Empir Software Eng
DOI 10.1007/s10664-012-9234-8

Comprehensibility of UML-based software product
line specifications

A controlled experiment

Iris Reinhartz-Berger - Arnon Sturm

© Springer Science+Business Media New York 2012
Editor: Murray Wood

Abstract Software Product Line Engineering (SPLE) deals with developing artifacts
that capture the common and variable aspects of software product families. Domain
models are one kind of such artifacts. Being developed in early stages, domain
models need to specify commonality and variability and guide the reuse of the
artifacts in particular software products. Although different modeling methods have
been proposed to manage and support these activities, the assessment of these
methods is still in an inceptive stage. In this work, we examined the comprehensi-
bility of domain models specified in ADOM, a UML-based SPLE method. In partic-
ular, we conducted a controlled experiment in which 116 undergraduate students were
required to answer comprehension questions regarding a domain model that was
equipped with explicit reuse guidance and/or variability specification. We found that
explicit specification of reuse guidance within the domain model helped understand
the model, whereas explicit specification of variability increased comprehensibility
only to a limited extent. Explicit specification of both reuse guidance and variability
often provided intermediate results, namely, results that were better than specification
of variability without reuse guidance, but worse than specification of reuse guidance
without variability. All these results were perceived in different UML diagram types,
namely, use case, class, and sequence diagrams and for different commonality-,
variability-, and reuse-related aspects.

Keywords Variability management - Software product line engineering - Domain models -
Empirical evaluation - UML

1. Reinhartz-Berger (D<)
Department of Information Systems, University of Haifa, Haifa 31905, Israel
e-mail: iris@is.haifa.ac.il

A. Sturm

Department of Information Systems Engineering, Ben-Gurion University of the Negev,
Beer Sheva 84105, Israel

e-mail: sturm@bgu.ac.il

Published online: 27 October 2012 &\ Springer

Empir Software Eng

1 Introduction

Software product line engineering (SPLE) deals with developing artifacts for families of
software products, called product lines, and adjusting them to the particular needs of
applications or systems, called software products or products for short (Clements and
Northrop 2001). Two main activities are identified in SPLE (Pohl et al. 2005): domain
engineering, during which families of applications or software products are analyzed,
yielding sets of analysis, design, and implementation artifacts that can be (re)used by
different family members, and application engineering in which these artifacts are custom-
ized and adapted to the needs of the particular applications. The outcomes of the domain
engineering activity are domain artifacts, also called core assets, which are built to be used
by more than one product in the product line. An important type of domain artifact is a
domain model, which is an analysis or a design model of the product line. Application
artifacts, also called product artifacts, are the outcomes of the application engineering
activity and include adaptations of the domain artifacts to the specific requirements of the
product in hand. The adaptation is done by selecting relevant domain artifacts, modifying
and customizing them to satisfy the particular requirements, and extending the created
application artifacts in a way that does not directly resemble the domain artifacts that
spawned or generated them, e.g., by performing product-specific adaptations (Halmans et
al. 2008).

In order to be reusable and suitable to a wide variety of products, domain artifacts in general,
and domain models in particular, have to specify both the commonality that exists and the
variability that is allowed among different products in the product line. While commonality
refers to the kernel that is common to all (or most) members in a given product line, variability
is defined as the ability of a domain artifact to be efficiently extended, changed, customized or
configured for use in a particular application artifact (Coplien et al. 1998; Sinnema and
Deelstraa 2007). Svahnberg et al. (2005) claimed that “development of software product lines
relies heavily on the use of variability to manage the differences between products”, but
“variability is not trivial to manage”. Thus, methods and techniques for managing the allowed
variability are desired (Sinnema and Deelstra 2008; Ziadi et al. 2004).

The usage of domain artifacts, and especially their variable parts, for carrying out
application engineering activities often follows “reuse guidelines”, which are commonly
called variability or variation mechanisms (Jacobson et al. 1997; Bachmann and Clements
2005), coding or implementing variability approaches (Anastasopoulos and Gracek 2001) or
variability realization techniques (Svahnberg et al. 2005). These mechanisms (or techniques)
introduce ways to utilize domain artifacts in order to create particular application artifacts.
Becker (2003) classified these mechanisms into three classes: selection, in which a domain
artifact is selected and adapted to the particular context, generation, in which the domain
artifact is only used as a template for generating the application artifact, and substitution,
which supports the creation of application artifacts by externally provided solutions (poten-
tially outside the domain artifacts).

The development and utilization of domain artifacts are not simple tasks, as they require
taking into consideration different, sometimes conflicting, concerns. Taking into account all
these concerns may result in complicated artifacts that include numerous, potentially im-
plicit, information which is relevant to different products in the line. Yet, these artifacts are
expected to guide application engineering activities and, hence, need to be adaptable and
usable for a variety of contexts. Thus, the comprehensibility of these artifacts is very
important. The comprehensibility of domain models is even more important, as they are
the basis of different early stage activities in both domain and application engineering.

@ Springer

Empir Software Eng

Having comprehension errors or inaccuracies in these stages can lead to expensive and
undesirable outcomes.

In this work, we examined the comprehensibility of domain models specified utilizing the
standard modeling language — UML. UML and its profiles are largely used for specifying
analysis and design artifacts in SPLE (Chen and Babar 2011). However, as far as we know,
the comprehensibility of these profiles for conducting different domain and application
engineering tasks has not yet been examined. Following Shanks et al. (2003), we refer here
to comprehension in the context of problem-solving tasks, namely, tasks that assess the
subjects’ ability to use the knowledge represented in the schema, where the subjects are
requested to determine whether and how certain information is available from the schema. In
particular, we analyzed whether explicit modeling of reuse guidance and variability speci-
fication improves comprehensibility of domain models and if so to what extent. For this
purpose, we conducted a controlled experiment with 116 third year information systems
engineering undergraduate students who were expected to simulate our target audience —
non-experienced software and information system developers. The subjects were required to
answer comprehension questions about a domain model expressed in ADOM (Application-
based DOmain Modeling), a UML-based method which supports the specification of both
reuse guidance and variability (Reinhartz-Berger and Tsoury 2011a, b).

The remainder of this paper is organized as follows. Section 2 reviews related work and
provides the background for the experiment. Section 3 elaborates on the method used in the
experiment, namely, ADOM. Section 4 describes the experiment goals and settings, while
Section 5 presents the experiment results. Section 6 discusses the experiment results and
Section 7 elaborates on threats to validity. Lastly, Section 8 summarizes our work and
discusses future research directions.

2 Background

In this section we first discuss the relatively low number of studies related to evaluation of
SPLE techniques in general and variability management methods in particular (Section 2.1).
We then discuss the various aids for specifying domain models (Section 2.2) and their uses
in different UML-based methods (Section 2.3).

2.1 Evaluation of SPLE Methods

In a review of 97 papers describing variability management approaches in SPLE from
1990 to 2007, Chen and Babar (2011) conclude that the main corpus of these approaches
refers to modeling and utilizes feature models (33 works) and/or UML and its extensions
(25 works). Other directions, such as using natural languages, applying formal
(mathematical) techniques, defining domain-specific languages, and using ontology-
based techniques, are also explored, but the number of studies in each such category in
the examined time period is very low. Another observation of Chen and Babar’s work is
that relatively little attention is allocated for the evaluation of these methods; most of
them are evaluated using example applications (58.76 %), experience reports (17.53 %),
and case studies (13.4 %), although a large majority of them “are quite amenable to
empirical evaluation”. Qualitative, textual evaluation through discussion on sets of criteria
also exists, e.g., Djebbi and Salinesi (2006), Haugen et al. (2005), Matinlassi (2004), and
Schmid et al. (2011). However, the main problem with this kind of evaluation is its
subjectivity and opinion-oriented nature.

@ Springer

Empir Software Eng

Only a few studies employ an empirical evaluation to analyze different aspects of SPLE,
such as product derivation (Sinnema and Deelstra 2008), maintainability (Bagheri and
Dasevic 2011), quality assurance (Denger and Kolb 2006), and architecture process activ-
ities (Ahmed and Capretz 2008). Regarding comprehensibility and understandability of
domain artifacts, we found the work of Bagheri and Dasevic (2011), which assesses the
maintainability of feature models in terms of three characteristics: (1) analyzability, which is
“the capability of the conceptual model of a software system to be diagnosed for deficiency”;
(2) changeability, which is “the possibility and ease of change in a model when modifica-
tions are necessary”’; and (3) understandability, which is “the prospect and likelihood of the
software system model to be understood and comprehended by its users or other model
designers”. Bagheri and Dasevic used a 7-point scale to gather the subjective opinions of
participants on the relevant characteristics, but did not objectively check the participants’
performance.

Reinhartz-Berger and Sturm (2008) empirically examined the comprehensibility of
domain artifacts and their impact on the creation of application artifacts. They found out
that the availability of domain artifacts helps achieve more complete application artifacts
without reducing the comprehensibility of those artifacts. Yet, this experiment referred only
to commonality aspects, neglecting variability- and reuse-related aspects that might reduce
comprehensibility when introduced to domain models.

Reinhartz-Berger and Tsoury (2011a, b) empirically compared the comprehensibility of
commonality- and variability-related aspects in domain models specified using two methods:
CBFM (Czarnecki and Kim 2005), which is a feature-oriented method, and ADOM
(Reinhartz-Berger and Sturm 2008, 2009), which is based on a UML profile. They conclude
that developers may better understand the locations at which variability occurs and how to
realize variability in ADOM than in CBFM. However, reuse-related issues were not exam-
ined in this particular work, nor were different combinations of the same specification aids.
Furthermore, the number of subjects was low, preventing the possibility of performing a
statistical analysis.

2.2 Specification Aids in SPLE

Many studies have previously explored SPLE concepts. Some of the studies are assets-
derived, e.g., Becker (2003), Bachmann and Clements (2005), and Oliveira Junior et al.
(2005). Others, such as Bachmann et al. (2004), Pohl et al. (2005), and Salicki and Farcet
(2002), concentrate on variability concepts. The rest discuss different aspects of SPLE,
including commonality and variability specification, e.g., the studies of Weiler (2003), Moon
et al. (2005), and Haugen et al. (2008). Reviewing these studies, three sets of specification
aids can be identified: commonality specification, variability specification, and reuse
guidance.

Commonality specification aims at describing the elements in domain artifacts which may
be either mandatory or optional in the product line as well as the dependencies among them
that define the restrictions for selecting groups of optional elements (e.g., couples of domain
elements and mutually exclusive domain elements). Typically, common elements are char-
acterized by their multiplicity ranges, i.e., whether they are mandatory or optional and
whether several clones of them may appear in a single product in the family.

Variability specification aids include variation points, which identify locations in the
domain artifact where variable parts may occur and variants, which realize possible ways to
create particular application artifacts at certain variation points. A variation point, which
defines the insertion point for the variants and determines the characteristics (attributes) of

@ Springer

Empir Software Eng

the variability, can be open, allowing the specification of new variants which are not
associated to the variation point in the domain artifact, or closed, requiring that all possible
variants will be listed in the domain artifact and associated with the variation point.
Furthermore, a variation point may specify rules for selecting variants in the given point,
e.g., one variant at most has to be selected in this point. The relationships between variation
points and variants may take various forms (Clotet et al. 2008), the most important of which
are: (1) inheritance, in which the different variants are specializations of the variation point,
(2) instantiation, in which the variants are instances of the variation point, receiving different
values for the parameters defined or induced by the variation point, and (3) general
dependencies, which may take the form of realization, inclusion, etc.

Reuse guidance aids include different mechanisms which can be used for creating or
producing application artifacts utilizing domain artifacts (Jacobson et al. 1997;
Anastasopoulos and Gracek 2001; Bachmann and Clements 2005; Svahnberg et al.
2005). Examples of such mechanisms are: (1) configuration that enables choosing
alternative functions and implementations, (2) inheritance that enables specializing and
adding selected features, usually behavioral ones, while keeping others, (3) parame-
terization that allows changing the values of the attributes in an artifact, affecting its
behavior according to the set values, and (4) template instantiation that enables type adaptation
or selection of alternative pieces of code.

