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Abstract

One of most fundamental issues about matter is to understand states of matter and the associated internal orders.
In this article, we examine the orders in states of matter in depth and present a new kind of order – topological
order. Using fractional quantum Hall states as examples, a simple intuitive picture, the unique properties, and the
experimental measurements of topological order are discussed. To gain a deeper understanding of topological order,
a concept – quantum order – is introduced to describe a new kind of orders that generally appear in quantum states
at zero temperature. Quantum orders that characterize universality classes of quantum states (described by complex
ground state wave-functions) is much richer then classical orders that characterize universality classes of finite
temperature classical states (described by positive probability distribution functions). Topological order is a special
case of quantum order. Topological orders (and quantum orders) extend and deepen our previous understanding of
orders in states of matter, and guide us to discover new states of matter.

1 States of matter and internal or-
ders

Matter can have many different states, such as gas, liq-
uid, and solid. The state of matter is one of the most
important properties of matter. Scientists find matter
can have much more different states than just gas, liquid,
and solid. Even solids and liquids can appear in many
different forms and states. In this article, we are going to
study what is behind those different states of matter and
what distinguish different states of matters.

Different states of matter are found to be distinguished
by their internal structures. Those internal structures are
called the orders. At high enough temperatures, matters
are in a form of gas. All atoms in a gas move randomly,
independent of other particles. Thus gas is a very dis-
ordered and uncorrelated state. However, as tempera-
ture is lowered, the motion of atoms becomes more and
more correlated (that is the motion of one atom depend
on the motions of other atoms). Eventually the atoms
form a very regular pattern and a crystal order is de-
veloped. In fact atoms can form many different crystal
orders, depending on the interaction between atoms, the
temperatures and the pressures. In addition to the crys-
tals, physicists discovered many other states of matter in
last century, such as superfluids, ferro and antiferromag-
nets, and liquid crystals that appear in every calculator
and electronic watches. All those states of matter have
different internal structures or orders.

With so many different states of matter, a general the-
ory is needed to gain a deeper understanding of states of
matter and the associated internal orders. The key step
in developing the general theory is the realization that all

the orders are associated with symmetries (or rather, the
breaking of symmetries). For example when a gas changes
into a crystal, its symmetry changes. A gas remains the
same under a translation by any distance, while a crystal
remains the same only under a translation by the lattice
constant of the crystal. Thus the development of a crystal
order reduces the continuous translation symmetry of a
gas to a discrete translation symmetry of a crystal. Based
on the relation between orders and symmetries, Landau
developed a general theory of orders and their transitions.
Landau’s theory is so successful and one starts to have a
feeling that we understand, at in principle, all kinds of
orders that matter can have.

2 Fractional quantum Hall liquids

However, nature never stops to surprise us. With ad-
vances of semiconductor technology, physicists learned
how to confine electrons on an interface of two differ-
ent semiconductors, and hence making a two dimensional
electron gas (2DEG). In 1982, Tsui, Stormer, and Gos-
sard put a 2DEG under strong magnetic fields ( ∼ 30
Tesla) in the Magnet Lab at MIT and cool it to very low
temperatures (∼ 1K◦).[2] They found that the 2DEG
forms a new kind of state – Fractional Quantum Hall
(FQH) state. Since the temperatures are low and inter-
action between electrons are strong, the FQH state is a
strongly correlated state. However such a strongly corre-
lated state is not a crystal as people originally expected.
It turns out that the strong quantum fluctuations of elec-
trons due to their very light mass prevent the formation
of a crystal. Thus the FQH state is a special kind of liq-
uid called quantum liquid. (A crystal can be melted in
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two ways: (a) by thermal fluctuations as we raise tem-
peratures which leads to an ordinary classical liquid; (b)
by quantum fluctuations as we reduce the mass of the
particles which leads to a quantum liquid.)

