Access Control in Group Communication Systems

Qi Li', Mingwei Xu!, Xinwen Zhang?
! Department of Computer Science, Tsinghua University, Beijing, China
{liqi, xmw}@csnet].cs.tsinghua.edu.cn
2 Samsung Information Systems America, San Jose, CA, USA
xinwen.z@samsung.com

Abstract— With advances in distributed computing technolo-
gies, Group Communication Systems (GCS) have received a lot of
attentions. Besides reliable and ordered message delivery services,
these applications require plenty of security services, such as
data secrecy, data integrity, and user authentication. However,
less work has been invested on how to integrate authorization
scheme within efficient communication systems, especially for
group collaborations. In this paper, we present a flexible and
efficient authorization scheme which provides group-level fine-
grained access control and can be easily integrated to existing
GCS. More specifically, we propose the concept of Virtual Group
(VG) and automatic access control policy generation mechanism
to realize secure collaborations between different groups. We
implement a prototype with Spread and our experimental results
demonstrate the efficiency and scalability of our authorization
scheme.

I. INTRODUCTION

Group Communication Systems (GCS) have gained con-
siderable attention because of their controllable distributed
message delivery capability, which is essential to distributed
applications that require reliable message delivery and high
availability service such as enterprise video conferences and
virtual communities. Since these applications are expected
to run over the Internet, security in these applications is
an important issue. To this end, research community have
invested a lot of efforts in developing integrated security
technologies into distributed systems, e.g., several works have
been proposed to design scalable and fault-tolerant group key
management protocols [4].

However, there has not been enough research into the
authorization scheme to enforce fine-grained access control
into GCS. Since GCS is used on general-purpose platforms
with different security requirements, a flexible and scalable
access control service is essential, especially for dynamic
group collaborations. An access control framework for GCS
is proposed in [12], but this work fails to provide real
implementation architecture and mechanism. In addition, there
are some existing work providing access control for grid
computing [14], [1], [10]. Authorization decisions in these
approaches are based on static subject attributes such as
group (or organization) memberships, and can not make access
decisions for dynamic group collaborations.

Role-based access control (RBAC) and its variants have
been proposed and deployed in many systems, which have
been proven to be able to simplify security administrations
and provide efficient policy management [6], [8], [18]. The
essential concept of RBAC is to define roles each of which

978-1-4244-2703-1/08/$25.00 ©2008 IEEE

is a collection of permissions that can be invoked to access
protected resources. A user can be assigned to a set of roles
such that obtain the permissions of the roles. One of the main
motivations of using RBAC is that it can simplify security ad-
ministration in large-scale organization environment. However,
traditional RBAC model focuses on single and closed security
domain, where a user’s roles are pre-defined [17], [13] based
on her unique identity. Thus they cannot be directly used in
GCS environments.

In Internet-based GCS systems, individual groups have their
own users and corresponding permissions. For a collaboration,
users from various groups perform different tasks in the
collaborative job. For security purposes, sensitive operations
within a group have to be controlled, e.g., based on a user’s
duty in the group. The challenges of this problem lie on
the features of group-based computing environments, such as
dynamic user activities, temporal permissions for a user and
temporary and ad-hoc collaborative tasks.

Towards these challenges, we propose a group-based RBAC
(GB-RBAC) model to develop a scalable, flexible, and effi-
cient authorization scheme in dynamic and collaborative GCS
environments. Our model not only provides access control
for distributed applications and decentralized management,
but also introduces automatic policy generation to handle
dynamic group collaborations through the concept of virtual
group (VG). Specifically, a VG is created whenever a collab-
oration is needed between existing groups and its users are
automatically exported from cooperative groups through an
algorithm. Within it, a group administrator defines roles based
on permissions, which are the interfaces to perform sensitive
operations in the VG and assigns users to the roles locally.
We have implemented a prototype system based on Spread,
which provides application-level multicast, group communica-
tion, and peer-to-peer message services [4]. The performance
evaluation results show that our proposed scheme are efficient
and scalable.