2.3 UML-Based Domain Modeling Methods

As mentioned earlier, UML-based domain modeling methods are the second largest group of
SPLE and variability management methods (Chen and Babar 2011). Indeed, different UML-
based SPLE methods have been presented in the last dozen years. Table 5 in Appendix A
summarizes most of those published since 2000, along with the specification aids they
support. It can be seen that most UML-based methods define stereotypes or profiles for
specifying domain artifacts, or more accurately domain models, e.g., John and Muthig
(2002), Halmans and Pohl (2003), Gomaa (2004), Ziadi and Jézéquel (2006), Sun et al.
(2010), and Reinhartz-Berger and Tsoury (2011a, b), while some of them suggest small
modifications to the UML metamodel, e.g., Maflen and Lichter (2002) and Braganca and
Machado (2006). Commonality is usually specified using dedicated stereotypes for differ-
entiating mandatory (sometimes called kernel) and optional elements. Some works explicitly
specify variability using both «variation point» and «varianty» stereotypes, including Ziadi et
al. (2004), Sun et al. (2010), and Reinhartz-Berger and Tsoury (2011a, b). Others, including
John and Muthig (2002), Halmans and Pohl (2003), and Gomaa (2004), specify only
variation points or variants, while the other concept is implicitly specified from its relation-
ships with the explicitly specified concept. Several works explicitly refer to dependencies
between elements in the form of stereotypes, tagged values or constraints, e.g., Oliveira
Junior et al. (2005), Korherr and List (2007), and Reinhartz-Berger and Tsoury (2011a, b).
Only nine of the reviewed studies (see Appendix A) refer to reuse guidance. Yet, all these
works, except for Reinhartz-Berger and Tsoury (2011a, b), introduce processes that guide
application engineering but do not provide explicit specification aids related to reuse in the
domain models. Furthermore, they refer to limited sets of mechanisms that can mainly be
classified as selection or generation.

Based on Table 5 in Appendix A, we chose ADOM for our empirical study for the
following reasons. Firstly, it supports the selection and addition of variants in certain
variation points through the ‘card’ and ‘open’ tagged values, respectively, which will be
explained and exemplified later. Secondly, it enables explicit specification of both variation

@ Springer

Empir Software Eng

points and variants. Thirdly, it enables association of commonality- and reuse-related aspects
for all domain elements and not just to variation points and variants. It further supports the
specification of a wide range of reuse mechanisms through the «reuse» stereotype, which
will be also explained and exemplified later. Lastly, it coherently and consistently incorpo-
rates commonality specification, variability specification, and reuse guidance aids in all
UML diagram types.

3 The ADOM Method

The Application-based DOmain Modeling (ADOM) method (Reinhartz-Berger and Sturm
2008, 2009; Reinhartz-Berger and Tsoury 2011a, b) is based on a UML profile comprising
of six stereotypes: «multiplicity», «requires», «excludes», «variation_point», «variant», and
«reuse». Figure 1 depicts this profile, while the rest of the section explains these stereotypes
and demonstrates them on a Check-In Check-Out (CICO) product line. The aim of the CICO
product line is to develop applications for checking in and out items (e.g., hotel reservation
systems, libraries, renting agencies, and version control services). Appendix B further
provides the formalism of ADOM in the form of definitions and constraints among the
different stereotypes. As formally explained there, ADOM can be used with different
modeling languages and in particular with different UML diagram types. For convenience,
we demonstrate ADOM 1in this section on class diagram fragments of the CICO product line.
However, no significant differences exist between applying ADOM to class diagrams and
applying it to other UML diagram types. Nevertheless, in order to cover other aspects of
product lines, such as the functional and dynamic ones, Appendix C includes the full domain
model of the CICO product line, which demonstrates applying ADOM to use case and
sequence diagrams as well.

<<metaclasss» <emetaclass>=

Element Dependency

JaN

Reuse Guidance

<<stereotypes>
multiplicity

-min

-max

<<stereclypes>
requires

<<slereotype==
point

<<stereolypes=
excludes

Commonality
Specification

0.*

<<stereclypes>
variant

-/Vp

Variability
Specification

Fig. 1 The UML profile of ADOM

@ Springer

Empir Software Eng

3.1 Commonality Specification in ADOM

The main modeling aid for specifying commonality in ADOM is the «multiplicity» stereo-
type. This stereotype is used for specifying the range of elements in the application artifact,
i.e., the application elements that can be classified as the same domain element. Two tagged
values, min and max, are used for defining the lowest and upper-most boundaries of that
range. For clarity purposes, four commonly used multiplicity groups are defined on top of
this stereotype: «optional many», where min=0 and max=co; «optional single», where min=0
and max=1; «mandatory many», where min=1 and max=co; and «mandatory single», where
min=max=1. Nevertheless, any multiplicity interval constraint can be specified using the
general stereotype «multiplicity min=m; max=m,».

As an example of the «multiplicity» stereotype, consider two concepts in the CICO
product line, described in Fig. 2: Item Type and Waiting List. Both concepts are optional but
a specific software product may have several different Item Type classes while it must have
at most one Waiting List class (note that the product may have several different actual
waiting list objects, which are instances of the same Waiting List class).

Each Item Type class should have: at least one attribute specifying its type identifier, zero
or more attributes describing different details on the type, at most one attribute specifying the
type status, zero or more operations for getting the type details (or part of them), and zero or
more operations for verifying different conditions on the type status. Some of the signatures
of these attributes and operations are constrained in the model (see Fig. 2). For example,
each status attribute should be of an enumeration type and getTypeDetails operations should
return objects of type Item Type. Each Waiting List class, if it appears, includes at most one
priority attribute (as the waiting list may be prioritized or not) and exactly one operation in
each of the following three categories: adding, getting, and removing nodes to or from the
waiting list. The classes Waiting List and Item Type may be connected with “refers to”
associations, although these relations are not mandatory in the CICO product line, meaning,
for example, that a waiting list can refer to an item rather than to an item type.

In order to constrain valid configurations, two stereotypes are defined in ADOM for
determining dependencies between optional elements: «requires» and «excludes». A
«requires» B, where A and B are two optional elements, implies that if A appears in a
particular product, then B should appear too. In the same spirit, A «excludes» B implies that
if A is included in a particular product, then B should not.

In Fig. 2, for example, if the Waiting List class is selected in a particular software product
(at least once), then at least one Item Type class needs to be defined in the same product,
although these classes may not be directly connected via associations.

In order to better explain the semantics of the aforementioned stereotypes, Fig. 3 presents
two possible uses of the domain model depicted in Fig. 2. In the first case (a), the domain
model is used for specifying a hotel reservation system in which two types of items can be
reserved: rooms and services. This system does not support waiting lists at all. The second

<<optional manys=

<<optional many=> ‘ refers to <<optional single>=
ltemType . WaitingList
<<mandatory manys> -typeld . <<oplional single>= -priority
<<oplional many:> -lypeDetail <emandatory singles> +addWaitingNode(
<<optional single>> -typeStatus : Enumeration ishiiveis <<mandatory single>> +getWaitingNodeo
<<optional many=> +getTypeDetailsy . ItemType SR <<mandatory singles> +removeWaitingNode
<<optional many>= +verifyStatus() : Enumeration

Fig. 2 Part of the CICO domain model, exemplifying the «multiplicity» and «requires» stereotypes

@ Springer

Empir Software Eng

<<ltemTypes>>
RoomType

<<typelds> -typeMName : String
<<typeDetail>> -shoriDescription : String
<<lypeDetail>> -photo : File
<<typeDetail>> -price : float

cxllemTypess

Multimedia File
<<typelDs» -flaCode : String
|<etypeDetails» -MeName , Slring
<clypeDetails> -descriplion ; String
| <<typeDetails= -crealor : String
<ctypeDetailss -owner ; Sting
colypeDetailss -las! Timelpdated . Date

| <<gelTypaDatailss> +gaiFileDetailsd : MultimediaFile

<<typeld>> -serviceProvider : String
<<itemDetail>» -description : String
<<itemDetail>> -duration . inleger
<<typeStatus>> -filsTo : [kid, adult, elderty]

Book

<<gefTypeDetails>> +getServiceDetailsn : ServiceType
<cverifyStatuss> +verifyFitsToD : Enumeration

cetypelDs IS, Stling
cotypeDetailss <l : String
<<lypeDatail>> -aulhors .« List
<etypeDatailss -edilion . integes

| cetypeDeatails» -publicationYear : integer
<<typeDetails» -publisher . String

<<gelTypeDelails>> +getRoomTypeDelailso : RoomType ““:‘_':I_i"nz"":"
WaitingList
. <<addWaitingMode>> +addBookOrFile()
& fxor) i +geiFi OrF
<<llemTypes> B Crile()
ServiceType . : %
<<typeld>> -serviceName : String gqungyn;:-’-’—’L

-stalus - |new, regular, ofiTheShelves]
<<gelTypaDetailss» +geiBookDelaisn - Book

Fig. 3 Exemplifying the semantics of the «multiplicity» and «requires» stereotypes in two applications: a a
hotel reservation system and (b) a library system

case (b) refers to a library system which supports waiting lists of either books or multimedia
files. Note that the domain elements appear as stereotypes in those models, providing
anchors for verifying the domain constraints. Indeed, all the domain constraints discussed
above are maintained in the two models, including the constraints on the classes’ attributes,
operations, and associations.

3.2 Variability Specification in ADOM

For specifying variability, each domain element may be defined as a variation point. This is
done using the stereotype «variation_point» in addition to the «multiplicity» stereotype. A
variation point can be optional, mandatory or located several times in the same application.
The «variation_point» stereotype has the following tagged values: (1) open, specifying
whether the variation point is open or closed, i.e., whether or not product-specific variants
that are not specified in the domain models can be added at this point, and (2) card, which
stands for “cardinality”, indicating a variants’ selection rule in the form of the range of
variant types that need to be chosen for the given variation point. The common cardinalities
are 1..1 (XOR), 1..* (OR), 0..1 (optional XOR), and 0..* (optional OR). Note that there are
differences between the «multiplicity» stereotype and the cardinality tagged values. A
variation point, for example, can be optional (e.g., «optional many»), while its cardinality
specification is mandatory (e.g., ‘1..*’), indicating that this variation point may not be
included in a particular application, but if it is, then at least one of its variants (as specified
in the domain model) has to be selected. Similarly, an open variation point can be mandatory
(e.g., «mandatory many») while its cardinality specification is optional (e.g., ‘0..*’), indi-
cating that this variation point has to be included in a particular product, but possibly uses
particular, product-specific variants (not specified in the domain models).

Each variant is specified using the «variant» stereotype in addition to the «multi-
plicity» stereotype. A variation point and its variants should be of the same type (e.g.,
classes, attributes, associations). Since variation points may specify structural and
behavioral aspects that are relevant to all their variants, we model the relationships
between variants and the relevant variation point via inheritance relationships. When

@ Springer

Empir Software Eng

not applicable, i.e., for variation points and variants that are not classifiers, such as
attributes, operations, and combined fragments, the relationships between variants and
variation points are specified using a tagged value, vp, associated with the «variant»
stereotype; vp specifies the name of the corresponding variation point. Note that a
domain element can be stereotyped by both «variation point» and «variant», enabling
the specification of hierarchies of variants.

As an example of the specification of variation points and variants in ADOM, consider
the Item concept, described in Fig. 4. Items, as opposed to Item Types, are the actual
elements that are checked out. Thus, they must have attributes which specify their unique
identifiers, overdue periods, and fees. In addition, items may also have attributes which
specify their check-in details, check-out details, and statuses. Items are primarily divided
into virtual and physical items, each of which is a variant of the ‘Item’ concept. Handling
fees in this model differ according to the item classification; physical items are likely to
handle overdue, damage, and loss fees. Physical items must also have location details.
Virtual items, on the other hand, typically have no location details and no overdue, damage,
or loss fees. They have to handle loan fees and may need to support reservation fees.
According to the tagged values of the ‘Item’ variation point (open=false and card=‘1..2"), a
particular product in the line cannot include items which are neither physical nor virtual.
However, an item can be both virtual and physical, e.g., books in a library that are loaned as
both physical copies and files.