Physicists soon discovered many amazing properties of
quantum Hall liquids. A quantum Hall liquid is more
“rigid” than a solid (a crystal), in the sense that a quan-
tum Hall liquid cannot be compressed. Thus a quantum
Hall liquid has a fixed and well-defined density. More
magic shows up when we measure the electron density in
terms of filling factor ν. The filling factor is defined as a
ratio of the electron density n and the density of the flux
quanta of the applied magnetic field B

ν ≡ nhc

eB
=

density of electrons
density of magnetic flux quanta

Physicists found that all discovered quantum Hall states
have such densities that the filling factors are ex-
actly given by some rational numbers, such as ν =
1, 1/3, 2/3, 2/5, .... quantum Hall states with simple ra-
tional filling factors (such as ν = 1, 1/3, 2/3, ...) are more
stable and easier to observe, while quantum Hall states
with complex rational filling factors (say ν = 4/9, 2/7, ...)
are less stable and harder to observe (ie they appear only
in cleaner samples and lower temperatures).

The quantum Hall states with integer filling factors are
called the integral quantum Hall (IQH) states, and the
ones with fractional filling factors are called FQH states.
The IQH quantum Hall states, first discovered by van
Klitzing in 1980,[1] can be easily understood from the
Landau level structure in the strong magnetic field. How-
ever, the understanding of FQH states requires a whole
new theory. The internal structure of FQH state is so new
that previous many-body theory developed for other elec-
tron systems, such as metals and semiconductors, simply
do not apply to FQH states. It was Laughlin[3] who ap-
proached FQH states from a completely new angle that
starts our theoretical understanding of FQH effects.

The history of quantum Hall effect is very interesting.
Since the discovery of IQH and FQH effects, there are a
few times when people feel that they understand FQH
systems and it is time to leave the subject. But new
experimental discoveries and new theoretical insights re-
attract people’s attention and generate new cycles of in-
tensive studies. Each cycle leads to a new fresh point of
view and much deeper understanding of FQH systems,
as if a whole new world was discovered. 18 years after
its discovery, experimentalists continue to discover new
surprising properties of FQH systems, and theorists con-
tinue to be fascinated by the rich structures revealed by
FQH systems. Right now, we are still unsure if we under-
stand every thing about FQH systems and unsure if there
are new worlds waiting to be discovered. In my point of
view, we are still far away from a complete understanding
of FQH systems. We have only explored a small corner
of a very rich and fascinating garden.

Figure 1: A particle and its quantum wave on a circle.

Partly due to our lack of complete and deep under-
standing of FQH systems, it has been difficult to explain
to general audience, or even to physicists from a different
field, what is so special about FQH effect, why FQH ef-
fect continues to sustain active research 18 years after its
discovery. In this article I will offer one point of view on
the importance of FQH effect. The FQH effect is impor-
tant because
1) FQH states represent a whole new state of matter,
2) FQH states contain a whole new type of order,
3) FQH states expand and deepen our basic understand-
ing of states of matter.

3 The global dancing pattern and
the topological orders

Knowing that FQH liquids exist only at certain magical
filling factors, such as 1/3, 2/5, 4/7, one cannot help to
guess that FQH liquids should have some internal orders
or “patterns”. Different magical filling factors should be
due to those different internal “patterns”. The hypoth-
esis of internal “patterns” can also help to explain the
“rigidness” (ie. the incompressibility) of FQH liquids.
Somehow a compression of a FQH liquid can break its
internal “pattern” and cost a finite energy. However, the
hypothesis of internal “patterns” appears to have one dif-
ficulty – FQH states are liquids, and how can liquids have
any internal “patterns”?

Theoretical studies indeed reveal that it is possible to
construct many different FQH states[4, 5, 6] presumably
with different internal “patterns”. It was realized that,
however, these internal orders are different from any other
known orders and cannot be observed in any conventional
ways.[7] What is really new (and strange) about the or-
ders in FQH liquids is that they are not associated with
any symmetries (or the breaking of symmetries), and can-
not be described by Landau’s theory.[7, 8] This new kind
of order is called topological order. Topological order is a
new concept and we need a whole new theory to describe
it.