The paper is organized as follows. Some related work are
presented in the next section. Section III introduces GB-
RBAC model and the concept of Virtual Group. Decentralized
authorization schema in GCS are illustrated in Section IV. We
describe our implemented system with proposed scheme in
Section V. Section VI present the conclusion of this paper.

II. RELATED WORK

There have been many research work on cryptographic
key management and protocols for secure group communica-

380

tion [2], [9], [15], [19]. The key problem is the confidentiality
of data with dynamic user leaving and joining in a group.
However, there are much less efforts on access control and
authorization management in GCS. Antigone [11] is a general
security mechanism for GCS with which various access control
policies can be implemented, such as session management
and user membership. Amir et al [3] discuss the separation
of authentication and access control in Spread. The access
control module in Spread can enforce traditional identity-
based, role-based, and credentials-based policies. However,
it does not support dynamic access control policies such as
ad-hoc collaborations. Rotaru et al propose a access control
framework for GCS [12]. In this work, group administrators
can add or modify assignments to meet the application and
local administration requirements without global administra-
tors’ involvement. It is a flexible administration mechanism
for dynamic user-role assignment. However, they fail to pro-
vide practical access control architecture and implementation
mechanism in GCS. Also, they do not consider security in ad-
hoc collaborations between different groups, which is one of
the main motivations by using GCS.

III. GROUP-BASED RBAC MODEL FOR SECURE
COLLABORATIONS

A. GB-RBAC Model

GB-RBAC incorporates the component of groups into tradi-
tional RBAC model. As RBAC96 model [18] and its adminis-
trative models have been extensively studied in literature, we
build our model based on it. Figure 1 shows the components of
GB-RBAC. The concepts of users (U), roles (R), role hierarchy
(RH), permissions (P), permission-role assignment (PA), and
sessions (S) are identical to those in RBAC96. Particularly,
a role is assigned with a set of permissions and a user is
assigned to a set of roles, both by security officers or system
administrators. In a particular access session, a user activates a
subset of assigned roles and obtains the permissions assigned
to these roles. Roles can form a partial order hierarchy such
that a senior (or higher level) role inherits the permissions of
its junior (or lower level) roles. By configuring permission-
role and user-role assignments, many security objectives can
be achieved efficiently, such as least of privilege and separation
of duty. Constraints can be defined for sessions, role hierarchy,
and user-role and permission-role assignments for fine-grain
authorization controls, such as, a user cannot activate two
conflict roles in a single session for dynamic separation of
duty purpose.

Besides these, GB-RBAC includes a set of groups (G). Each
group is associated with a set of roles (role-group mapping or
RGM) and permissions (permission-group mapping or PGM).
A user can be the memberships of one or more groups,
which is represented as the user-group mapping (UGM). In
addition, we propose two layers of roles and permissions,
which are referred as system-level roles (SR) and permissions
(SP), and group-level roles (GR) and permissions (GP), re-
spectively. Typically, in a GB-RBAC system, a system-level
role associates global permissions which manage system-level

resources, while a group-level role associate permissions in a
small scope, for example, a particular application with specific
resources, or a temporal collaborative task between some
users.

GR: group-level roles
SR: system-level roles

GP: group-level permissions

SP system-level permissions

UGM: user-group mapping

RGM: role-group mapping

PGM: permission-group mapping

§ GUA: group-level user-role assignment
system-level user-role assingment

GPA: grup-level pmerission-role assignment
SPA: system-level permissi ole

RH: role hierarchy

SESSIONS

Fig. 1. GB-RBAC model

Besides the user-role assignment in system scope which
is similar to the wuser-role assignment of ARBAC97
(URA97) [16], there is another type of user-role assignment
which happens in group scope. Specifically, as UGM asso-
ciates users with groups and RGM associates roles to groups,
a group administrator can assign a user in the UGM to a role
in the RGM, which is called group-level user-role assignment
(GUA), while the original one is called system-level user-
role assignment (SUA). In another word, GUA serves as the
mechanism through which a role can be assigned to a user
because the user belongs to a group and the role is defined
within the group, and then the user holds the local permissions
to access resources assigned with the role.