To exemplify the usage of the above model in the context of a hotel reservation system,
consider the two variants of items depicted in Fig. 5. Rooms are physical items with location

<<mandatory many>>
<<variation_point open=false card="1..2'>>
Item

<<mandatory single>> -itemiD

<<optional many>> -checkinDetail

<<optional many==> -checkOutDetail

<<optional single>> -ltemStatus . Enumeration

<< datory many>> due_period

<<mandatory manys> <<variation_point open=false card='1..»>> -fee . Money
<<optional single>> +verifyStatuso . Enumeration

<<optional single>> +updateStatusinewStatus : Enumeration)

<<optional many>> +getitemDetailso . Item

<<optional many=> <<variation_point open=true card="0..'>> +calculateFee(. Money

Ja

<<optional singlex>

<<variants>

Virtual ltem

<<mandatory many>> <<variant vp=-fee'>> -loanFee
<<optional many>> <<variant vp=-fee'>> -reservationFee

<<optional many>> <<variant vp="calculateFee’ >> +calculateLoanFee(: Money
<<optional many>> <<variant vp= Fee' >> +cal ReservationFee(: Money

<<optional many>>
<<variants>
Physical ltem

<<mandatory many=> -location_details
<<optional many>> <<variant vp=-fee'>> -overdueFee
<<optional many>> <<variant vp=-fee'>> -lossFee
<<optional many>> <<variant vp=-fee'>> -damageFee
<<optional single>> <<variant vp=-calculaleFee’ >> +calculateDamageOrLossFee() : Money
<<optional single>> <<variant vp='calculateFee’ >> +calculateOverdueFee0 . Money

Fig. 4 Part of the CICO domain model, exemplifying the «variation_point» and «variant» stereotypes

@ Springer

Empir Software Eng

<<Physical Item>> <<Virtual Item>>

Room Service
<<itemID>> -roomNumber : int <<itemID>> -servicelD : int
<<locationDetails>> -roomFloor : int <<checkOutDetail>> -responsible : String
<<locationDetails>> -roomLocation : String <<checkOutDetail>> -from : Date
<<checkInDetail>> -maxPersonsAllowed : int <<checkInDetail>> -to : Date
<<ItemStatus>> -roomStatus : {ready, occupied, renovated, being cleaned} <<overduePeriod>> -maxDuration : int
<<overduePeriod>> -plannedStay : int <<loanFee>> -payingAmount : Money
<<damageFee>> -smallDamageFees : Money <<reservationFee>> -reservationAmount : Money
<<damageFee>> -mediumDamageFees : Money <<calculateLoanFee>> +calculate PayingAmount() : Money
<<damageFee>> -largeDamageFees : Money <<calculateReservationFee>> +calculateReservationAmount() : Money
<<verifyStatus>> +roomOccupied(: Boolean
<<getltemDetails>> +getRoomDetails() : Room

Fig.5 Exemplifying the semantics of the «variation_point» and «variant» stereotypes in the context of a hotel
reservation system

details and three types of damage fees, while services are virtual items with loan and
reservation fees. Here again the domain elements appear as stereotypes in order to support
the verification of all domain constraints.

3.3 Reuse Guidance in ADOM

The «reuse» stereotype in ADOM aims to guide the reuse of domain elements while
developing a particular software product. It has an associated tagged value ‘mecha-
nism’, which can take different values that represent the different applicable mecha-
nisms. In this paper, we refer only to the following three values of this tagged value:
s — usage (a representative of the selection reuse mechanisms), ¢ — extension (a
representative of the substitution reuse mechanisms), and se — not constrained (i.e.,
either usage or extension).

Figure 6 illustrates the «reuse» stereotype through two additional concepts of the
CICO product line: Lending and Lending Policy. Both concepts are modeled as
classes and are required to select legal sub-sets of characteristics (i.e., attributes and
operations that satisfy the multiplicity constraints). The “follows” association, on the

<<mandatory many>>
<<reuse mechanisms=s>>
Lending
<<optional single>> <<reuse mechanism="se'>> -lendinglD
<<mandatory single>> <<reuse mechanism="se'>> -loaningDate
<<mandatory single>> <<reuse mechanism-s>> -returnDate
<<optional singles> <<reuse mechanism='se'>> -requestedReturnDate

<<optional single>> <<optional single>>
<<reuse mechanisms='se'>> <<reuse mechanisms=ss
follows P Lending Policy

<<mandatory many>> <<reuse mechanism="e'>> -policy details

<<mandatory singles> <<reuse mechanism=-se'>> +getPolicyDetails)
<<mandatory manys> <<reuse mechanism='s'>> +checkPalicy()

Fig. 6 Part of the CICO domain model exemplifying the «reuse» stereotype

@ Springer

Empir Software Eng

other hand, which connects the classes Lending and Lending Policy, can be substi-
tuted in a particular product in the line in order to extend the specification of this
relationship. Four uses of the “follows” association in particular applications are
depicted in Fig. 7: (a) the association remains as is, (b) an association class is added,
(c) the association multiplicity is changed in order to be more restrictive, and (d) the
direction of the association is changed (to be unidirectional). These changes are not
explicitly guided by the domain model, but are allowed by the «reuse» stereotype
with the value of ‘se’ to its mechanism tagged value.

4 Experiment Description

In order to examine the contribution of the different specification aids in the ADOM
method to the comprehensibility of UML-based domain models, we conducted a
controlled experiment using one factor with multiple treatments. As the commonality
specification aids are part of all SPLE methods, we examined how adding variability
specification and/or reuse guidance aids affects the comprehensibility of a domain
model. The rest of this section elaborates on the experiment goals and hypotheses,
subjects, and materials and tasks.

4.1 Experiment Goals and Hypotheses

As mentioned earlier, our major goal was to check whether explicit specification of
variability aspects and/or reuse guidance affects the comprehensibility of domain models.
To this end, we phrased the following six null hypotheses:

H® . .. : There will be no significant difference in the comprehensibility of domain
models in which both variability aspects and reuse guidance are not explicitly specified
and domain models in which only variability aspects are explicitly specified.

0) g .
H, . euse - There will be no significant difference in the comprehensibility of domain

models in which both variability aspects and reuse guidance are not explicitly specified
and domain models in which only reuse guidance is explicitly specified.

<<Lending>> follows P> <<Lending Policy>>
Lending Lending Policy
<<Lending>> follows <<LendingPolicy>> |
Lending ———————— Lending Policy |

Follows Info

approvedBy: String
approvingDate: Date

(a) (b)

<<Lending>> followsp» <<Lending Policy>> <<Lending>> follows p <<Lending Policy>>
Lending 1 Lending Policy Lending ——— = Lending Policy

(c) (d)

Fig. 7 Exemplifying the semantics of the «reuse» stereotype

@ Springer

Empir Software Eng

H® . on : There will be no significant difference in the comprehensibility of domain
models in which both variability aspects and reuse guidance are not explicitly specified
and domain models in which these aspects are explicitly specified.

H® . : There will be no significant difference in the comprehensibility of domain
models in which only variability aspects are explicitly specified and domain models in
which both variability aspects and reuse guidance are explicitly specified.

H® . o - There will be no significant difference in the comprehensibility of domain
models in which only reuse guidance is explicitly specified and domain models in
which both variability aspects and reuse guidance are explicitly specified.

H : There will be no significant difference in the comprehensibility of domain

models in which only reuse guidance is explicitly specified and domain models in
which only variability aspects are explicitly specified.

The alternative hypotheses are:

H) . .. : There will be a significant difference in the comprehensibility of domain
models in which both variability aspects and reuse guidance are not explicitly
specified and domain models in which only variability aspects are explicitly
specified.
H) o ouse - There will be a significant difference in the comprehensibility of domain
models in which both variability aspects and reuse guidance are not explicitly specified
and domain models in which only reuse guidance is explicitly specified.
H! .. There will be a significant difference in the comprehensibility of domain
models in which both variability aspects and reuse guidance are not explicitly specified
and domain models in which these aspects are explicitly specified.
H! . : There will be a significant difference in the comprehensibility of domain
models in which only variability aspects are explicitly specified and domain models in
which both variability aspects and reuse guidance are explicitly specified.
HY .. : There will be a significant difference in the comprehensibility of domain
models in which only reuse guidance is explicitly specified and domain models in
which both variability aspects and reuse guidance are explicitly specified.

rlem,efw : There will be a significant difference in the comprehensibility of domain

models in which only reuse guidance is explicitly specified and domain models in
which only variability aspects are explicitly specified.

The independent variable in the experiment was the explicitly provided specification aids.
As commonality specification aids were always provided, the values of this variable could
be one of four possibilities: (1) commonality specification, (2) commonality specification
and reuse guidance, (3) commonality specification and variability specification, and (4)
commonality specification, variability specification, and reuse guidance. The comprehen-
sion level, which was measured as the number of correct answers and correct explanations, is
the dependent variable in the experiment.

4.2 Subjects

The subjects were 116 third year undergraduate students in an Information Systems
Engineering department taking a mandatory course on object-oriented analysis and design.
The subjects had background in computer science and information systems engineering
through courses they had taken, such as programming languages, procedural analysis and
design of information systems, and introduction to databases. The experiment took place

@ Springer

Empir Software Eng

during the final exam of the course. The students had about 90 minutes to answer the part of
the exam that directly referred to the experiment.

The subjects were divided into classes by the University Exams Unit without the
interference of the authors. In each class the students were provided with alternating form
types according to their seating positions so that this arbitrary division into the four
experiment treatments closely approximated random division. This way we neutralize
possible biases that might affect the division (e.g., age, education, work experience, gender,
etc.), although the similarity in the subjects’ background was relatively high, as all of them
were undergraduate students in the same program. This kind of assignment of participants to
treatment groups is often used in empirical evaluations of modeling techniques (Ramesh and
Topi 2002).

As noted, each group received a different exam form according to the explicitly provided
specification aids. Table 1 presents the students’ division into groups. After performing the
Kruskal-Wallis test on the average grades of the students in their studies, no significant
difference was found between the groups (y*=3.147, p=0.37).

4.3 Experiment Materials and Tasks

As mentioned earlier, the experiment took place during the final exam of an object-
oriented analysis and design course. In this course, students studied and practiced
ADOM for 12 academic hours and reached a level of understanding which enabled
them to perform the experiment’s tasks. In order to avoid deviation, we spent a
similar amount of time teaching each specification aid and demonstrating each dia-
gram type.

The experiment was designed as one factor with four treatments (see Table 1). All four
groups of students received the same task, although the models differed, depending on the
provided specification aids. In all cases the models referred to the Check-In Check-Out
(CICO) product line and included use case, class, and sequence diagrams, which represented
the functional, structural, and dynamic aspects of the product line, respectively. The students
in the ‘control’ group, however, received no explicit variability specification and reuse
guidance. Nevertheless, in order to preserve the “information equivalence” principle (Siau
2004; Burton-Jones et al. 2009) among the models of the different groups, the constraints
regarding the unsupported aspects were modeled via “regular” UML utilities, such as
inheritance and notes. Three experts verified that all models indeed represented the same
information on the CICO product line. The models used for the ‘reuse and variability’ group

Table 1 The students division into groups

Group name Size Specification aids Utilized stereotypes

Control 29 Commonality specification «multiplicity», «requiresy», «excludes»

Reuse 29 Commonality specification «multiplicity», «requires», «excludesy,
and Reuse guidance «reuse»

Variability 29 Commonality specification and ~ «multiplicity», «requires», «excludesy,
Variability specification «variation pointy, «variant»

Reuse and variability 29 Commonality specification, «multiplicity», «requires», «excludesy,
Variability specification «variation point», «varianty, «reuse»

and Reuse guidance

@ Springer

Empir Software Eng

can be found in Appendix C and the models of the other three groups can be found with the
experimental material.’

The subjects received a questionnaire with 15 statements referring to the CICO product
line model. The students had to decide whether each statement was true or false, to indicate
the diagram or diagrams which allowed them to reach the decision, and to provide an
explanation for their decision based on the provided model. The full list of questions can be
found in Appendix C.> Note that in order to avoid interactions among the different diagram
types, the information for answering a particular question correctly resided in a single
diagram type. For example, to answer question #1 (see Appendix C), the use case diagrams
had to be consulted, as the question was about functionality. The information required for
answering question # 6, on the other hand, is in the class diagrams, as this question deals
with structural aspects. This separation was made possible by the choice of diagram types for
the experiment which represent different aspects of the modeled product line.

Before the experiment took place the ethics committee of the department examined the
experiment design and gave its approval. In addition, since we had different versions of the
exam, we normalized all grades according to the average grades of the different groups.
Lastly, we compared the grades achieved by the students in this experiment to the exam
grades of the same course in previous years. We found that the grades in the experiment were
on the average higher, while their distribution was similar to the distributions of the exam
grades in previous years. Thus, we claim that the subjects’ grades were not negatively
affected by the experiment.

5 Experiment Results

The subjects’ questionnaires were checked by a grader who was not involved in this research
and who was given a predefined solution in order to grade the subjects’ answers. The
comprehension level, which as noted is a dependent variable in this empirical study, was
measured as the number of correct answers (true/false) plus the number of fully or partially
correct explanations (arguments): each correct true/false answer was 1 point, while an
explanation could be 0, 0.5, or 1 point for representing an incorrect, partial or full argumen-
tation, respectively. Examining the Pearson correlations between the answers, the explan-
ations, and the overall comprehension levels (Witte and Witte 2009; pp. 133—137), we found
that the students’ answers and explanations are highly correlated (correlations ranging from
0.637 to 0.992 with a significant level of 0.01). Thus, in the rest of the paper we present and
refer only to the comprehension levels which sum the answer and explanation scores.

