = V(1)[i]
thread fork: (¢, l.o, fork(t’))
T =tANLJi] =lo—
Li+ 1] =10 ANLy[i+1] = sy AV(®)[i + 1] = V(#)[i]
thread join: (t, Lo, join(t’))
Tl =tANLi]=loANLy[i]=A—
(Lt [+ =l AVOi+1] = V(t)[i])
Tl =tANLe[i) =loNLy [i]| # A —
(Lt [i+1=LoAV(®)[i+1] = V(t)[z'])
lock: (t, Lo, lock(lk))
T[] =tALi] =lLoA=lk][i] —
(Lt [i+1] =10 Alkli + 1] = true A V(O\I[i + 1] = V(t)\lk:[i])
(TR =t AL [i]=loANlk[i] > L [i+ 1] =LoA V(L) [t + 1] = V(t)[z])
unlock: (t, l.o, unlock(lk))
Tl =tANLJi]=lo—
L [i+1]=1.0" ANlk[i +1] = false AV (#)\Ik[i + 1] = V(£)\Ik[d]

Fig. 3. Program transition constraints. T[] is the active thread at step i; Li[i] (L¢[i+1])
is the statement location at step i (i + 1); E|v_v[;)(C|v—v) substitute all variables
in E(C) by the by their corresponding versions at step 4; V(¢)\v[i + 1] = V(¢)\v][4]
denotes all visible variables in ¢ keep their value except variable v.

— Initial condition constraint ., that specifies the starting locations for

each thread as well the initial values of program variables, including the

values set by the input vector.



— Trace enforcement constraint ¢, that restricts the encoded behavior
to include only the statements appearing in an executed trace m. For each
(t,1.0,C?'.0") € m we assume condition C' holds on line [ at o-th occurrence
in . Then we have

&=\ A @lil=tALil=1Lo—Cly_vy) (2)

— Thread control constraint 7, that (1) insures that the local state of
a thread (the values of its local variables) remains unchanged when the
thread is not executing, and (2) insures that the thread cannot be selected
for execution after it has terminated. These two constraints are specified in
Equation 3.

Teadeli] = T[i] #t — Lili + 1] = Le[i] AVL(8)[i + 1] = VL (¢)[4] 3)
Te,donelt] = Lifi] = A — T[] #1

The thread control constraint is defined as follows:

7] N

T = /\ /\(Tt,idle[i] A Tt,done [l] A Tother) (4)

i=11t=1

In 7y¢ner, additional optional constraints can be included to model particular
scheduling policy.

— Property constraint pp that indicates the correctness conditions, specified
as assertions within the program in this paper, that we would like to check for
validity under all possible executions. Note that many common programming
errors can be modeled as assertions [21]. Let (¢,1, assert(C)) be an assertion
on line [ in Thread t. The property constraint can be specified as follows:

||
pp =\ N\l =t ALl =1 - Clyg—ve) (5)
i=1(t,1)

Note that properties encoded by pp are not necessarily the assertions ap-
pearing in 7 only; the assertions may appear anywhere in the program P.
This is a crucial requirement for our trace-based method to find real failures
anywhere in the program, or to prove the absence of assertion failures of the
program.

Whether the property pp holds for all possible thread interleavings in ITp(7)
is determined by checking the validity of the formula: t; A 6x A 7 Aer — pp,
which is equivalent to checking the satisfiability of the formula

o) = tx Ao AT NEr A —pp (6)

Equation 6, which implicitly represents all thread interleavings of ITp(w), is
still an under-approximation of the behavior of program P under the given test
input. Therefore, a solution to ¢(7) reveals real errors in the program, but the
unsatisfiability of ¢(7) does not prove the absence of errors.



3.2 Over-Approximation FOL Formula ()

Let ITp(') be the set of all possible execution traces of program P under the
test input ©". The set of interleavings considered by o(7) is ITp(7) C ITp(').
To catch assertion violations in branches not yet executed in 7, or to establish
the absence of such violations in all traces, we need an over-approximation of
IIp(W'). The over-approximated encoding can be obtained from ¢(7) with the

following changes:

— Remove the trace enforcement constraint e, that prohibits any trace n’ ¢
ITp(7) from being considered in ¢(). In Fig. 1, for example, a trace starting
from (1,6,7,2,3,...) can be a valid execution according to the program.
However, the ¢, constraint T[i{] = 1 A L[i] = 2 — y[i] > 2 prohibits the trace
from being considered.