As a summary, a typical GB-RBAC model can be specified
with the following components:

e U, SP, GP, SR, GR, S, and G (users, system-level
permissions, group-level permissions, system-level roles,
group-level roles, sessions, and groups, respectively).

e P=SPUGP,and SPNGP =g¢.

e R=SRUGR, and SRNGR = ¢.

e UGM : U — 2€, a function mapping a user to a set of
groups. This relation shows that a user can be mapped
into many different groups.

e« PGM : GP — (@, a function mapping a group-level
permission to a group. This relation shows that a group-
level permission is identifyied within the context of a
single group.

e RGM : GR — G , a function mapping a group-level
role to a group. This relation shows that a group-level
role is defined within the context of a single group.

381

e SUA C U x SR, system-level user-role assignment.

o« GUA C U x GR, group-level user-role assignment, and
(u,7) € GUA only if 3g € G,g € UGM(u) A g =
RGM(r).

e« UA = SUA U GUA, the overall user-role assignment
relation.

e SPA C P x SR, system-level permission-role assign-
ment.

e« GPA C GP x GR, group-level permission-role as-
signment, and (p,r) € GPA only if 3g € G,g =
PGM(p) A g = RGM(r).

o PA=SPAUGPA, the overall permission-role assign-
ment relation.

e« RH C R x R, a partial order on R called the role
hierarchy or role dominance relation. For any two roles
r1 and 7o, 71 > 79 means that r; has partial relation over
To.

o user : S — U, a function mapping each session s to a
single user. user(s) is constant within s.

« permissions : R — 2P, a function mapping a role to
a set of assigned permissions, and permissions(r) =
{p|Vr' < r,(p,r") € PA}.

e roles : S — 2R, a function mapping a session to a set
of roles, and roles(s) C {r|(Ir" > r)[(user(s),r’") €
UA]}, which may change within session s, and session
s has the permissions U, ¢ oies(5) {PI(3r" < 7)[(p,7") €
PAJ}

Two levels of policy administrations exist in GB-RBAC.
Particularly, there are system and group security administra-
tors, which controls the SUA/SPA and GUA/GPA, respec-
tively. Typically, system administrators can specify the set of
users and permissions that a group administrator can manage,
i.e., through the relations of UGM and PGM, respectively.
Role-group mapping (RGM) can be defined by system admin-
istrators or group administrators, depending on applications.
Through these, GB-RBAC achieves the separation of admin-
istrative privileges in different levels, as the dash line indicates
in Figure 1.

In general, a user can be assigned to both group-level roles
and system-level roles by different levels of administrators,
although in a real system she may only be assigned to one
level of roles. The set of assigned roles of a user includes
those in SUA that are assigned by system administrators, and
those in GUA that are assigned by group administrators. The
user obtains all the permissions assigned to these roles through
SPA and GPA, respectively. In GB-RBAC, a user can be
assigned to a group-level role by local (group) administrators
if the user belongs to the group, according to group-level
authorization policies. In another word, GUA and GPA serve
as the mechanism through which a role can be assigned to
a user because the user belongs to a group and the role is
defined based on the permissions within the group, and then
the user holds the permissions to access resources defined with
the group-level role.

Comparing with traditional RBAC models, GB-RBAC has
the following unique benefits, simplified centralized user-

role assignment for system administrators, flexible adminis-
tration for dynamic environment, fine-grained user-role and
permission-role assignment , and tunable group-level admin-
istration. With these advantages, we show how we apply GB-
RBAC to build authorization scheme in GCS. Before this we
introduce the concept of virtual group.