Table 2 summarizes the descriptive statistics of the results, whereas Fig. 8 visually
presents this information in boxplots. The thick horizontal line in each boxplot is the median
of the overall results (in percentages); the box stands for the 2nd and 3rd quartiles and the
whiskers represent the 1st and 4th quartiles. Outliers, which represent measures that fall
beyond the whiskers, are denoted by circles (for small deviations) or stars (for larger
deviations). Figure 8 further elaborates on the achievements of the subjects according to
the employed diagram types and overall.

' The experimental material is accessible at: http://mis.hevra.haifa.ac.il/~iris/research/SPLEeval/
ComADOM . htm#reusability.

% The questionnaire was given to the participants in their mother tongue. Thus, Appendix C is actually the
translation of the questions into English.

@ Springer

http://mis.hevra.haifa.ac.il/~iris/research/SPLEeval/ComADOM.htm#reusability
http://mis.hevra.haifa.ac.il/~iris/research/SPLEeval/ComADOM.htm#reusability

Empir Software Eng

Table 2 Overall comprehensibil-

ity

100

0=

of the domain models Group Measure Use case ~ Class Sequence Overall
diagram diagram diagram
Control Mean 70.69 70.83 56.24 66.72
Median 75.00 71.00 50.00 73.00
Min 19.00 29.00 25.00 33.00
Max 100.00 100.00 100.00 90.00
StdDv. 21.60 24.78 19.21 16.35
Reuse Mean 86.66 81.00 58.07 76.34
Median 100. 00 86.00 63.00 75.00
Min 50.00 39.00 19.00 58.00
Max 100.00 100.00 100.00 95.00
StdDv. 16.93 14.39 20.20 10.37
Variability Mean 74.83 75.97 49.86 68.52
Median 75.00 82.00 44.00 70.00
Min 50.00 29.00 19.00 40.00
Max 100.00 100.00 69.00 90.00
StdDv. 17.34 17.44 15.14 12.72
Reuse and Mean 81.72 78.03 48.31 71.17
variability Median 7500 7500 50.00 72.00
Min 44.00 43.00 19.00 43.00
Max 100.00 100.00 75.00 87.00
StdDv. 18.11 16.75 17.94 12.91
X’ 11.01 2.28 4.51 6.41
p 0.01 0.52 0.21 0.09
Legend:
F O control
H = reuse
i | variability
| , J o reuse and variability
|
ﬂ
|
o
Use Case Class Sequence Overall
Diagrams Diagrams Diagrams

F

2

. 8 Boxplots representing the distribution of the domain model comprehensibility

@ Springer

Empir Software Eng

Examining the median scores in that figure, it is clear that in all cases the best results were
achieved by the subjects in the ‘reuse’ group whose models were explicitly equipped with
reuse guidance. Furthermore, referring to the group equipped with only commonality
specification aids as the ‘control’ group,® we can observe that the results regarding the
comprehensibility of models equipped with variability specification were mixed; the addi-
tion of variability specification increased the comprehensibility of class diagrams with
respect to the ‘control’ group but did not affect the comprehensibility of use case diagrams
and decreased the comprehensibility of the sequence diagrams. Another observation that can
be made about Fig. 8 is that for use case and sequence diagrams, the comprehension level of
models equipped with both variability specification and reuse guidance was between the
comprehension levels of models equipped with only one of these specification aids.
However, in these cases, the comprehension level of the ‘reuse and variability’ group was
similar to that of the ‘control” group. We will discuss these differences between the diagram
types further in the next section.

To examine the data statistically, we chose the non-parametric Kruskal-Wallis test, as the
distribution of the grades in the four experiment groups did not meet the parametric test
assumptions. Applying this test, we found that overall there may be a difference in the
comprehension level in at least one of the groups, but this difference is not statistically
significant (y?=8.47, p=0.09). With use case diagrams, however, there is a statistically
significant difference (x*=11.01, p=0.01). Thus, we applied the Mann—Whitney with
Bonferroni correction® test to pairs of groups in this case. We found that there are statistically
significant differences in the use case diagram’s comprehensibility between the ‘control” and
the ‘reuse’ groups (U=239, p<0.01, »=0.38) and between the ‘reuse’ and the ‘variability’
groups (U=263, p=0.01, r=0.33),” in favor of the ‘reuse’ group in both cases.

In order to form deeper insights into the effects of the various specification aids, the
different comprehension questions were divided according to the specification aids they
mainly examined. Table 3 presents the descriptive statistics for this analysis. The comprehen-
sibility of commonality-related aspects was similar in all groups, but this is not surprising as the
models in all groups were equipped with the same commonality specification aids. Moreover,
the results show that complicating the notations by introducing additional (variability- and/or
reuse-related) stereotypes does not negatively affect the comprehensibility of commonality-
related aspects in use case and class diagrams. In sequence diagrams, on the other hand, these
additions decreased comprehensibility, however the differences are not statistically significant
(x*=0.86, p=0.84).

Figures 9 and 10 present in boxplots the distribution of the comprehensibility of
variability- and reuse-related aspects, respectively. Examining the median scores in
Fig. 9, the best comprehensibility of variability-related aspects was achieved by the
subjects in the ‘reuse’ and ‘reuse and variability’ groups. These results were always
better than those of the ‘control’ group, while the results of the ‘variability’ group
were the same or a little bit higher than those of the ‘control’ group for the same
category of issues. Still, the comprehensibility of variability-related issues in models
not equipped with reuse guidance was lower than the comprehensibility of these
issues in models equipped with reuse guidance. With respect to variability-related

3 As noted, we referred to this group as ‘control’ since all UML-based SPLE methods support the specification
of commonality with similar aids (see Appendix A and Section 2.3). Therefore all the models in our
experiment were equipped with the same commonality specification aids.

4 We adopted the more conservative correction approach of Bonferroni for performing multiple comparisons.
As we had 6 comparisons, we looked at a significance level lower than 0.0083 (i.e., 0.05/6).

31 is the size effect.

@ Springer

Empir Software Eng

¥0°0 (N0 81°0 9L0 00 LTO 600 000 960 780 L60 060 d
6’8 s So6't LT'T 1601 68'¢ 6¢£9 S6'6C 1€0 980 970 0S50 X
86'81 ¥8'¥C v1'9¢ 99¢ €9°L1 vece c0'1c Pr'8¢ L9Y1 06°'1¢ 6861 vI've ‘AdpIS
007001 007001 007001 007001 007001 007001 007001 007001 00°16 007001 007001 007001 Xe]N
00°Ce 00°8¢ 000 0070 00°¢y 000 00°s¢T 0070 00°8¢ 000 00°s¢T 00°'8¢ WA
00C8 00'88 00°00T1 007001 00°SL 00°ST 007001 007001 00°CL 00'8¢ 00°SL 007001 UBIPIN Aiqerea
YL 6S°0L reoL 01'8L £6°69 wee 01°€6 9L'C8 00°0L I7'9% YEOL 01’18 UesN pue osnoy
0S¥l S9vC e clve 99°6¢ ov'vy or'ce 69'8% reel 0Ll 10°1¢ e ‘AdPIS
007001 007001 007001 007001 007001 007001 007001 007001 00°16 00°88 007001 007001 Xe]N
009¢ 00°s¢ 00°¢e 00°8¢ 000 000 0070 0070 00¥¥ 00°s¢T 00°s¢T 0008 A
00°SL 00°SL 00'L9 00°001 00°08 00708 007001 00°0 00°SL 00°8¢ 00°18 007001 UBIPIN
69°€L y€'¢9 resL £8°6L 0009 65°CS Pee8 Yoy €6'1L 98'9% 06°LL 168 eS|\ Aniqeries
rrel 838°I¢ €L’1T 16°8C vL'81 1484 61T 6L'ST 9¢¢l 19°0¢C €00t [T€T AdpPIS
00001 007001 00°001 007001 007001 007001 007001 007001 00°L6 007001 007001 007001 Xe]N
00°¥S 00°s¢ 00°L1 0070 00°Cy 000 000 0070 00'1¥ 000 00°¢l 00°s¢ A
00C8 00'88 00°00T1 00°001 00°SL 00°ST 007001 00°001 00°SL 00°8¢ 00°SL 007001 UBIPIN
9908 TL8L LT€8 Iv'6L 508 €098 ¥T'To 01°¢6 yoeL y1'8Y LO'8L L6'V8 UeIN osnoy
7081 ¥9'9¢C LETE €0'1¢ 1L 888 Ty So6v 1591 yL'TT 9eYC (Uavd AdpPIS
007001 007001 007001 007001 007001 007001 007001 007001 00°L6 007001 007001 007001 Xe]N
00°ST 0070 000 0070 000 000 000 0070 00'¥¢ 000 00°s¢ 00°s¢ A
0089 00°sL 00°L9 0088 00°L9 007001 007001 0070 00°SL 0008 00°sL 007001 UBIpa]N
L6'L9 6L'S9 €699 01°cL £6'8¢ ¥€09 8TEL (U314 LO'TL 6518 SSL L6'18 e\ [onuo)
[[BI2AO as an on [[e1AQ as an on [[eI9AQ as an on
Aupiqerrep osnay Ayreuounio)) dnoin

S[opow urewop Jo s3oadse paje[a1-osnal pue ‘-Aj[iqeLea ‘-Ajjeuouwruod jo Afqisuoyardwo) ¢ dqe],

pringer

A's

Empir Software Eng

100 - o =t = Legend:
[control
H = reuse
variability
50 -
o reuse and variability
60
o J
o
[
0
(=]
0 o]
Use Case Class Sequence Overall
Diagrams Diagrams Diagrams

Fig. 9 Boxplots representing the distribution of the comprehensibility of variability-related issues

issues, Fig. 10 shows that the addition of reuse guidance in the ‘reuse’ and the
‘reuse and variability’ groups improved the use case diagram’s comprehensibility,
did not affect the class diagram’s comprehensibility, and decreased the sequence
diagram’s comprehensibility. The comprehension in the ‘variability’ group was
similar to that of the ‘control’ group for use case and class diagrams. However,

Legend:
100 - - - - - - - = - — * M *
= control
3 reuse
variability
80 o reuse and variability
* [
60
* * * @
*
-
* * -
R
0 - * * * * = *
Use Case Class Sequence Overall
Diagrams Diagrams Diagrams

Fig. 10 Boxplots representing the distribution of the comprehensibility of reuse-related issues

@ Springer

Empir Software Eng

for sequence diagrams, any addition of variability specification and/or reuse guid-
ance decreased comprehensibility.

We once again applied the Mann—Whitney with Bonferroni correction test to pairs of
groups in cases where statistically significant differences were found, namely, the overall
comprehensibility of variability-related aspects and use case diagrams and the overall
comprehensibility of reuse-related aspects. Table 4 presents this statistical analysis, where
the bold numbers and grey cells indicate statistically significant results. The results show that
providing reuse guidance improved not only the comprehensibility of reuse-related aspects,
but also the comprehensibility of variability-related issues. In particular, the inclusion of
reuse guidance without variability specification significantly improved the comprehensibil-
ity of variability-related issues, the inclusion of reuse guidance with or without variability
specification improved the comprehensibility of reuse-related aspects in use case diagrams,
and the inclusion of reuse guidance without variability specification improved the overall
comprehensibility of reuse-related aspects.

Based on these results, none of the null hypotheses can be rejected with respect to the
overall domain model comprehensibility. However, when referring to variability-related
aspects, only H% ~ can be rejected and thus !, ..., can be accepted. This indicates
that only when adding explicit reuse guidance would the comprehensibility of the
variability-related aspects of the domain model improve. When referring to reuse-related

aspects, both #° ~ ~ and H°,, . can be rejected and thus both H! ~ ° and
H! can be accepted. This implies that adding explicit reuse guidance improves the

comprehensibility of reuse-related aspects. This is extremely remarkable when dealing with

; i thi 0 0 0 0
use case dlagrarlns, in this ca:se Hmnefml,se s Hy o boin : H, yom and H., . canbe
rejected= Le, I—[nonefreuse ’ Hnanefboth s Hvarfhoth ’and Hreuse—var can be accepted.