— Collapse multiple occurrences. For statements that occur more than once, we
consider only one instance in the transition constraint. Thus the occurrence
index o is no longer needed. This leads to a modified transition constraint
02.

— Add control flow constraints A\, for un-executed statements. \; keeps the
control flow logic but ignores the data logic in those statements that do not
occur in 7. The purpose of A\ is to force the over-approximated behavior to at
least follow the control flow logic of program P. Here we consider assignments
and conditional branches. Given a conditional branch (¢,1, C?ly : l3) & 7 that
executes [y next if C' is true and I next otherwise, we add a constraint to
Arli]:

Tl =tANLi[i|=1l—=Li[i+ 1) =1L VL [i +1] = s (7)
Similarly, for an assignment statement (¢,1,v = E) & 7 that executes [ next,
the constraint added to A,[7] is

Tl =tANL:[i|=1— L [i+ 1] =14 (8)
After the modifications above we obtain the following over-approximation:
Y(T) =t A0S ATe AXx A —pp (9)

Let £2(7) be the set of interleavings considered by t,; then 2(n) D IIp(7)
is an over-approximation of the program behavior under the test vector . In
general, the unsatisfiability of ¢(7) proves P has no assertion failures under
the test vector ©. The downside of using 9 (7) is the inevitability of invalid
executions which need to be filtered out afterwards. In the running example in
Fig. 1, the SMT solver may report 7 in Table 1 as a satisfiable solution of ¥ (7).
However, it is not a feasible trace since the behavior of the step in line 2 is
unspecified in ¢(7) when y < 2.

4 Refinement

4.1 Analysis-Guided Execution

Let CEX, be a satisfiable assignment to all variables in ¢ (); it is called a po-
tential counterexample. In the counterexample guided abstraction refinement



(CEGAR) framework, a decision procedure (theorem prover, SAT solver, or
BDDs) [8,2,1,27] has been used to check whether CEX is feasible in P, and if
not, to refine the over-approximation. Such an approach may not be scalable for
handling multithreaded software due to the program complexity and the length
of the counterexamples.

Instead, we use guided concrete execution rather than a theorem prover or

a SAT solver. Let T' = Uylll {T'[i]} be the set of thread selection variables at all

time steps, and let L = Uy;ll UM, {L¢[i]} be the set of line number variables.

Given CE X, we first extract a thread schedule SCH; = 3,c;rur) - CE Xy, and
organize it as a sequence

mscr = ((t1,01), (t2,02), s (m)y Ue))) -

Note that the occurrence index is not needed as the sequence uniquely identifies
a trace (although it may be infeasible). The program is then re-executed by
trying to follow mgcg; this is implemented by using check-point and restart
techniques as in [30]. If the re-execution can follow mgcp to completion, then
Tson represents a real bug. Otherwise, we obtain a new executed trace

71'/ = <(t1, 11.01)7 ey (tkfl, lkfl.okfl), (t%, ;C.O;C), ey (tfw,‘,lfﬂ.ofﬂ)) .

m and 7’ have the same thread ids and line numbers for the first k — 1 steps.
But starting from the k-th step 7’ can no longer follow 7 and completes the
execution on its own.

To sum up, by performing a guided execution after analyzing the over-
approximation (), we are able to either validate the potential counterexample
CEX,, or obtain a new execution 7’ for a further analysis.

4.2 Avoid Redundant Checks

To avoid performing symbolic analysis on executed traces that have been ana-
lyzed before, we maintain a set x of already inspected traces. Let {m1,..., 7}
be the set of executed traces in the first m iterations that have been analyzed. If
Y (my,) is satisfiable, we are only interested in a solution 'S such that the trace

73 corresponding to ? satisfies 75 ¢ IIp(m;) for all 1 < ¢ < m. Such require-
ment is not only for performance, but also for the termination of the algorithm:
without x our algorithm may analyze the same executed trace infinitely.