B. Virtual Group

Since collaborations frequently happen between groups in
GCS, static access control policies can not control operations
in collaborative jobs. In addition, as most group collaborations
are dynamically performed by groups administrators in ad-
hoc manner, it is impossible to predefine polices for all
collaborative tasks. A desired security requirement in GCS
is that each group has autonomy to control its own resources
and permissions, thus global system administrators need not
be involved. For this purpose, we introduce a special group —
virtual group (VG) in GB-RBAC.

A VG has the similar features as common groups except
that it is dynamically created corresponding to a collaborative
task. Typically, a collaboration is initialized by a user of an
existing group who has the corresponding permission, e.g.,
a group administrator, as this is a sensitive operation of the
group. According to this, a VG is created with unique identity,
and the initializing user can be the administrator of the VG,
or a user is assigned by this administrator !.

Based on collaborative tasks and security requirements, a set
of permissions and roles can be defined by the VG’s admin-
istrator. Specifically, the shared resources of the collaboration
are regarded as objects, and permissions are defined based on
different actions on these shared resources. Different collab-
orative applications have different types of shared resources.
For example, in a video conferences among attendees from
various groups, communication channels to all participants
and between individuals are the shared resources. Permissions
are operations to these resources, €.g., joining the conference,
broadcast talk, private talk, controlling an attendee’s talking
time, uploading document for displaying, etc. Roles like host,
reporter, and different level of speakers can be defined and
assigned with appropriate permissions. In many other collab-
orations, shared resources can be contributed by individual
groups, such as those in Grid computing environment [7]. In
these cases, the permissions of a VG are defined by its resource
providers.

One a VG is created, users from the initializing group and
other collaborative groups can join this VG. Hereafter we call
these collaborative groups source groups. The administrator
of the VG assigns different roles to these users, according to
their duty and tasks in the collaboration.

C. Automatic Policy Generation for Virtual Group
Security policies in a VG control the operations of groups
members from source groups. As we use role-based access

'In general, more then one administrator of a group can be assigned, each
with different administrative permissions. For simplicity, here we assume the
uniform permission of all administrators of a group.

382

control model, the key issue is to assign users to appropriate
roles. For ad-hoc collaborations among groups, it is tedious to
have global system administrators to manage these. Further,
administrators of a collaborative job has more context of
dynamic user behavior. Thus it is very desirable that user-role
assignment should be handled by local administrator within
a group, and the procedure should be automatic or semi-
automatic such that a user is assigned to roles once she joins
the group or access group resources.

We provide an automatic policy generation mechanism to
export users from source groups into a VG and assign roles.
Similar mechanisms can be defined for permissions of a
VG. However, as the way of sharing resources in a VG is
application-specific, we focus on the user-role assignments.
The automatic mechanism is triggered by group administrators
when a collaboration is required and a VG is created.

As collaborations are built among existing groups, a user’s
job in a VG can be determined by her roles in source groups.
We use the concept of prerequisite conditions to specify con-
straints that a user can or cannot be assigned to a role in a VG,
based on her existing roles. A prerequisite condition is a logic
rule that has to be followed when assigning users to roles by
group administrators, which consists of predicates built on the
relations of a GB-RBAC model. For example, a user prerequi-
site condition can test a user’s memberships/nonmemberships
of roles and groups, which is very useful in assigning users to
roles in a VG by administrators. For an instance, for separation
of duty (SoD) reason, the following rule indicates that for any
user z, it can be assigned to role host only if there is no other
user y which is from the same group of x and assigned to role
host or invited_speaker.

(z,host) € UA — By, UGM(z) UUGM(y) # 0 A
((y, host) e UAV (y, invited_speaker) € U A),

where z and y are two user variables. With this rule, any two
users from the same group cannot be assigned to the host and
invited_speaker of a single VG. Note that here we use global
role namespace, which can be augmented with group-identified
namespaces. Other conditions can be defined similarly. For
example, for least privilege purpose, a user cannot be assigned
to roles out of her job duty. Also, cardinality constraints can
be defined, such as a user cannot be assigned to more than
one group during collaborations, or a role cannot be assigned
to more than one user.