6 Discussion

The results show that the performance of the ‘reuse’ group was the best in most cases.
However, the performance of the ‘reuse and variability’ group, whose models were also
equipped with variability specification, were worse than the ‘reuse’ group (see Fig. 8). This
may be due to the fact that using two specification aids together, variability specification and
reuse guidance, complicated the models and negatively affected comprehensibility. Moody

Table 4 Statistical analysis of the main differences in domain model’s comprehensibility

Compared groups Variability-related overall Reuse-related aspects
uc Overall
U P r U P r U p r

Control-reuse 247.5 0.007 0.35 190.5 0.000 0.57 249.5 0.006 0.31
Control-variability 348.5 0.260 0.15 419.5 0986 0.00 408.5 0.849 0.00
Control-reuse and variability 301.0 0.062 024 237.0 0.001 043 309.0 0.079 0.16
Reuse-variability 306.0 0.074 0.23 190.5 0.000 0.57 209.5 0.001 0.37
Reuse-reuse and variability 383.5 0.563 0.08 377.0 0231 0.16 298.5 0.050 0.26

Variability-reuse and variability ~ 359.0 0.337 0.13 237.0 0.001 043 270.5 0.018 0.21

@ Springer

Empir Software Eng

(2009) refers to this issue through the graphic economy principle which suggests using a
cognitively manageable number of different graphical symbols in visual notations. Most
UML diagram types exceed this cognitively manageable number, which is around six
categories, thus adding new concepts via the stereotypes mechanism may only worsen the
situation. This principle also suggests some kind of explanation as to why the performance
of the ‘reuse’ group (which add only one stereotype) was better than that of the “variability’
group (with the addition of two stereotypes) and the ‘reuse and variability’ group (with the
addition of three stereotypes), but does not offer an explanation as to the differences in the
performance between the ‘variability’ and ‘reuse and variability’ groups in favor of the more
“expensive” notation (the ‘reuse and variability’ group) in the sequence diagrams. The
reason for these differences may be that the additional information in the ‘reuse and
variability’ group, i.e., the reuse guidance, improved the comprehensibility even though
the notation was more complicated.

Although we do not investigate the usage of the different UML diagrams for support-
ing different SPLE activities, we cannot ignore the clear outcome of our experiment,
according to which the most comprehensible diagram type is the use case, followed by
class, and finally by sequence diagram (see Fig. 8). Since each student answered all the
questions which referred to different diagram types, our study resulted in dependent
samples. Thus, we applied the Friedman and Wilcoxon statistical tests to analyze the
differences in the comprehensibility of the various diagram types. We found out that the
differences between the diagram types are statistically significant (p<0.001). We believe
that these differences originate from the language complexity; use case diagrams are less
conceptually complex than class diagrams (Siau and Cao 2001) and sequence diagrams
are one of the most difficult and time-consuming UML diagrams to develop and under-
stand (Song 2001).

As the analysis of the results demonstrates, the superiority of the reuse guidance utilities
over the variability specification aids can be justified by two explanations. Firstly, reuse
guidance explicitly refers to the usage of domain models in a concrete application artifact,
while variability specification refers to the allowed variety in a certain product line. Thus,
variability specification can be considered more abstract than reuse guidance and more
complicated to understand. Secondly, the reuse concept is modeled in ADOM via a single
stereotype which encapsulates all the required guidance via the associated tagged values.
The variability concept, on the other hand, is specified via two different stereotypes,
«variation point» and «variant», as well as the relationships among them (usually through
inheritance relationships). Moreover, the low success rate in comprehending the variability
of the sequence diagram, for example, can be partially attributed to the implicit relationships
between variation points and variants through tagged values in this type of diagram. The
subjects received the specification of the variation point separately from those of the
different variants; they had to integrate the information from the different diagrams and
come up with single answers that reflect their understanding of the allowed variability. This
outcome can be explained or justified by the claim of Kim et al. (2000) that understanding a
model represented by multiple diagrams involves perceptual and conceptual integration
processes and thus is a source of cognitive difficulty. Our conjecture is that reuse guidance
focuses on single elements and is more concrete, whereas variability specification refers to
multiple elements (variation points and different variants) in a higher abstraction level.

An interesting observation regarding the comprehensibility of variability-related aspects
in use case diagrams is that the different aids improve comprehensibility, yet no differences
exist among them (see Fig. 9). This result may be attributed to the relative simplicity of the
UML use case diagram. Moreover, the statistically significant difference in the

@ Springer

Empir Software Eng

comprehensibility of reuse-related aspects in use case diagrams may indicate that explicit
guidelines are superior to implicit guidelines (see Fig. 10). This general statement is also
confirmed by Nugroho (2009) who states that “the amount of information in a model can be
increased/reduced by being more explicit/implicit in portraying modeling constructs using
UML modeling notations”.

7 Threats to Validity

The above results need to be considered in view of several threats to validity categorized by
Wohlin et al. (2000) as construct, internal, conclusion, and external validity.

Construct validity threats, which concern the relationships between theory and observa-
tion, are mainly due to the method used to assess the outcomes of the tasks. In this
experiment we examined a specific method only, ADOM, and thus the results may be
influenced by the selected method. However, we based our choice on a comprehensive
comparison we made, whose results are presented in Appendix A. The chosen method,
ADOM, is similar in many aspects to other UML-based SPLE methods, but it explicitly
refers to different variability specification and reuse guidance aspects (as elaborated in
Section 2.3). Nevertheless, the way ADOM facilitates the various specification aids and
its richness might affect the results. For example, the use of multiple stereotypes on a single
element and the association of tagged values to stereotypes may cause problems in model
readability and negatively affect comprehensibility. Thus, repeating the experiment with
other UML-based methods and different sets of UML diagram types is needed.

Internal validity threats, which concern external factors that might affect the dependent
variables, may be due to individual factors, such as familiarity with the domain, the degree
of commitment by the subjects, and the training level the subjects underwent. These effects
are mitigated by the experiment design that we chose. That is, we used one factor
experiment design with four treatments and random assignments that should eliminate
these threats. As the experiment was part of an exam, the motivation and commitment of
the students were high in all groups. Furthermore, applying the Kruskal-Wallis test on the
students’ average grades, we found no statistically significant differences between the
four groups.

Conclusion validity concerns the relationship between the treatment (the used sets of
explicit specification aids) and the outcome. We followed the various assumptions of the
statistical tests when analyzing the results. For example, when data normality could not
be assumed, we performed a statistical analysis using mainly non-parametric tests (i.e.,
the Kruskal-Wallis). In addition, we used a pre-defined solution for grading the students’
answers and thus only a limited amount of human judgment was required (for grading
the arguments of the explanations and deciding whether they provided full or partial
answers).

Lastly, external validity concerns the generalizability of the results. The main threat in
this area stems from the choice of subjects and from using simple tasks in the experiment.
The subjects were undergraduate students with little experience in software engineering in
general and in SPLE in particular, but they represented a population of students specifically
trained in domain modeling. The students were further trained and had practiced the method
used in the experiment, ADOM, for 12 academic hours. The average of the grades the
students achieved in the experiment, which ranged from 67 to 78, indicate that they basically
understood the profile under test. Furthermore, the subjects were at an advanced stage in
their studies and close to becoming software engineers and developers. Thus, they

@ Springer

Empir Software Eng

approximate the population intended to use domain modeling methods and ADOM. More
generally, Kitchenham et al. (2002) argue that using students as subjects instead of software
engineers is not a major issue as long as the research questions are not specifically focused
on experts, as is the case in our empirical study.

The tasks used in this experiment were limited in their size and complexity, as they
were used in an exam with a limited amount of time and under stress conditions.
However, both models and tasks refer to important aspects in SPLE in general and
domain modeling in particular. The questions were designed to be simple enough without
being too obvious. In addition, the models used in the experiment were checked by three
experts in order to guarantee correctness and similar expressiveness. Furthermore, during
the exam the students could get extra time in order to complete the task in the best way.
Only further studies may confirm or disconfirm whether our results can be generalized to
more experienced subjects (e.g., professional software product line engineers) and more
complicated tasks.

8 Summary and Future Work

In this paper we presented the design and results of an experiment whose aim was to evaluate
the comprehensibility of different specification aids used in UML-based domain models.
These aids include: (1) specification of commonality by means of mandatory and optional
elements and dependencies between elements, (2) specification of variability by means of
variation points, possible variants, and rules for selection of variants in certain variation
points, and (3) specification of reuse guidance by referring to specific reuse mechanisms
which can be used in order to create concrete application artifacts. Particularly, we examined
how the various modeling aids explicitly incorporated within a domain model affect the
comprehensibility of the model by non-experts. To the best of our knowledge, this is the first
attempt to examine the comprehensibility of domain artifacts in such a wide perspective. The
experiment results show that providing additional specification and guidance aids helps
comprehend domain models. In particular, we found that providing explicit reuse guidance
has the highest influence. Our conjecture is that this utility is usually attached to specific
domain elements, thus making its guidance clear and more concrete. The variability speci-
fication also improved comprehensibility, but to a limited extent when compared to the reuse
guidance. We believe that the reason for this difference is the fact that variability specification
consist of multiple elements (variation points and variants) and these are specified in a higher
level of abstraction in view of the whole software product line. Following the results, it
appears that it is important to pay careful attention to the way reuse guidance is incorporated
into domain models and not just to the associated development processes, as most UML-
based methods for specifying product lines do. It is also important to further investigate how
to improve the comprehensibility of variability specification utilities in ADOM and in SPLE
methods in general.

In the future we plan to perform additional experiments with different UML-based methods
and methods in various categories, e.g., UML-based and feature-oriented methods. We also
intend to extend the investigated tasks to application engineering tasks that support the creation
of application artifacts based on domain models. This kind of task increases the required
comprehension, as it requires not only understanding an existing domain model but also
understanding how to utilize it for creating a concrete application artifact. We also plan to
further understand the role of the various specification aids in both domain and application
engineering tasks by applying qualitative research methods.

@ Springer

Empir Software Eng

Ananoy

Ase) 3]

ase)) as()

ase)) as()

juouodwod ‘AyAnoy

(uoneioqerjo)
‘a3eyoeq
9uouodwo)) ‘sser)

juouodwod ‘Ayanoy

SSe[D

sse[)

asnar Suipms
10J ‘0]qE) UOISIOAP S)I A[eroadso
pue ‘[opowr AJ[IqeLIeA d1) JO 95

[opOW UOISIOop
qreredas © Aq UONBAID S)ORJILIE
uonesrjdde jo aouepn3 10y poddng

uonezueurered

pue uoneZI[eIdUAF Se yons ‘s1doouod

TINN PIepuels BIA uonejuawadu
K)I[IQeLIBA 0] 90UIY

(uonezuojowrered pue ‘UOISUSIXS
‘uonesur) uonejuowoydur
AJI[IqeLIBA 0} 90UQIJY

sjueLIeA JO uoneoroads jrordxy
9]qe) UOISIOdp
© pue [OPOU JUBLIBA € JO SISISUOD
YOIyM ‘[opowr ANIIqeLIeA B JO 9S[)
SUONIPUOD UONII[IS
Jo uoneoyroads oy Surjqeud
{SJUBLIEA 0} SUOTJOQUUOD IIOY}
pue uoneay10ads JA 103 poddng

sjueLIBA JO uoneoly1oads jordxyg
saroudpuadop

BIA uoneoly10ads yrorjduy
syuouoduwiod 10 sayouelq
BIA uOneOI10ads JA 10y poddns

‘syueLIeA Jo uoneoy1oads jordxg
SJUBLIEA JO SUONIPUOD UOIII[IS
pue owr Surpuiq jo uoneoroads
oy} Surjqeuo ‘SjueLIBA pUR

SdA 410q Jo uoneoryroads jordxyg
SIUOW[

J[qeLIeA Jo uoneoyrodds yordxg

SJUBLIEA PUE SJA 100UU0D
sdrysuoneyar [e1oudd ‘sjueLreA
pue sqA Jo uoneanroads yordxyg