To gain some intuitive understanding of topological or-
der, let us first remind ourselves how do we describe a
crystal order. Inside a crystal, atoms occupy fixed posi-
tions relative to other atoms. The crystal order is just a
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positional order that describes how atoms position them-
selves relative to other atoms. However, FQH states are
liquids and the electrons do not have any positional or-
der. But, the electrons do not just move randomly inside
FQH states. They move around each other in a highly
correlated manner. Such a correlated motion represents
the internal structure of FQH liquids.

Let us try to visualize the correlated motion of elec-
trons in a FQH state. A single electron in a magnetic
field always move along circles (which are called cyclotron
motions). Due to the wave property of the electron, the
cyclotron motions are quantized such that the circular or-
bit must contain an integer number of the wave length.
(See Fig. 1) We may regard the wave length as a step
length and say that the electron always takes an integer
number of steps to dance around the circle. If an elec-
tron takes n steps to go around the circle we say that
the electron is in the nth Landau level. At low tem-
peratures, the electrons always stay in the first Landau
level (and take one step around the circle), in order to
have the lowest energy. When we have many electrons to
form a 2DEG, electrons not only do their own cyclotron
motion in the first Landau level, they also go around
each other and exchange places (see a java simulation
at http://dao.mit.edu/∼wen). Those additional motions
also subject to the quantization condition. For example
an electron must take integer steps to go around another
electron. The actual motions of electrons are a little more
restricted due to the Fermi statistics of electrons:[9] an
electron always take odd integer steps to go around an-
other electron. (This fact actually explains why the filling
factors almost always has an odd denominator.) Elec-
trons in a FQH state not only move in a way that satis-
fies the quantization condition, they also try to stay away
from each other as much as possible, due to the strong
Coulomb repulsion and the Fermi statistics between elec-
trons. This means that an electron tries to take more
steps to go around another electron if possible.

Now we see that the quantum motions of electrons in a
FQH state are highly organized. All the electrons dance
collectively following strict dancing rules:
(a) all electrons do their own cyclotron motion in the first
Landau level;
(b) an electron always takes odd integer steps to go
around another electron;
(c) electrons always stay away from each other as much
as possible.
We note that an electron does not just dance with one
other electron, it dances with every other electron, since
its motion is correlated with all other electrons. Thus
the dancing pattern is a global dancing pattern in which
all electrons dance together. We also see a fundamen-
tal difference between a correlated classical liquid and a
correlated quantum liquid. In a correlated class liquid,
the particle just try avoid each other [the condition (c)].
However, in a correlated quantum liquid, the particles

also have to make sure to take an integer number of steps
to go around each other. It is this quantum effect that
makes FQH liquids very different from other more famil-
iar classical liquids.

If every electrons follows these strict dancing rules, then
only one unique global dancing pattern is allowed. Such
a dancing pattern describes the internal quantum mo-
tion in the FQH state. It is this global dancing pattern
that corresponds to the topological order in a FQH state.
Different FQH states are distinguished by their different
dancing patterns (or equivalently, by their different topo-
logical orders).

The simplest FQH state is a ν = 1/m Laughlin state
in which an electron always takes exactly m steps to go
around another electron. An compression of FQH liquids
makes some electrons to take less than m steps around
some other electrons. Such a break of dancing pattern
costs finite energies and explains the incompressiblilty of
FQH liquids. We see that the incompressiblilty is a quan-
tum effect caused by the quantization of the dancing steps
m. We cannot continuously reduce the distance between
electrons by continuously reducing m, since m must be
an odd integer.

A Laughlin state contains only one component of in-
compressible fluid. More general FQH states with fill-
ing factors such as ν = 2/5, 3/7, ... contain several com-
ponents of incompressible fluid (those states are called
abelian quantum Hall states). The dancing pattern (or
the topological order) in an abelian quantum Hall state
can also be described in a similar way by the dancing
steps. The dancing pattern can be characterized by an
integer symmetric matrix K and an integer charge vector
Q.[6] An entry of Q, Qi, is the charge (in unit of e) carried
by the particles in the ith component of the incompress-
ible fluid. An entry of K, Kij , is the number of steps
taken by a particle in the ith component to go around a
particle in the jth component. All physical properties as-
sociated with the topological orders can be determined in
term of K and Q. For example the filling factor is simply
given by ν = QT K−1Q. In the (K,Q) characterization
of FQH states, the ν = 1/m Laughlin state is described
by K = m and Q = 1, while the ν = 2/5 state, which

has two components, is described by K =
(

3 2
2 3

)
and

Q =
(

1
1

)
.