When all conditions have specified for a VG, the RBAC
policy (group-level user-role assignment) can be dynamically
generated upon user access requests. Specifically, when a user
explicitly wants to join a group or access shared resources of
a group, roles of the VG are assigned to the user based on
her job in the VG. Conditions are checked before the roles
are assigned, e.g., according to her roles in source groups, to
determine whether the assignment can be allowed or not. We
explain more details of this in next section with the context
of collaboration in Spread.

-

Service

Application
L« _~' collaboration

process

() swso

A.B Group names

Fig. 2. Spread Architecture

IV. SECURE GCS WITH SPREAD
A. Spread Architecture

Spread is a general-purpose GCS for wide and local area
networks [5]. It provides reliable and ordered delivery of mes-
sages as well as a membership service. The system consists
of a server and a client library linked with the application.
This architecture amortizes the cost of expensive distributed
protocols, since such protocols are executed only by a small
number of servers. This way, all operations (including join
and leave events) of a client process translates into single
messages. Spread can be configured to use a single daemon
in network or to use one daemon in every computer running
group communication applications. Figure 2 presents a case
where each computer executes one Spread daemon, by which
all physical communications are handled. Specifically, Spread
daemons keep track of computers” memberships. Each daemon
keeps track of processes residing on its machine and partic-
ipating in group communication. This information is shared
between daemons to create the lightweight process group
membership.

B. Access Control in Spread

Spread offers a many-to-many communication paradigm
where any group member can be both a sender and a receiver.
Although designed to support communication among many
groups, it can accommodate a large number of collaborative
sessions. Spread scales well with the number of groups used
by the application without imposing any overhead on network
routers. As we described above, in a Spread session, Spread
servers have different types of protected resources (users and
communication channels). Typically, there are five types of
actions to the resources: join, a user joins a Spread session;
send, a user in a group sends broadcast messages to all the
members of the group; p2psend, a user in a group sends p2p
messages to a special member in the group; leave, a user leaves
a session she is involved; and manage, a user in a group who
obtains the management rights manages all the sessions of the

383

group 2. In this way, we need to determine that a user in a
group can perform which type of operations on which object.

For secure Spread, dynamic policy generation is also needed
for secure group collaboration, since many different groups
in Spread may join a third group for a new communication
session. In this scenario, group administrators should have
permissions to trigger dynamic policy generation to support
ad-hoc collaboration based on the policies of involved groups.
Our extended GB-RBAC model provides dynamic policy
generation to support secure ad-hoc collaboration in Spread.

Permission check is enforced before an operation is exe-
cuted. After the authorization, all the permission information
are kept in the session. Every group has a set of policies to
control communications among different group members in
GCS from general groups and VGs. The goal of these policies
is to reserve the final control of groups while provide manage-
ment flexibility. In ad-hoc collaborations with GCS, there is
no pre-established security policy such that user access control
should be performed by individual groups. VGs are introduced
to handle this situation, and group communication without
collaboration is a special case of group communication in
GCS. The following interactions show authorization workflow
for a collaboration.

1) Before communicating with other groups, a VG G, is
created by the initializing group (say G;) administrator
if G builds collaboration with other groups (e.g., Gy
and G,). The administrator automatically becomes the
administrator of G,. The group administrators of Gy
and G, can be be G,’s administrators with negotiation
between G.

2) Based on operations in group G, by Spread, a set of
roles R, are defined by the administrator of G,. That
is, (Gy,r) € RGM only if r € R,.

3) Based on VG-level security requirements, G, admin-
istrators assign roles to a user whenever she joins.
This group-level user-role assignment can be performed
before or upon access requests. For example, when joins
G, a user is assigned with roles after authenticated.

4) For each assignment step (say a user from G.), if there
is a condition where G, and any role in G, or G, is
involved, then the condition is checked if the assignment
can be allowed.

5) Once roles are assigned to users, the permissions of
a user can be determined by G, authorization service
when access requests are generated from the user to
perform operations in Spread.