SJUOWO[o
uowwod Jo uonedyroads jorduy

uonedy10ads sarouspuadop

10§ yoddns ‘s euondo pue
K101epuew jo uonednyroads yordxyg

1X0JU00

w)SAS-9[3uIs © Ul se uonesry109ds
SJUSWIAS uowuod 1oj oddng

SHUSWO[D
UouIos Jo uoneoyoads jrordury

SIUQWIAO
uowwod Jo uonedyrodds yorduy
SJUOWIALO UOIMIOq
sorouapuadop pue syuowole [euondo
Jo uonesnyroads J1o11dxe pue sjuAW[
K1oyepuewr Jo uonedyroads jorduy
SIUDUWIAQ
A1oyepuewr Jo uonedsyyroads jorduy
SIUOWAJd dAleUId)[E puk [euondo
Jo uoneony10ads J1o11dxo pue syuswold
K1oyepuewr Jo uonesyyroads jorduy

anquye
Q0UQ)SIXd Y} BIA uoneo1dads Jordxg

€00 'Te 10 uodry

(€007 T& 3 auyng)
€002 [4od pue suewjeyq

200T SN pue uyof-gsInd

200 39WOTT pue udgey

00T 'Te 19 eqoy

100T gnerd

000T T 39 yosiqary

(¥00T T8

10 eYIIZeT) 000T ‘T2 1 OISO

000¢ 'Te 39 JeL0) - 111dS

swesderp pauoddng

doueping osndy

uoneoy1oads AIqeries

uoneoy1ads Ajjeuowuo))

oureu POYIRA

spoyjowt 7S PIseq-TAN J0 uostedwo) § AqEL

SPOYRIA A'1dS PIseq-TIAN Jo uostiedwo)) :y xipuaddy

pringer

A's

Empir Software Eng

sse[)

ase)) asn)

ase) as)

juduoduwiod
‘sseo ‘ase)) asn

ase) s

sse[d 0) AJeuo3oyiQ

uonorRIAUI
‘9ouonbas ‘sse)

o3eyoed ‘oouonbas
quauodwod ‘sse)

Q1B ‘UONBIIUNIIWOD
‘sse[o ‘ase)) as()

uone3dai3se oysodwoo pue

‘uorjeroosse uonesaIife ‘uonezijear

aoeyIo)UI ‘UoneZIeIouss YInoy)
[oA9] ssao01d ayy ur asnar 10§ woddng

uoneziundo [opowr

pue ‘uoneziferoads [opour ‘Uord[ds

sasse[o jueLreA :ssodoxd doys

921y} B pUB [9POW UOISIIAP © Fuisn
Aq uoneauop jonpoid 1oy 1oddng

yoeqred pue ‘eduejLIyuI ‘SuIpry

uoneuLIojul ‘uonezuejowered

:s0d4) Inoy ojur SJA JO uonezuogare)

SjuBLIA
pue sqA Jo uonesyroads yordxyg

jurod uorsnjour
pue ‘Juowgel) UOISU)XI
‘urofoy] ‘uonesoT Jo uonedyroadg

SUONJIPUOD UOTII[OS JUBLIBA
Jo uoneoryoads jordxe ‘sjuerreA
pue sqA Jo uonesryoads yordxyg

SjueLIEA pUE
SdA 1oq Jo uoneorroads jrordxy

sweIgerp

douanbas ur uoneoryroads

sued [emuarA Joj poddns sgA

JLIdYUI SJUBLIBA SJUBLIBA PUB
sdA [10q Jo uoneorj1oads jordxyg

sdA A10jepuew

pue [euondo jo uonesrpur
‘syueLreA Jo uoneoyrdads jordxg

SJA lo/pue
SJUBLIBA U0MJOq sdtouspuadop pue
‘SJUBLIEA 90100 dANEUId)E ‘Teuondo

‘K1ojepuewt Jo uoneoy1dads jordxg

SJUQWIA[D

uowrod Jo uonednyroads jrorduy
X1jew syudwarmbar sanrwrid
® Ul sonjel Ajifeuountiod Jo ogesn
oy Surjqeus ‘syuowope [euondo pue

K101epUew jo uonednyroads yordxyg

soroudpuadop
se [[om se ‘sjuenrea Jeuondo pue
K101epuew jo uonednyroads yordxyg
SJUSWIA[O dAnEUIdNE pue ‘[euondo
‘K1ojepuewt Jo uoneoyroads jrordxg
SJUQWIAO
uowrod Jo uonesnyroads jrorduy

SJUSWIALR
reuondo AJisse[o 0y Apiqissod

sJA Teuondo pue
K1ojepuew Jo uonedy1ads yordxy

syuawold [euondo pue
K1oyepuewr Jo uonedyrads yordxyg

L00T 1SV pue 11oy103]

900 OpeydRI pue BduEselq

'S00T T8 3° UOON - INVHIA

(o10T
9[JOIJAMBINS UOISIOA Ioje[)
S00T '[e 30 Jorunf BIOAIQ

$00T e 10 wry

$007 Te 10 uuewyoRg

(900 1onbozor
pue Iperz) 00 ‘e 10 1perz

00T
BRWON) PUE 10999M — INdA

(zooz
uIyS pue Bewon - gSSN1d)
#00¢C eewod — SN1d

swresSerp papoddng

douepIng asnay

uoneoy1oads Ajiqerrep

uoneoyroads Ajeuowuo))

ouIeu PoyIRIN

(ponunuoo) ¢ ayqey,

pringer

A's

Empir Software Eng

1v)
‘9re)g “‘eouanbog
‘sse[) ‘ase)) as)

yuowkordeq
‘oouanbog
‘KIAIOY ‘sse|D)

uonedy10ads swSIuRyooW
asnal JudIdIp 10§ Joddng

SUOTJE[AI UOTEZI[edI AQ SUOTIIPUOD
UOIO9[OS JUBLIBA QUIULIS}OP
ey} so[ni Jo uonedyroads oy Jurjqeuy

o[qissod uoym sgA
JLIDYUI SJUBLIBA (SI[NI UOIOI[IS
JUBLIEA SE [[oM SE ‘SJUBLIBA

pue sqA Jo uonesyroads yorndxg

weiderp

UONOBIONI JA B UI Pay1oads

KJojeredas ore sjueLIeA pue SJA

Uu00M}9q SAIysuOnE[aI ‘SjueLIEA
pue sgA Jo uoneosryoads yordxyg

syuowold Suowe sarouspuadop
Se [[oM Se SJudwa[d [euondo pue
K1oyepuew Jo uonedydads yordxy

SJUQWAO
K1oyepuewr Jo uonedyroads yorduy

(6002 ‘800C
wing pue 10310g-zuequioy
uo paseq) (q ‘e[1(0g) Amosy,
pue 1o810g-ZuequIay— INOAV

‘0102 'Te 30 ung — JOINVAOD

swerderp pauoddng

QouepIng osnay

uoneoy1ads Ajiqerres

uonesy10ads Ajjeuowuio))

oureu PoyIAJAl

(ponunuoo) ¢ aqeL

pringer

A's

Empir Software Eng

Appendix B: The Formalism of the ADOM Method

Next we formally define the ADOM method.
The elements of UML are classified into three categories: dependent, relational, and first
order elements.

Definition 1 Dependent elements are elements that depend on other elements in the model
such that the omission of the dependees from the model implies the omission of the
dependent elements.

Examples of dependent elements are attributes and operations in UML class diagrams
that depend on their owning classes and sub-packages that depend on their owning
packages.

Definition 2 Relational elements are explicit binary (directional) relationships between pairs
of elements.

Examples of relational elements are associations in UML class diagrams and messages in
UML sequence diagrams. Note that all kinds of relationships in UML are binary or can be
mapped to binary relations.

Definition 3 First order elements are elements which are not relational nor dependent in the
model.

All kinds of elements can be associated with the «multiplicity» stereotype which is
defined next.

Definition 4 The «multiplicity min=n max=m» stereotype, which can be associated to any
element in the domain model, specifies the range of elements in the application artifact that
can be classified as the same domain element. The two tagged values, min and max, are used
for defining the lowest and upper-most boundaries of that range.

The meanings of the «multiplicity» stereotype are slightly different according to the
element types: first order, dependent or relational elements. The multiplicity stereotype of a
dependent element specifies the range of times this domain element can be used in any
dependee of a software product in that line. Specifying, for example, the multiplicity of an
attribute A of class C as «multiplicity min=1 max=*» implies that between 1 to o attributes
of type A have to be included in each class of type C in a certain product in the line.

The multiplicity stereotype of a relational element specifies the range of times this
domain element can appear, connecting the relevant source and target in any product of
the line. Specifying, for example, the multiplicity of an association r between class A and
class B as «multiplicity min=1 max="*» implies that in any product in the line in which both
A and B appear, each appearance of A is connected to at least one appearance of B via
associations of type r, and vice versa.

Lastly, the multiplicity stereotype of first order elements specifies the range of times the
relevant domain elements can appear in any product of that line.

Note that any combination of the multiplicity stereotypes is feasible. For example, a
mandatory relational element can connect two optional elements, implying that if the two
elements appear in a certain product, then the relational element must connect them. Similarly, a
mandatory dependent element may reside within an optional element, implying that if the
dependee appears in a certain product, then the dependent element must appear too.

Optional elements can be connected via «requires» and «excludes» dependencies in order
to constrain larger configurations.

@ Springer

Empir Software Eng

Definition 5 Let A and B be two optional elements in a domain model. 4 «requires» B
implies that if A appears in a particular product, then B should appear too. 4 «excludes» B
implies that if A is included in a particular product, then B should not appear. Furthermore,
in order to avoid redundancy or non-feasible models, the following constraints must hold:

C1. [If A requires B, then A.multiplicity.min=0 and B.multiplicity.min=0.

C2. If A excludes B, then A.multiplicity.min=0 and B.multiplicity.min=0.
The following definitions refer to the specification of variability in ADOM.

Definition 6 The «variation_point open=truel/false card=m..n» stereotype indicates places in
which variability can be introduced. The variation point can be open (open=true), meaning
that product-specific variants not specified in the domain models can be added at this point
or closed (open=false), i.e., addition of product-specific variants that are not specified in the
domain models is not allowed at this point. The card tagged value indicates the minimal (m)
and maximal (n) numbers of variants the can be selected for this variation point. The
following constraints must hold with respect to variation points:

C3. If m=0, then open=true.
C4. If open=false, then m>1.

Definition 7 The «variant vp=namey stereotype is used for indicating a possible way to
realize variability in a certain variation point. vp indicates the name of the variation point in
case an explicit inheritance relationship between the variant and variation point cannot be
specified (in the case of non-classifiers). The following constraints must hold with respect to
variants and their associated variation points:

C5. The multiplicity of a variant (v) can be the same or more restricted than the multi-
plicity of the relevant variation point (vp). Formally expressed as: vp.multiplicity.min
< v.multiplicity.min < v.multiplicity.max < vp.multiplicity.max.

Note that no restriction exists between the cardinality values and the multiplicity values
of both variants and variation points, as cardinality refers to the selection of variants in a
single occurrence of the variation point in a software product, while multiplicity refers to the
general number of occurrences of the variation point or the variant in the whole product.

Finally, the reuse guidance is specified in ADOM using the «reuse» stereotype, defined
below.

Definition 8 The «reuse mechanism=name» stereotype is used to guide the usage of a
domain element in various products in the line. The mechanism tagged value specifies the
applicable reuse mechanism. In the current work we refer only to the following values: s—
usage (a representative of the selection reuse mechanisms), e—extension (a representative of
the substitution reuse mechanisms), and se—not constrained (i.e., either usage or extension).
The following constraints must hold with respect to the reuse guidance of variation points
and the associated variants:

C6. The reuse mechanisms of a variant (v) can be the same or more restricted than the
reuse mechanisms of the relevant variation point (vp), namely:

1. If vp.reuse.mechanism = ‘se’, then v.reuse.mechanisme{‘s’, ‘e’, ‘se’}.
2. If vp.reuse.mechanism = ‘e’, then v.reuse.mechanism = ‘e’.

@ Springer

Empir Software Eng

3. If vp.reuse.mechanism = °s’, then v.reuse.mechanism = °s’.

Note that there are no constraints on the reuse mechanisms of dependees and dependent

elements or on the reuse mechanisms of relational elements and their associated source and
target elements, as these are separate elements whose reuse may differ.

Appendix C: The Experiment Questionnaire

Below are the models and translation of the 15 comprehension questions given to the ‘reuse
and variability” group. The questions of the other three groups were identical to the questions
provided here, while the different models can be found with the experimental material at
http://mis.hevra.haifa.ac.il/~iris/research/SPLEeval/ComADOM.htm#reusability.

1.

<<reuse mechanism='se’>>
<<variation_point open=true card='3..3>>

A product in the CICO line may include an item reservation. In this case, only
borrowers and workers can perform this activity that cannot undergo any refinement
or extension.

Each product in the CICO line must interact with either private borrowers or cooper-
ation borrowers.

In case a product in the CICO line has the functionality of “Check-In with Fee
Calculation”, then it must include the functionality of “Calculate Fee” too.

In the CICO line there might be products which will not include explicit
reference to fee calculation (through use cases, such as “Check-In with Fee
Calculation”, “Check-In with possible Fee Calculation” or “Check-In without
Fee Calculation”).