It is instructive to compare FQH liquids with crystals.
FQH liquids are similar to crystals in the sense that they
both contain rich internal patterns (or internal orders).
The main difference is that the patterns in the crystals are
static related to the positions of atoms, while the patterns
in FQH liquids are associated with the ways in which
electrons “dance” around each other. However, many of
the same questions for crystal orders can also be asked
and should be addressed for topological orders.
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Figure 2: Riemann surfaces with genus g = 1 (a torus)
and g = 2.

4 Measurement of topological or-
ders

We know that crystal orders can be measured by X-ray
diffraction. One important question is how do we measure
the topological orders? Because the topological order is
not associated with symmetries and not characterized by
local order parameters, we need to find completely new
ways to measure topological orders.

FQH liquids have a very special property. Their
ground state degeneracy depends on the topology of space
[10, 11, 7]. For example, the ν = 1

m Laughlin state has mg

degenerate ground states on a Riemann surface of genus
g [7]. For a more general abelian quantum Hall state
characterized by integer matrix K, the ground state de-
generacy is given by (det(K))g on a Riemann surface of
genus g. The ground state degeneracy in FQH liquids is
not a consequence of symmetry of the Hamiltonian. It
is robust against arbitrary perturbations (even impuri-
ties that break all the symmetries in the Hamiltonian)[7].
Only a change in the topological order (ie a switch in the
dancing patterns) can induce a change in the ground state
degeneracy. Thus the ground state degeneracy is a quan-
tum number that can be used to characterize topological
order and a measurement of the ground state degeneracy
is a (partial) measurement of topological order.

We can understand the relation between the ground
state degeneracy and the topological order through our
dancing pattern description of the topological order.
Somehow, the local dancing rules (a) – (c) uniquely de-
termine the global dancing pattern only on a sphere. On
a torus or other Riemann surfaces, there can be several
global dancing patterns that satisfy the same local danc-
ing rules. This results in several degenerate ground states.
By determining how many global dancing patterns that
can fit onto a Riemann surface, we can gain some infor-
mation about the dancing pattern itself.

From our experience with crystal orders, we know the
appearance of an order implies the existence of defects
of the order. The kind of defects that can exist and the
structure of the defects depend on the order in the parent
state. Thus we can study an order by examining its de-
fects. The same strategy applies to topological orders in
FQH liquids. The defects of a topological order are called
quasiparticles. They are excitations in the correspond-
ing FQH state. Due to the non-trivial topological orders
in FQH states, the quasiparticles have some most un-
usual properties. The quasiparticles can carry a fractional

Figure 3: An edge wave on a FQH droplet propagates
only in one direction.

FQH liquid

FQH liquid

FQH liquid

(a) (b)

Figure 4: (a) Electron tunneling between edges of two
HQ liquids. (b) Quasiparticle tunneling between two
edges separated by a FQH liquid.

charge and have a fractional statistics. Those quantum
numbers reflect the internal structure of a quasiparticle
and the internal structure of the parent FQH liquid that
support such a quasiparticle. Thus the topological orders
can be measured by measuring the fractional charge and
statistics of the quasiparticles.

A more complete and more practical measurement of
topological order can be achieved through edge excita-
tion of FQH liquids. FQH liquids as incompressible liq-
uids have a finite energy gap for all their bulk excitations.
However, FQH liquids of finite size always contain one-
dimensional gapless edge excitations, which is another
unique property of FQH fluids. The structures of edge
excitations are extremely rich which reflect the rich bulk
topological orders. Different bulk topological orders lead
to different structures of edge excitations. Thus we can
study and measure the bulk topological orders through
edge excitations.[8]

To understand edge excitations, let us start with the
simple ν = 1/m Laughlin state. Although the FQH liquid
cannot be compressed, a finite FQH droplet can always
change its shape without costing much energy. Thus the
edge excitations are nothing but the surface waves prop-
agating on the edge of the droplet (see Fig. 3). A more
general FQH liquid contains several components of incom-
pressible fluid and each component can deform indepen-
dently. Thus an FQH liquid with k incompressible com-
ponents will have k branches of edge excitations. Here we
see how a property of bulk topological order (the number
of incompressible components) is reflected in a property
of edge excitations (the number of edge branches).