On a high level view, in ad-hoc collaborations, each group
has its own security administrators such that local users
are authorized to perform operations in Spread. Note that
administrator in groups can be implemented as authorization
service such that the VG creation and user-role assignments
can be automatically generated. We apply this approach in our
prototype system.

2Qriginal Spread package [5] does not provide this function, we extend it
for management purpose in group collaborations.

V. PROTOTYPE IMPLEMENTATION AND EXPERIMENTAL
STUDY

To show the feasibility and performance of our framework,
we implement a secure Spread prototype system, which en-
ables different group of members to start secure collaborative
communications.

A. Prototype Overview

The Spread service in our prototype provides a platform
for different groups to communicate collaboratively. The core
building block of the service is the group communication
system Spread [4]. The policy service is build based on Sun’s
XACML [20].

The prototype comprises three applications, one running on
each machine, implemented as authorization server, Spread
server and client platform respectively. The Spread server is
built on a Linux-2.6.12 machine which has Pentium 4 1.7
GHz CPU and 640MB memory, and uses Spread 3.0. The
authorization server is in Java 1.4.2 and working in Windows
XP machine which has Pentium M 1.7 GHz and 512MB mem-
ory. The user platform used in the prototype system is built
on a Fedora-2.6.9 machine which has Centrino 1.3GHz CPU
and 512MB memory, which simulates to generate concurrent
access requests.

B. Performance Evaluation

As an access control decision is dynamically determined
based on the requesting subject, the target object, the required
action, and the group that the subject belongs to, the per-
formance of the system should be considered. Because the
overhead of the system is introduced in user authorization,
time variation for all type of operations in Spread are same.
We only discuss the performance data of join event in the
following three cases: no access control, access control without
group collaboration event, and access control with group
collaboration event.

The performance results of join events in user platform are
presented in Figure 3(a) and 3(b) with concurrent 10 join
events and 40 join events, respectively. The figures show that
the time in different types of join events (with collaboration,
without collaboration and without access control (AC)) is
increasing with more concurrent join events. However, the
time increase (actually the “saw-like” behavior) in different
join events shown in Figure 3 is not caused by access control
enforced in the concurrent join events, but by TGDH-based
session key negotiation during join events [2]. The similar
results are also seen when no AC is enforced (illustrated
in Figure 4. The largest process time of join events with
collaboration is about 620 msec and the largest process time
of join events without collaboration is about 380 msec. As
the policy process time is very small (less than 100 usec) and
permission query in Spread server is stable (about 10 msec),
thus the main overhead is introduced by the socket connections
among three different platforms. Since AC is only checked
once during a type of continuous operations, we believe that
the authorization performance is acceptable for GCS.

384

Performance Data in Client with 10 Group Members

300 T T T T T T T T
250 |
200 |
I
E
T 150 |
E
=
100
with Collaboration ———
without Collaboration —3—
50 | without AC —¥—
0 %*- 3k) "y e ™y

* >
1 2 3 4 5 6 7 8 9 10
Group Member(#nunber)

(a) Performance in client with 10 join events

Performance Data in Client with 40 Group members
700 T T T T —T

T T
with Collaboration —4—
600 | without Collaboration ~¢— |
without AC —¥—
500
T 400
i 300
200
100

0 5 10 15 20 25 30 35 40
Group Member(#number)

(b) Performance in client with 40 join events

Fig. 3. Performance Results with concurrent join events

Performance Data in Client without AC

6000 T T T T

without AC ——

Time (us)

0 L s L s s s s
0 5 10 15 20 25 30 35 40
Group Member(#number)

Fig. 4. Performance result in client without AC

VI. CONCLUSION

This paper presents an authorization architecture for se-
cure group communication system. In particular, we propose
a collaborative GB-RBAC model for GCS toward efficient
authorization. Our model supports fine-grained and scalable
access control for collaborations in GCS with easy policy
management. Virtual group (VG) in our model enables the
mechanism of on-demand policy generation and is the base
for collaborative group communication. In addition, we show
how our model could be integrated into Spread architecture
and present experimental results that offer insights into its
scalability and practicality.