In the CICO line there might be products that support both Lending Policy and Waiting
Lists.

Products within the CICO line may include associations of type “handle” between
Borrower and Lending that are not of type “manage” nor of type “perform”.
Products in the CICO line may include Items with no loan fee information nor location
details.

An Item in a CICO product may have both loan fee information and location details.

A

<<mandatory many>>

Cico

<<mandatory mary>>
<<reuse mechanisnj="e’>>

<<mandatory manys>
<<reuse mechanism='s">>
<<variation_point open=false
card='2..3>>
heck In ltem

<<optional single>>
<<reuse mechanism='se’ >>

Borrower Check Item Availability

Lmanda(ory many}>

<<reuse mechanism=r$e’>x

<<Include>>
<<mandatory single>>
<<reuse mechanism=rs'>> !

<<optional single>.
<<reuse mechanism=e>> i

<<mandatory many>>
<reuse mechanism=re’>>
worker

<<mandatory many>>
<<reuse mechanism=re’>>
Check Out Item

<<optional manys{>
<<reuse mechanismsz's’>>

<<optional many>>

<<reuse mechanism="e'>>
Reserve ltem

Fig. 11 CICO model: the top level use case diagram

@ Springer

http://mis.hevra.haifa.ac.il/~iris/research/SPLEeval/ComADOM.htm#reusability

Empir Software Eng

;

<<mandatory many>>
<<reuse mechanism='se’>>
<<variation_point open=true card='3..3>>

Borrower
% <<mandatory many>> <<mandatory single>>
<<mandatory single>> <<reuse mechanism='se’>> <<reuse mechanism='se'>>
<<reuse mechanism='se’>> <<variant>> <<variant>>
<<variant>> <<variation_point open=false card='1..1'>> <<variation_point open=false card='1..1'>>
<<variation_point open=false card="1..1'>> member/occasional private/cooperation

NS S Y

<<optional single>> <<optional single>> <<optional many>> <<optional many>> <<optional single>> <<optional single>>
<<reuse mechanism= <<reuse mechanism= <<reuse mechanism='s'>> <<reuse i <<reusem i >> <<reuse i
<<variant>> <<variant>> <<variant>> <<variant>> <<variant>> <<variant>>
Virtual Borrower Physical Borrower Member Occasional Borrower Corporation Borrower Private Borrower

Fig. 12 CICO model: the Borrower variation point

9. A product in the CICO line may include a virtual item that exhibits a method for
calculating reservation fees which receives the actual lending period as a parameter.
10. In each product in the CICO line, a class of type Lending should be related to exactly
one class of type Borrower.
11. In each product in the CICO line, if a class of type Borrower is associated to a class of
type Lending with an association of type “manage”, then there should be an association
class of type “managing” which documents the changes.

<<mandatory many>>
<<reuse mechanism=s'>>
<<variation_point open=false card="2..3'>>
Check In Item

<optional many>>
<<reuse mechanism=s'>>
<<variant>>
Check In with Fee
Calculation

<optional single>>

<<reuse mechanism=s'>>
<<variant>>

Check In with Possible Feg

Calculation

<<excludes>> <<optional single>>
---------- <<reuse mechanism=s'>>
<<variant>>
Check In without Fee
Calculation

)
1 I
<<Include>> : <<Extend>>
1 i
<<mandatdgry single>> ! <<mandatory single>>
LR .
<<reuse mechanism='s'>> i<<reuse mechanism='se’>>
\ |
!

<<requires>> <<mandatory single>>
------------- <<reuse mechanism='se’ >>
Calculate Fee

Fig. 13 CICO model: the Check In Item variation point

@ Springer

Empir Software Eng

<<mandatory single>>
<<reuse mechanism='ser>>

Controller 1
i > /515> scheckOulitemzlond . tom, userzlend - Borrowen
> e tem)
<<optional many> <<reuse mechanism-se'>> +reservellemzreserve)
<<mandatory many>> | 1.
<<reuse mechanismre>> <<mandatory many>»
. <<optional many>>
<<reuse mechanism-'s>>
<<mandatory many>>
ItemType
<<reuse mechanism-rse's>
Borrower <<mandatory many>> <<reuse mechanism-rse'>> -ypeld
-typeDetail . String

|<<mandatory single>> <<reuse mechanism=rs:>>id - int

<<optional singles» <<reuse mechanism-s:>» -typeStalus Enumeration
|<<oplional many>> <<reuse mechanism=e'>> -status : Enumeration

1gefTypeDetailso - lemType [
Enumeration

o>

manys> 505>

<<optionalmany>>

<emandatory single>
Y singl <<reuse mechginism=re'>>

Fe<requires>>
<<reuse mechanismes}> '
' <emandatory many}s>
; <<reuse mechanism-fers>

<<mandatory single>> <<optional single>>

<<reuse mechaniss <<reuse mechanism-'se'>>
<evarlation_point open-irue card=10.2>> WaitingList
handle |<<optional single:> <<reuse mechanism-e-> -priority
nges> (<<excludes>>
ingle> -
gle> .
<<optional single>>
. <<reuse mechanisms
<<mandatory many>> Lending Policy
<<reuse mechanismers'>> . h po
Lending ngle>> - %
[<<optional single:> <<reuse mechanism-'se>> -lendingID y>>

|<<mandatory single>> <<reuse mechanism-rsc'>> -loaningDate
[<<mandatory single>> <<reuse mechanism-rs>> -retumDate . Date

i L

E <<mandaory many>>
‘ <<mandatory single=> o many

<<rouse mechanism-s6>> 1

<<variation_point open-false card-11.2:>>
ttem

Fig. 14 CICO model: the top level class diagram

<<mandatory many>>
<<reuse mechanism=re'>>
<<variation_point open=false card='1..2>>
Item

<<mandatory single>> <<reuse mechanism='e’>> -itemID

<<optional single>> <<reuse mechanism='s'>> -ltemStatus : Enumeration

<<optional many>> <<reuse mechanism='s'>> -itemDetail : String

<<mandatory many>> <<reuse mechanism=se’>> -overdue_period

<<mandatory many>> <<reuse mechanism='se’>> <<variation_point open=false card=1..#>> -fee : float

|<<optional single>> <<reuse mechanism=re’>> +verifyStatus(: Enumeration

<<optional single>> <<reuse mechanism='se’>> +updateStatus(newStatus : Enumeration)

<<optional many>> <<reuse mechanism='s’>> +getltemDetails(: ltem

<<optional many>> <<reuse mechanism='se’>> <<variation_point open=true card="0..~'>> +calculateFee() . Money

<<optional single>>
<<reuse mechanism=re’>>
<<variant>>
Virtual ltem
| |<<mandatory many>> <<reuse mechanism='e’>> <<variant vp="fee’>> -loanFee
<<optional many>> <<reuse mechanism='e’>> <<variant vp=-fee’>> -reservationFee

<<optional many>> <<reuse mechanism='e’>> <<variant vp='calculateFee’ >> +calculateLoanFee() : Money
<<optional many>> <<reuse mechanism='s'>> <<variant vp="calculateFee’ >> +calculateReservationFee() : Money

<<optional many>>
<<reuse mechanism='e’>>
<<variant>>
Physical ltem

<<mandatory many>> <<reuse mechanism='e’>> -location_details
<<optional many>> <<reuse mechanism='s'>> <<variant vp='fee'>> -overdueFee : float
<<optional many>> <<reuse mechanism='e’>> <<variant vp=rfee’>> -lostFee
<<optional many>> <<reuse mechanism='se’>> <<variant vp=rfee’>> -damageFee

<<optional single>> <<reuse mechanism='s'>> <<variant vp='calculateFeer >> +calculateDamageOrLostFee(: Money
<<optional single>> <<reuse mechanism="e’>> <<variant vp="calculateFee’ >> +calculateOverdueFee() : Money

Fig. 15 CICO model: the Item variation point

@ Springer

Empir Software Eng

<<optional many>>

<<reuse mechanism='s'>>
<<mandatory many>> <<variant vp=handle’s> <<mandatory many>>
<<reuse mechanism='se>> [perform . <<reuse mechanism=s'>>
Borrower Lending

<<optional many>>
<<reuse mechanism='e’>>
<<variant vp=handle’>>
manage

|

]

|

!

<<optional many>>
<<reuse mechanism='s’>>
managing

<<mandatory many>> <<reuse mechanism='s’>> -modifyingDate : Date
<<optional many>> <<reuse mechanism='e’>> -modifyingOperation : Enumeration

Fig. 16 CICO model: the Handle variation point

<<mandatory single>> <<mandatory many>> <<optional many>>
<<reuse mechanism=e’>> <<reuse mechanism=s>> <<reuse mechanism=se’>>
- Controller <<variation_point open=false card=1..2’ >> - Borrower
<<mandatory single>>

<<mandatory many>>

‘reuse mechanism='evE

g

I
|
|

1: checkOut : <<reuse mechanism='e’>>
: 2: getltemDetails()
| <<optional many>>
: <<reuse mechanism='se'>>
| " >
| 3. verifyStatus()
Il

<<optional {fjany>>

<<reuse mech:] lism='">>
sdCheck Lenfilng Policy
i
T
I
|
|

<<mandaldry single>> flending is possible]
<<reuse |||t|Lhdl|i>l||='€'>>
At

<<mandatory many>>
<<reuse mechanism =re’>>
<<variation point open=false card="1..1>>
sd Check Out Item To Borrower

<<optional single>>
<<reuse mechanism='s'>>
4: updateStatus()

v

e i B e L S it i e e e = |

<<mandatory single>>
<<reuse mechanism='e’>>

5: create()

<<mandatory single>>
<<reuse

mechanism='s’>>

Lending

T AR

|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
(wl
I
|
|
'

Fig. 17 CICO model: the check out scenario

@ Springer

Empir Software Eng

<<optional single>>
<<reuse mechanism =re’>>

<<variant vp='Check Out ltem to Borrower>> <<mandatory single>> <<mandatory many>>
sd Check Out ltem to Borrower without Waiting List <<reuse mechanism='se’>> <<reuse mechanism=s'>>
: Controller : ltem
T

| <<optional single>> :

<<reuse mechanism='ser>> !
1: getltemDetails()

<<mandatory many>>
<<reuse mechanism='se'>>
2: verifyStatus(

Fig. 18 CICO model: check out without waiting list

12.

13.

14.

15.

There might be a product in the CICO line in which a controller object will not be
involved in a scenario of Check-Out Item to Borrower.

In a Check-Out scenario of a CICO product, one can borrow both virtual and physical
items.

In a CICO product, a controller object can send messages other than getltemDetails
and verifyStatus to an Item object while executing the scenario named “Check-Out
Item to Borrower without Waiting List”.

It is possible that in a CICO product that does not define a waiting list, the combined
fragment named “Check Out-Item to Borrower with Waiting List” will be executed
while performing Check-Out.

<<optional many>>
<<reuse mechanism =e’>>

<<variant vp="Check Out Item to Borrower>>
sd Check Out Item to Borrower with Waiting List

" . 3: getitemDetails)
<<optional single>>

<<reuse mechanism='e'>>
<<optional many>> 4: verifyBorrower(
<<reuse mechanism='s>>
- >
s: verifyStatus(

<<mandatory single>> <<mandatory single>> <<optional many>> <<optional single>> <<mandatory many>>
<<reuse mechanism='se'>> <<reuse i <<reuse i <<reuse i <<reuse mechanism=re’>>
: Controller : WaitingList : ltemType : Item : Borrower
T en e T =T
| <<mandatory many>> } : : :
| reuse. 1 S y single>> 1 1 i
1 iti <<reuse mechanism=re’>> . | <<mandatory many>> ! |
2: getTypeDetails <<reuse mechanism='s'>> | :
i
|

<<reuse mechanism='s'>>
alt

<<mandatory many>>) Lending is feasihl

o

. T
<<mandatory single>> §
|

<<reuse mechanism='se’>>
6: removeWaitingNode([t

Fig. 19 CICO model: check out with waiting list

2

Springer

Empir Software Eng

References

Ahmed F, Capretz LF (2008) The software product line architecture: an empirical investigation of key process
activities. Inf Softw Technol 50:1098-1113

Anastasopoulos M, Gracek C (2001) Implementing product line variabilities. ACM SIGSOFT Softw Eng
Notes 26(3):109-117

Bachmann F, Clements PC (2005) Variability in software product lines. Technical Report CMU/SEI-
2005-TR-012, available online at http://www.sei.cmu.edu/library/abstracts/reports/05tr012.cfm,
Accessed 9 September 2012

Bachmann F, Goedicke M, Leite J, Nord R, Pohl K, Ramesh B, Vilbig A (2004) A meta-model for
representing variability in product family development. In: van der Linden F (ed): PFE’2003, LNCS 3014,
pp. 66-80.