Let 7 be a subsequence of 7 that is executed by Thread t. For two such
subsequences 7} and 77 from two different executed traces, if they visit the same
set of branch statements in ¢ and have the same truth value of the conditionals
at each branch, then 7} = 72 (same statements are visited in the same order).
Therefore, the trace enforcement constraint ., uniquely identifies a trace m; in
Thread ¢. As ITp(7) is the interleavings among the traces my,, ..., T, , they are
identified by e, = Emyy Novo NEmy - In the other words, in order to find a trace

not in ITp(rw), we must add the constraint —e,. Assume {my,...,m,} are the



traces that have been executed so far, we have

m
Xm = [\ “€m,- (10)
k=1

The over-approximation formula at the (m + 1)-th iteration becomes

V() = tx NOZATr AXdg A X A —pp. (11)

4.3 An Illustrative Example

Fig. 4 shows a program with two methods foo and bar. At Line 0 foo creates a
new thread and invoke bar. There is a recursive call on Line 3 in foo, therefore,
multiple threads may be created depending on the input value of a. In the
program, x and y are global variables with initial value 1, while ¢ and b are
thread local variables. We would like to check whether there can be an assertion
failure on Line 11 under the test value a = 1.

foo(int a) { bar(int b) {

0 create a new thread ¢ to invoke bar(1); 13 y =b;

1 x=ua 14 if (y>0)

2 if (x>0) 15 X = X-y;
3 foo(a-1); 16 y =y-1;
4  else 17 else

5 if (y<=1 && y!=0) 18 complexB();
6 X = y-X; }

7 else if (y > 10)

8 complexA();

9 else

10 X = X-V;

11 assert(0);

12  wait for ¢ to complete;

}

Fig. 4. A program with recursion and dynamically created threads.

Assume the first executed trace is m =((1,0.1), (1,1.1), (1,2.1), (1, 3), (1,0.2),
(1,1.2),(1,2.2),(1,5), (1,6), (2,13), (2, 14), (2,15), (2, 16), (3, 13), (3, 14), (3, 15), (3, 16),
(1,12.1), (1, 12.2)), in which Thread 1 creates Thread 2 and 3 that execute bar(1).
Note that in m; we drop the occurrence index if a statement of a thread oc-
curs only once. An under-approximated symbolic analysis on 7; does not yield
an assertion violation, but the over-approximated symbolic analysis produces a
counter-example CEX; = ((1,0), (1,1), (2,13), (2, 14), (2, 15), (1,2), (1,5), (1, 7),
(1,10), (1,11)), which leads to an assertion failure on Line 11. An execution fol-
lowing CEX; shows that the counterexample is spurious as it can only follow



up to (1,5), because the else branch on Line 5 cannot be taken. The complete
executed trace is w3 =((1,0), (1,1), (2,13), (2,14), (2,15), (1,2), (1,5), (1,6), (2, 16),
(1,12)). There is no assertion failure in 73, but the counterexample obtained from
the over-approximated analysis is CEXs = ((1,0), (1,1), (2, 13), (2, 14), (2, 15),
(2,16),(1,2),(1,5),(1,7),(1,10),(1,11)). A further execution is able to follow the
complete trace of C X5 and therefore reveals a real assertion failure on line 11.

5 Optimizations

We apply peephole partial order reduction (PPOR) [29] to exploit the equivalence
of interleavings due to independent transitions. Unlike classical partial order
reduction [17,15], PPOR is able to reduce the search space symbolically in an
SMT solver.

Given an executed trace m = ((t1,11.01,@1), - - - (tn, ln-0n, Qn)), we add a spe-
cial scheduling constraint for every pair of tuples (tp, 1y.0p, Qp) and (tq,14.04, Q)
such that t, # ¢, and @, and @, are not dependent. Two statements are depen-
dent if they access the same shared variable and at least one access is a write.
For example, consider two statements @, : a[kl] = e; and Q : a[k2] = ey that
are independent if the array index expressions do not have the same value. We
add the following constraint to ¢(m):

Lpli] = lp.op NLg[i] = lg.0g Ny vy # k2|v v — ~(T[i] = ¢AT[i+1] :(p))a

12
which prohibits @), being executed immediately after @),. Similar constraints
can be added to over-approximated satisfiability formula ().