ACKNOWLEDGMENT

We would like to thank Seth Proctor and Anne Anderson
from Sun Microsystems for their valuable suggestions to im-
prove the prototype of the authorization server. Especially, we
are grateful to Prof. Yair Amir from Johns Hopkins University
for his helpful discussion about the Spread performance. This
work is supported by the Natural Science Foundation of China
(No. 90604024), the Key Project of Chinese Ministry of
Education (No. 106012), NCET and HI-Tech Research and
Development Program of China (863) (2007AA01Z2A2).

(1

[2]

B3]

(4]

[51

(6]

[7

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]
[19]
[20]

REFERENCES

R. Alfieri, R. Cecchinib, V. Ciaschinic, L. dell’Agnellod, A. Frohnere,
K. Lorenteyf, and F. Spatarog. From gridmap-file to voms: Managing
authorization in a grid environment. Future Generation Computer
Systems 21, 2005.

Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik. On the performance
of group key agreement protocols. ACM Transactions on Information
Systems Security, 7(3):257-488, August 2004.

Y. Amir, C. Nita-Rotaru, and J. Stanton. Framework for authentication
and access control of client-server group communication systems. In
Proceedings of the Third International Workshop on Networked Group
Communication, 2001.

Y. Amir, C. Nita-Rotaru, J. Stanton, and G. Tsudik. Secure spread:
An integrated architecture for secure group communication. I[EEE
Transactions on Dependable and Secure Computing, 2(3):248-261, July
2005.

Y. Amir and J. Stanton. The spread wide area group communication sys-
tem. Tech. Rep. 98-4, Johns Hopkins University, Center of Networking
and Distributed Systems, 1998.

D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. Richard Kuhn, and R. Chan-
dramouli. Proposed NIST standard for role-based access control. ACM
Transactions on Information and System Security, 4(3), 2001.

I. Foster and C. Kesselman. Globus: A metacomputing infrastruc-
ture toolkit. International Journal of Supercomputer Applications,
11(2):115-128, 1997.

J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal
role-based access control model. [EEE Trans. Knowl. Data Eng.,
17(1):4-23, 2005.

Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant key
agreement for dynamic collaborative groups. In 4CM Conference on
Computer and Communications Security, pages 235-244, 2000.

M. Lorch, D. B. Adams, D. Kafura, M. S. R. Koneni, A. Rathi, and
S. Shah. The prima system for privildge management, authorization
and enforcement in grid environments. In Proceedings of the 4th
International Workshop on Grid Computing, 2003.

P. McDaniel, A. Prakash, and P. Honeyman. In Proceedings of the 8th
USENIX Security Symposium, 1999.

C. Nita-Rotaru and N. Li. A framework for role-based access control
in group communication systems. In Proceedings of International
Workshop on Security and Parallel and Distributed Systems, 2004.

S. Oh, R. Sandhu, and X. Zhang. An effective role administration model
using organization structure. ACM Transactions on Information and
System Security, 9(2):113-137, May 2006.

L. Pearlman, V. Welch, I. Foster, and K. Kesselman. A community
authorization service for group collaboration. In Proceedings of IEEE
Workshop on Policies for Distributed Systems and Networks, 2002.

S. Rafaeli and D. Hutchison. A survey of key management for secure
group communication. ACM Computing Survey, 35(3):309-329, 2003.
R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model
for role-based administration of role. ACM Transactions on Information
and Systems Security, 2(1):105-135, February 1999.

R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for
role-based administration of roles. ACM Transactions on Information
and Systems Security, 2, 1999.

R. Sandhu, E. Coyne, H. Reinstein, , and C.Youman. Role-based access
control model. JEEE Computer, 29(2):38-47, February 1996.

Y. Sun and K. J. Ray Liu. Scalable hierarchical access control in secure
group communications. In INFOCOM, 2004.

Sun’s XACML. http://sunxacml.sourceforge.net/.

385