Bagheri E, Dasevic G (2011) Assessing the maintainability of software product line feature models using
structural metrics. Software Quality Journal, Springer, doi:10.1007/s11219-010-9127-2

Becker M (2003) Towards a general model of variability in product families. In: Proceedings of the Software
Variability Management Workshop, University of Groningen, The Netherlands

Braganga A, Machado RJ (2006) Extending UML 2.0 metamodel for complementary usages of the «extend»
relationship within use case variability specification. In: Proceedings of the 10th International Software
Product Line Conference (SPLC), pp 123-130

Biihne S, Halmans G, Pohl K (2003) Modeling dependencies between variation points in use case diagrams.
In: Proceedings of the 9th international workshop on requirements engineering — Foundation for Software
Quality (REFSQ’03), pp 59-70

Burton-Jones A, Wand Y, Weber R (2009) Guidelines for empirical evaluations of conceptual modeling
grammars. J Assoc Inf Syst 10:495-532

Chen L, Babar MA (2011) A systematic review of evaluation of variability management approaches in
software product lines. Inf Softw Technol 53:344-362

Claul M (2001) Generic Modeling using UML extensions for variability. In: Proceedings of OOPSLA
Workshop on Domain-specific Visual Languages, pp 11-18

Clements P, Northrop L (2001) Software product lines: practices and patterns. Addison-Wesley Professional.
Part of the SEI Series in Software Engineering series

Clotet R, Dhungana D, Franch X, Grunbacher P, Lopez L, Marco J, Seyff N (2008) Dealing with changes in
service-oriented computing through integrated goal and variability modelling. In: Proceeding of the
second International Workshop on Variability Modelling of Software-intensive Systems (VaMoS’2008),
pp 43-52

Coplien J, Hoffman D, Weiss D (1998) Commonality and variability in software engineering. IEEE Softw 15
(6):37-45

Coriat M, Jourdan J, Fabien B (2000) The SPLIT method: building product lines for software-intensive
systems. In: Proceedings of the first conference on Software Product Lines: experience and research
directions: experience and research directions (SPLC’2000), pp 147-166

Czarnecki K, Kim CHP (2005) Cardinality-based feature modeling and constraints: a progress report.
OOPSLA Workshop on Software Factories

Denger C, Kolb R (2006) Testing and inspecting reusable product line components: first empirical results. In:
Proceedings of the 2006 ACM/IEEE International Symposium on Empirical Software Engineering,
ACM, pp 184-193

Djebbi O, Salinesi C (2006) Criteria for comparing requirements variability modeling notations for product
lines. The Fourth International Workshop on Comparative Evaluation in Requirements Engineering
(CERE’06), in conjunction with RE’06

Gomaa H (2004) Designing software product lines with UML: from use cases to pattern-based software
architectures, Addison-Wesley Professional

Gomaa H, Shin ME (2002) Multiple-view meta-modeling of software product lines. In: Proceedings of the 8th
IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’02), pp 238—
246

Halmans G, Pohl K (2003) Communicating the variability of a software-product family to customers. Softw
Syst Model 2(1):15-36

Halmans G, Pohl K, Sikora E (2008) Documenting application-specific adaptations in software product line
engineering. In: Proceedings of the 20th International Conference on Advanced Information Systems
Engineering (CAiSE’2008), LNCS 5074, pp 109-123

Haugen @, Moller-Pedersen B, Oldevik J (2005) Comparison of system family modeling
approaches. In: Proceeding of Software Product Lines Conference (SPLC’2005), LNCS 3714,
pp 102-112

@ Springer

http://www.sei.cmu.edu/library/abstracts/reports/05tr012.cfm
http://dx.doi.org/10.1007/s11219-010-9127-2

Empir Software Eng

Haugen @, Moller-Pedersen B, Oldevik J, Olsen GK, Svendsen A (2008) Adding standardized variability to
domain specific languages. In: Proceeding of the 12th International Software Product Line Conference
(SPLC), IEEE Computer Society, pp 139-148

Jacobson I, Griss M, Jonsson P (1997) Software reuse: architecture, process and organization for business
success. ACM Press, New York

John I, Muthig D (2002) Tailoring use cases for product line modeling. In: Proceedings of the International
Workshop on Requirements Engineering for Product Lines (REPL’02), pp 26-32

Kim J, Hahn J, Hahn H (2000) How do we understand a system with (so) many diagrams? cognitive
integration processes in diagrammatic reasoning. Inf Syst Res 11(3):284-303

Kim J, Kim M, Yang H, Park S (2004) A method and tool support for variant requirements analysis: goal and
scenario based approach. In: Proceedings of the 11th Asia-Pacific Software Engineering Conference
(APSEC’04), pp 168-175

Kitchenham BA, Lawrence S, Lesley P, Pickard M, Jones PW, Hoaglin DC, Emam KE (2002) Preliminary
guidelines for empirical research. IEEE Trans Softw Eng 28(8):721-734

Korherr B, List B (2007) A UML 2 profile for variability models and their dependency to business processes.
In: Proceedings of the 18th International Conference on Database and Expert Systems Applications, pp
829-834

Lazilha FR, Barroca L, Alves de Oliveira E, de Souza Gimenes IM (2004) A component-based product line for
workflow management systems. The IEEE Conference on Information Reuse and Integration, pp 112-119

MaBen T, Lichter H (2002) Modeling variability by UML use case diagrams. In: Proceedings of the
International Workshop on Requirements Engineering for Product Lines (REPL’02), pp 19-25

Matinlassi M (2004) Comparison of software product line architecture design methods: comparison of
software product line architecture design methods: COPA, FAST, FORM, KobrA and QADA. In:
Proceedings of the 26th International Conference on Software Engineering (ICSE’04), pp 127-136

Moody D (2009) The physics of notations: toward a scientific basis for constructing visual notations in
software engineering. IEEE Trans Softw Eng 35(6):756-779

Moon M, Yeom K, Seok Chae H (2005) An approach to developing domain requirements as a core asset
based on commonality and variability analysis in a product line. IEEE Trans Softw Eng 31(7):551—
569

Morisio M, Travassos G, Stark M (2000) Extending UML to support domain analysis. In: Proceedings
of the 15th IEEE International Conference on Automated Software Engineering (ASE’00), pp
321-324

Nugroho A (2009) Level of detail in UML models and its impact on model comprehension: a controlled
experiment. Information and Software Technology — special issue on Quality of UML Models, 51
(12):1670-1685

Oliveira Junior EA, Gimenes IMS, Huzita EHM, Maldonado JC (2005) A variability management process for
software products lines. In: Proceedings of the 2005 conference of the Centre for Advanced Studies on
Collaborative research, Toranto, Ontario, Canada, pp 225-241

Oliveira Junior EA, Gimenes IMS, Maldonado JC (2010) Systematic management of variability in UML-based
software product lines. J Univ Comput Sci 16(17):2374-2393

Pohl K, Bockle G, van der Linden F (2005) Software product line engineering: foundations, principles, and
techniques. Springer, Berlin

Ramesh V, Topi H (2002) Human factors research on data modeling: a review of prior research, an extended
framework and future research directions. J Database Manag 13(2):3-19

Reinhartz-Berger I, Sturm A (2008) Enhancing UML models: a domain analysis approach. J Database Manag
19(1):74-94

Reinhartz-Berger I, Sturm A (2009) Utilizing domain models for application design and validation. Inf Softw
Technol 51(8):1275-1289

Reinhartz-Berger I, Tsoury A (2011) Experimenting with the comprehension of feature-oriented and
UML-based core assets. In: Halpin T et al. (eds): BPMDS 2011 and EMMSAD 2011, LNBIP 81,
pp 468482

Reinhartz-Berger I, Tsoury A (2011) Specification and utilization of core assets: feature-oriented vs. UML-based
methods. In: De Troyer O et al. (eds): ER 2011 Workshops, LNCS 6999, pp 302-311

Riebisch M, Béllert K, Streitferdt D, Franczyk B, Ilmenau TG (2000) Extending the UML to model system
families. In: Proceedings of the 5th International Conference on Integrated Design and Process Technol-
ogy (IDPT)

Ripon SH, Talukder KH, Molla KI (2003) Modelling variability for system families. Malays J Comput Sci 16
(1):3746

@ Springer

Empir Software Eng

Robak S, Franczyk B, Politowicz K (2002) Extending the UML for modeling variability for system families.
Int J Appl Math Comput Sci 12(2):285-298

Salicki S, Farcet N (2002) Expression and usage of the variability in the software product lines. In: van der
Linden F (ed): PFE-4 2001, LNCS 2290, pp 304-318

Schmid K, Rabiser R, Griinbacher P (2011) A comparison of decision modeling approaches in product lines. In:
Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive Systems (VaMoS’2011), pp
119-126

Shanks G, Nuredini J, Tobin D, Moody D, Weber R (2003) Representing things and properties in conceptual
modeling: an empirical evaluation. In: Proceedings of the 11th European Conference on Information
Systems, pp 1775-1785

Siau K (2004) Informational and computational equivalence in comparing information modeling methods. J
Database Manag 15(1):73-86

Siau K, Cao Q (2001) Unified Modeling Language (UML) — a complexity analysis. J Database Manag 12
(1):26-34

Sinnema M, Deelstra S (2008) Industrial validation of COVAMOF. J Syst Softw 81(4):584—600

Sinnema M, Deelstraa S (2007) Classifying variability modeling techniques. Inf Softw Technol 49(7):717-739

Song IY (2001) Developing sequence diagrams in UML. In: Proceedings of the International Conference on
Conceptual Modeling (ER’2001), LNCS 2224, pp 368-382

Sun C, Rossing R, Sinnema M, Bulanov P, Aiello M (2010) Modeling and managing the variability of web
service-based systems. J Syst Softw 83(3):502-516

Svahnberg M, Van Gurp J, Bosch J (2005) A taxonomy of variability realization techniques. Software—
Practice and Experience 35 (8): 705-754.

Webber D, Gomaa H (2004) Modeling variability in software product lines with variation point model. Sci
Comput Program 53:305-331

Weiler T (2003) Modelling architectural variability for software product lines. In: Proceedings of the Software
Variability Management workshop, van Grop, Bosch (eds), pp 5361

Witte RS, Witte JS (2009) Statistics. Wiley

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslen A (2000) Experimentation in software
engineering — an introduction. Kluwer Academic Publishers, Boston

Ziadi T, Jézéquel JM (2006) Software product line engineering with the UML: deriving products. In: Kakola
T, Duefias JC (eds), Software Product Lines—Research Issues in Engineering and Management, Springer,
pp 557-588

Ziadi T, Hélouét L, Jézéquel JM (2004) Towards a UML profile for software product lines. In: Proceeding of
Software Product-Family Engineering (PFE’2004), LNCS 3014, pp 129-139

Iris Reinhartz-Berger is a faculty member in the Department of Information Systems, University of Haifa,
Israel. She received her M.Sc. and PhD in information management engineering from the Technion, Israel
Institute of Technology and B.Sc. in applied mathematics and computer science from the Technion. Her
research interests include conceptual modeling, analysis and design of information systems, software product
line engineering, and method engineering. She has chaired a series of Domain Engineering workshops and
presented tutorials on domain engineering and variability management.

@ Springer

Empir Software Eng

Arnon Sturm is an Assistant Professor in the Department of Electrical Engineering and Computer Science at
Wichita State University in Kansas, USA. He received the Ph.D. and M.S. in Computer Science from Kent
State University, USA and the B.E. in Computer Engineering from Birla Vishwakarma Mahavidyalaya, India.
His research interests are in Software engineering: software evolution/maintenance, mining software repos-
itories, empirical software engineering, source code analysis, and software visualization.

@ Springer

	Comprehensibility of UML-based software product line specifications
	Abstract
	Introduction
	Background
	Evaluation of SPLE Methods
	Specification Aids in SPLE
	UML-Based Domain Modeling Methods

	The ADOM Method
	Commonality Specification in ADOM
	Variability Specification in ADOM
	Reuse Guidance in ADOM

	Experiment Description
	Experiment Goals and Hypotheses
	Subjects
	Experiment Materials and Tasks

	Experiment Results
	Discussion
	Threats to Validity
	Summary and Future Work
	Section119
	Appendix B: The Formalism of the ADOM Method
	Appendix C: The Experiment Questionnaire
	References