In addition to the number of edge branches, the dy-
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namical properties of edge electrons are also depend on
the bulk topological order in a sensitive way. For exam-
ple the tunneling conductance between two edges (Fig.
4a) is proportional to a power of absolute temperature,
T 2g−2. The exponent g is quantized and depends only
on the topological order. Thus measuring g will reveal
information about the bulk topological order.

To have an intuitive understanding of the exponent g,
let us add an electron to the edge of a ν = 1/m Laughlin
state. The other edge electrons have to take m steps to go
around the added electron. Thus for larger m, the added
electron causes larger disturbance and it is harder to add
it to the edge at low temperatures. This will result in a
larger exponent g. In fact g = m for ν = 1/m Laughlin
state.

Several experimental groups have successfully mea-
sured g through tunneling conductance.[12] These exper-
iments open the door for experimental study of the rich
internal and edge structures of FQH liquids.

When two edges are separated by a fractional FQH
liquid (Fig. 4b), we can also have quasiparticle tunnel-
ings. The quasiparticle tunneling has an interesting prop-
erty that the tunneling resistance decreases as a power of
temperature as the temperature is lowered. This remind
us tunnelings between superconductors which have zero
resistance at low temperatures. The analogy goes be-
yond the DC transport. The noise spectrum of the quasi-
particle tunneling contains a singular peak at a “Joseph-
son” frequency fJ = e∗V/h associated with the fractional
charge e∗ of the quasiparticle. Such a singular peak in
the noise spectrum is very similar to the AC Josephson
effect in tunneling between superconductors. It would be
very interesting to observe those fascinating properties
in experiments, which will, at least, allow us to directly
measure the fractional charge of the quasiparticles. If we
can measure the noise power spectrum near the “Joseph-
son” frequency fJ = e∗V/h, we can even determine the
fractional statistics of the tunneling particles.[8]

5 What really is topological order

We have seen that FQH liquids are very different from
other states of matter in the sense that they contain a new
kind of order – topological order. The internal structures
of FQH liquids cannot be characterized by symmetries,
in contrast to other states of matter. Now the question
is that why FQH liquids are so special. What is missed
in Landau’s theory for states of matter?

When we talk about orders in FQH liquids, we are
really talking about the internal structure of FQH liq-
uids at zero temperature. In other words, we are talking
about the internal structure of the quantum ground state
of FQH systems. So the topological order is a property
of ground state wave function. The Landau’s theory is
developed for system at finite temperatures where quan-
tum effects can be ignored. Thus one should not be sur-

correlation in crystal

correlation in liquid x

x

Figure 5: Correlations in crystal, Gc(x), and in liquid,
Gl(x).

prised that the Landau’s theory does not apply the states
at zero temperature where quantum effects are impor-
tant. The very existence of topological orders suggests
that the finite-temperature orders and zero-temperature
orders are different, and the zero-temperature orders con-
tain richer structures. Now it is clear that what is missed
by Landau’s theory is the quantum effect.

To gain a deeper understanding of topological order, let
us examine more carefully the orders in ordinary states
of matter (ie at finite temperatures where quantum ef-
fects can be ignored). We will call those orders classi-
cal orders to distinguish them from the topological order.
At finite temperatures, the full description of a system
is given, mathematically, by a probability distribution.
To describe the positional order of particles in a system,
we can use the probability distribution P (r1, r2, ..., rN )
where ri is the coordinate of the ith particle and N is the
total number of the particles. As we change temperature,
pressure, and other external conditions, the probability
distribution P changes continuously. However, the sys-
tems described by those different distributions can have
very similar properties and describe the same phase. We
group all those similar probability distributions into a sin-
gle class, which is called a universality class. If we change
the external conditions too much, it can cause an abrupt
change in the properties of the system. In this case we
say there is a phase transition to another phase which is
described by a different classical order. The probability
distributions in different phases belong to different univer-
sality classes. As a concrete example of the above general
discussion, let us consider the phase transition between
a liquid and a crystal, described by the distributions Pl

and Pc respectively. To understand the qualitative dif-
ference between the two distributions, we introduce the
correlations