Another optimization is a new thread-local static single assignment (TL-SSA)
form to efficiently encode the thread-local statements. TL-SSA can significantly
reduce the number of variables and the number of constraints needed in p(7)
and ¥ (), which are crucial since they often directly affect the performance of an
SMT solver. Our observation is that the encoding in Section 3 may produce many
redundant variables and constraints, due to the fact that it has to assign a fresh
copy to every variable at every step. However, statements involving only local
variables do not need a fresh copy of the local variables and constraints at every
step. Furthermore, in a typical program execution, each statement writes to one
variable at a time; a vast number of constraints, in the form of v[i + 1] = v][i],
are used to keep the current values of the uninvolved variables.

In a purely sequential program, one can use Static Single Assignment (SSA)
form [9] to simplify the encoding of a SAT formula [7]. However, SSA is not
meant to be used in multithreaded programs (it remains an open problem as to
what a SSA-style IR should be for concurrent programs), since a use-define chain
for any shared variable cannot be established at compile time. Our observation
here is that, while shared global variables cannot take advantages of the SSA
form, local variables can still utilize the reduction power of SSA. The proposed
TL-SSA form exploits the fact that, in any particular execution trace, the use-
define chain of every local variable can be determined. Consider an executed trace



snippet (... (y=a+1), ..., (a=y), ..., (y=y+a)), where y is a shared variable and a
is a local variables. In addition, no other statements in the trace access a. The
trace with corresponding sequence of TL-SSA statements are (... (y=ao+1),...,
(a1=y), ..., (y=y+a1)). Instead of creating fresh copies for local variables at every
step,the TL-SSA form creates only two copies of a. In addition, there is no need
for the constraints afi + 1] = a[i] to keep the value of a at each step where a is
not assigned.

6 Related Work

Since we are not the first in modeling high-level source code semantics using
a constraint language, it is helpful to briefly mention some of the successful
approaches that have been reported. Noting the large gap between high-level
programming languages and those of the formal logics, existing symbolic model
checking tools, including [2, 7, 21], often restrict their representations to the pure
Boolean domain; that is, they extract a Boolean-level model from the given
program and then apply Binary Decision Diagrams (BDDs) [4] or SAT solvers
(e.g., [11]) to perform verification. Although modeling all variables as bit-vectors
is accurate, such high-precision approaches are often not needed and may gen-
erate models that are too large. In addition, bit vectors cannot model floating
point arithmetic. In [32], sequential C programs are modeled at the word, as
opposed to the bit, level using polyhedral analysis. This approach was shown
to be very competitive for handling sequential C programs of non-trivial sizes.
Unlike [32] that uses polyhedra library Omega [26] to perform reachability com-
putation, we leverage the recently-demonstrated performance advances of SMT
solvers to perform satisfiability checking.

Approaches based on similar ideas that augment testing with formal analysis
include [20, 18, 6, 24, 28]. While Synergy [20] considers only sequential programs,
we concentrate on multithreaded programs. Concolic testing [18, 6, 24] runs sym-
bolic executions simultaneously with concrete executions, but the purpose is to
generate new test inputs for better path coverage. In our approach, the purpose
of symbolic analysis is to consider all related feasible thread interleavings implic-
itly, and in the event of inconclusive results, to guide the next concrete execution
to follow a different thread schedule (that obeys program control flow semantics)
under the same test vector. Predictive analysis [28] encodes a single execution
symbolically without further refinement. The approach that augments testing
with formal analysis has also been applied in other domains such as MCAPI [13,
12] and service computing [14].

Although integrated under- and over-approximations have been used in a
decision procedure [3] for bit-vector arithmetic, most previous works on hardware
and software model checking follow the paradigm of CEGAR [22, 8], which is
based solely on over-approximations and uses spurious counterexamples to refine
the over-approximations. In [19], Grumberg et al. presented a software model
checking procedure based on a series of under-approximations.