Gl(r1, r2) =
∫ N∏

i=3

dri Pl(r1, r2, r3, ..., rN )

Gc(r1, r2) =
∫ N∏

i=3

dri Pc(r1, r2, r3, ..., rN )

which are shown in Fig. 5. We see that the oscillations in
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Gc continue indefinitely, indicating a long range crystal
order.

Through the above discussions, the following points be-
come clear:
(i) A classical order is a property of the probability distri-
bution P (r1, r2, ..., rN ) in the N → ∞ limit. A classical
order describes the structures in positive functions with
infinite number of variables.
(ii) Similar distributions (i.e. the distributions in the
same universality class) have the same classical order.
The classical order is really a property of universality
classes, rather than a property of individual distributions.
(iii) It is a deep insight to realize that the different univer-
sality classes are determined by the symmetry properties
of the distributions. Therefore the classical orders (and
the universality classes) are characterized by the symme-
tries. This is the foundation of Landau’s theory of (classi-
cal) orders and phase transitions (at finite temperatures).

Strictly speaking, althrough the Landau’s theory and
the symmetry description of orders and phase transitions
represent an important mile stone in our understanding
of orders, the theory actually cannot describe all the clas-
sical orders. This is because some classical phase transi-
tions, such as the Kosterliz-Thouless transition, do not
change any symmetries. Thus despite the success of the
Landau’s theory, even some classical orders are not fully
understood.

Now let us examine carefully the orders in zero temper-
ature states. We will call those orders quantum orders.
First, the quantum orders are properties the ground state
wave functions of the system. We immediately see that
the quantum orders and the classical orders have parallel
mathematical structures. A classical order is a property
of probability distribution P which is a positive function
of N coordinates of the particles. A quantum order is
a property of ground state wave function ψ which is a
complex function of N coordinates of the particles. The
distribution P and the wave function ψ is related

P (r1, ..., rN ) = |ψ|2(r1, ..., rN )

Through this relation we see that we can use classical or-
der (which is characterized by symmetries) to describe,
at least partially, the internal structure of ground state
wave function. Therefore, we can use symmetries to par-
tially characterize the internal structure of ground state
wave function. It is also clear that the characterization
by classical order misses the phase of the wave function
which is a quantum effect. Thus it is possible that cer-
tain structures in ground state wave functions cannot be
described by classical orders. Quantum orders provide a
full description of those structures and in general contain
richer structures than classical orders.

Just like classical orders, quantum orders characterize
universality classes of ground state wave functions. If we
change the interaction between the particles, the ground
state wave function changes continuously. If those ground

states have similar properties, we say they describe the
same phase and belong to the same universality class.
Those states have the same quantum order. However,
changing the interaction by a large amount may cause
abrupt changes in ground state properties. In this case we
say the change of interaction drives the ground state wave
function from one universality class to another, which
leads a phase transition and a change of quantum order.

In a sense, the classical world described by positive
probabilities is a world with only “black and white”. The
Landau’s theory and the symmetry principle for classi-
cal orders can describe different “shades of grey” in the
classical world. The quantum world described by complex
wave functions is a “colorful” world. The Landau’s theory
and the symmetry principle cannot describe the “colors”.
We need to use new theories, such as the theory of quan-
tum order, to describe the rich “color” of quantum world.
It is clear that the quantum orders are much richer then
the classical orders.

The topological order introduced before is a property of
two dimensional electron gases at zero temperature. Thus
the topological order is special kind of quantum order. In
simple cases, a topological order is a quantum order where
all the excitations above ground state have finite energy
gapes.

Now it is clear why we need topological orders to char-
acterize FQH liquids. Different FQH liquids have the
same symmetries. Thus we cannot use symmetries and
local order parameters to distinguish different FQH liq-
uids. However, when we examine the quantum orders in
FQH liquids (ie when we examine the ground state wave
function ψ instead of the absolute value square of the
wave function |ψ|2), we find different FQH liquids carry
different quantum orders. This allows us to understand
in which sense different FQH liquids are different.

It is also clear that the topological orders (and the
quantum orders) are general phenomena. They do not
just appear in some special states, such as FQH states.
Topological orders and quantum orders are general prop-
erties of any states at zero temperature. Non trivial
topological orders not only appear in FQH liquids, they
also appear in spin liquids at zero temperature. In fact,
the concept of topological order was first introduced in a
study of spin liquids.[7] FQH liquid is not even the first
experimentally observed state with non trivial topological
orders. That honor goes to superconducting state discov-
ered in 1911.[13] Superconducting states contain non triv-
ial topological orders[14]. In contrast to common point of
view, a superconducting state is fundamentally different
from a superfluid state and cannot be characterized by
breaking symmetries.
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Figure 6: Relation of FQH theory with string theory and
some modern mathematics.

6 Mathematical structures be-
hind the topological orders

The topological orders in FQH states are extremely rich
(much richer than crystal orders), and can be measured
experimentally by edge excitations. Despite our complete
understanding of the topological orders and edge excita-
tions in abelian quantum Hall states, we are still lack
of a theory for topological orders in most general FQH
states. We do know some examples of FQH states (called
non-abelian quantum Hall states[15]) that are beyond our
“dancing-step” description and cannot be characterized
by the K-matrix and the charge vector. We have a gen-
eral theory of crystal orders because we know the mathe-
matical frame work – the group theory – behind the crys-
tal orders. However, after 18 years of theoretical research,
we still do not know the mathematical frame work behind
the topological orders (or more general quantum orders),
and we still do not have a general theory for topological
orders in FQH states.

The theoretical studies so far do reveal some fascinating
mathematical structures in FQH liquids,[15] which allow
us to peek into some aspects of the final mathematical
frame work behind the topological orders.[16] It is quite
amazing that the mathematical structures found in FQH
liquids are directly related to some modern mathematics
developed in last century, and some of them are even un-
der developments right now. The similar mathematical
structures also appeared and developed in string theory.
It is so rare in modern physics to have an experimental
phenomenon that tie so closely to some modern mathe-
matics. Thus FQH theory draw interests of researchers
from very different fields, and, in my opinion, will have
impact on those fields, in particular on some branches of
modern mathematics.

Fig. 6 illustrate some close ties between FQH theory,
modern mathematics and the mathematics developed in
the string theory. Witten developed topological theory
in his study of string theory,[17] and used the topological
theory to study the Jones polynomial in a mathematical
theory of knots. The study generated such an impact in
mathematics that Witten, as a physicist, won the Fields
metal in 1990. Now we understand that the topologi-

cal theories are closely related to the topological orders.
In fact, the topological theories are the low energy effec-
tive theories of topological orders.[7, 8] The FQH liquids
are the experimental realizations of topological theories.
The close relation between topological theories and knots
exactly mirror the close relation between topological or-
ders and fractional statistics. Witten also pointed out a
close relation between topological theories and conformal
theory, which exactly mirror the close relation between
topological orders and edge excitations. These connec-
tions are not accidental. They are signs of a more general
and more coherent picture behind FQH liquids.

7 No end to the richness of the na-
ture

When looking back, it is hard to believe that the dis-
covery by Tsui, Stormer, and Gossard 18 years ago has
such a deep impact, and its potential has not exhausted
yet. FQH effect opens up a whole new territory for phys-
ical explorations, both in experiments and in theory. We
learned so much about FQH systems in last 18 years, and
yet those progresses lead to deeper questions that require
further studies. The studies of topological orders in FQH
liquids will deepen our understanding on orders, and may
lead to discoveries of new states of matter beyond FQH
systems.

There is no end to the richness of the nature.
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