Table 2. Bounded model checking (BMC) v.s trace-driven verification (TDV) for the
multithreaded program in Fig. 4

BMC TDV
#threads mem(l\/[b)‘time(s) mem(Mb)‘time(s) speedup
5 21.15 1.16 20.14 1.07 1.08
10 54.29 3.18 51.92 3.15 1.01
15 129.11| 66.01 100.72 7.64 8.64
20 219.34| 169.84 166.81| 18.69 9.09
25 317.40| 215.87 250.13| 44.33 4.87
30 420.54| 222.85 348.18| 45.83 4.86
35 538.75| 140.21 461.85| 42.11 3.33
40 692.62| 150.66 597.55| 73.69 2.04

45 - - 745.86| 77.79 -
50 - - 906.9| 143.27 -
55 - - 1106.1| 122.93 -
60 - - 1330.5| 182.53 -
65 - - 1510.4| 222.87 -
70 - - 1737.5| 289.86 -
75 - - 2003.6| 438.82 -
80 - - 2270.1| 407.07 -

There are several research projects that target concurrent program verifi-
cation directly. Inspect [30] and CHESS [25] can check multithreaded C/C++
programs by explicitly executing different interleavings using dynamic partial
order reduction [16]. However, explicitly exploring the thread interleavings does
not scale well in the presence of a large number of (equivalence classes of) inter-
leavings. The recent development in CHESS [25] also allows the tool to perform
context bounded model checking. However, it is not intuitive to ask from user
for a preset value on the number of context switches. CheckFence [5] checks all
concurrent executions of a given C program on a relaxed memory model and
verifies that they are observationally equivalent to a sequential execution, which
targets a different application than ours.

7 Experiments

We have implemented a prototype of TDV using the Yices SMT solver [10],
which is capable of deciding formulas with a combination of theories including
propositional logic, linear arithmetic, and arrays. We performed two case studies.
The first case study is on the example shown in Fig. 4 with multiple threads and
recursions, and the second case study is on a file system implementation, which
was previously used in [16]. Our experiments were conducted on a workstation
with Pentium D 2.8 GHz CPU and 4GB memory running Red Hat Linux 7.2.
Table 2 shows the results of the first case study. By changing the value of the
test variable a, we can increase the number of threads and the level of recursion.



Table 3. Bounded model checking (BMC), trace-driven verification (TDV), and trace-
driven verification with optimizations (TDVO)

filesystem example BMC TDV TDVO
#threads‘depth‘ prop mem‘ time mem‘ time‘speedup mem‘ time‘speedup
2 10| sat| 13.51 34.8| 8.86| 15.7 2.22| 7.58| 1.7 20.47
16| sat| 42.72| 665.0{18.14| 126.0 5.28/12.82| 9.4/ 70.74
22| sat| 40.56| 2324.6|23.44| 212.5| 10.94|25.37| 15.9| 91.63
21| sat|{194.21]49642.3|42.77(1823.1| 27.23|30.95|381.8| 130.02
10[unsat| 7.50 7.2| 5.36] 1.03 6.99| 5.27| 0.26| 27.69
16]unsat| 15.85| 824.913.37| 82.7 9.97| 7.76| 1.24| 665.24
15/unsat| 73.07| 9488.7|11.83| 122.7| 77.33| 9.16| &8.1| 1171.44

W NN WN N

Column 1 lists the number of threads. Columns 2 and 3 show the peak memory
and total time usage for Bounded Model Checking (BMC) without dynamic
execution and abstraction. Columns 4 and 5 show the peak memory and total
time usage for TDV. Note that optimizations has been applied to both methods.
The last Column shows the speedup of the new method. A one-hour timeout
limit is used in all the experiments. BMC ran out of time for test cases with
more than 50 threads, while our method took only 407 seconds to complete 80
threads.

We also performed the experiments on the file system example, which is
derived from a synchronization idiom found in the Frangipani file system. Table
3 shows the results we obtained by comparing BMC and TDV, both without
and with optimizations. The results show that TDV gains a speedup from 1.46
to 77.33 over BMC, and the TDV with optimizations gains a speedup from 5.87
to 1171.44 over BMC, with an average speedup of 299.

8 Conclusion and Future Work

We have presented a new method to combine the efficiency of dynamic executions
with the reasoning power of an SMT solver for the verification of safety proper-
ties of multithreaded programs. The main contributions are (1) a new symbolic
encoding of executions of a multithreaded program, (2) using both under- and
over-approximations in the same trace-driven abstraction framework, where re-
finement involving the mutual guidance between concrete program execution and
symbolic analysis. For future work, we plan to investigate performance enhance-
ment techniques, such as minimal unsatisfiable core analysis [23] and dynamic
path reduction [31], to allow TDV to scale to larger programs.
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