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Abstract: Applications based on knowledge engineering require
operations on semantic data. Modern systems have to deal with
large data volumes and the challenge is to process and search these
data effectively. One of the aspects of efficiency is the ability to
query those data with respect to their semantics. In this area an
RDF data model and a SPARQL query language gained the highest
popularity and are de facto standards. The problem is that most
data in modern systems are stored in relational databases and have
no formal and precisely expressed semantics, although operations on
those data are fast and scalable. Traditionally, in this area relational
data are transformed to a form expected by reasoning and querying
systems (usually RDF based). In this work a method of query rewrit-
ing is presented that translates a query to an RDF data structure
(i.e. SPARQL query) to a SQL query executed by RDBMS. Trans-
forming queries instead of data has many advantages and might lead
to significant increase of data extraction efficiency.

Keywords: semantic data, graph query, RDF, relational data-
base, query rewriting.

1. Introduction

Dealing with data structures occurs on two levels: firstly, on the level of a
data model (schema) and secondly, on the possible database states with a da-
tabase schema. Queries take into account a data schema and give answers
based on states (instantiated models) (Ramakrishnan and Gehrke, 2002). A
major problem of knowledge engineering (where applications based on knowl-
edge databases require operations on semantic data) is that currently preva-
lent relational databases lack explicit semantics. Querying such data requires
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knowledge about their structure and meaning, which is not easy to express with
existing relational database tools. The lack of standards in this area makes it
also difficult to share the knowledge about schema semantics with interested
parties. There appears a serious problem when data from different sources have
to be integrated within one application. Similarly named relational tables and
columns can possibly contain different data, for example a column ’date’ in
a table ’products’ can contain production date or expiration date. It is clear
that table and column names are not sufficient for expressing the data seman-
tics. Another drawback of the relational representation is that SQL queries are
hard to formulate compared to SPARQL queries. As we show in Section 2, it
is possible to construct an SQL query to relational data equivalent to a given
SPARQL query to data in an RDF format. The later is easier to understand
and analyze. Switching from the relational to the semantic data model and
queries can bring many advantages. First, in this area RDF and ontologies can
become a lingua franca of the data representation. The key concept here is sim-
ilar to the federated databases concept (Heimbigner and McLeod, 1985), where
multiple heterogenous databases are integrated with the use of a special, medi-
ated schema. Here we map existing relational schemas from different databases
to classes and terms constituting a common and shared domain ontology (an
equivalent of the mediated schema). This would guarantee compatibility on the
data representation level (RDF instead of many relational schemas) and the se-
mantic level (common terminology to express data meaning). Querying of such
unified data would be much easier. Another benefit of using a semantically-
oriented data model, such as RDF, is the ability to reason about queries and
get more complete answers. Reasoning systems can exploit domain knowledge,
contained in an ontology in the form of a concept (classes and relations) hierar-
chy. For example, knowing that motorcycles and cars are vehicles, one can ask
a query about vehicles and get answers containing motorcycles and cars also.
This ability is very powerful and enabling an RDF access to relational data is
one step towards Semantic Web and a potential revolution in the domain of
search engines. Another related issue is the storage of native RDF data, for
which relational databases and specialized schemas can also be used. Hence, on
the one hand it is desired to be able to process relational data as the RDF data,
and on the other hand the RDF data, for the sake of efficiency, has to be stored
in relational databases. This is because storage of the RDF data in a native
form similarly to XML data faces problems with efficient indexing.

The main advantage of the relational representation is the efficiency of query-
ing. This is in opposition to semantic data structures (Gomez-Perez, Corcho
and Fernandez-Lopez, 2004), which usually are represented in the RDF format
(Klyne and Carroll, 2004). Use of RDF based representations results in a lower
query efficiency. To circumvent this problem Chong et al. (2005) implemented
an extension to a RDBMS, based on a table function infrastructure, which al-
lows for rewriting table functions with an SQL query. This extension introduces
an RDF_MATCH table function, and processing of a query does not require
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any additional language run-time system other than the SQL engine. However,
their method still requires data in the RDF form.

Melton (2006) criticized using RDF and SPARQL as a query language to
RDF structured data, claiming that efficiency of such a procedure is low, and
the same effect can be achieved using SQL. Assuming required data availability
in both data models, it is possible to propose an SQL query that is semantically
equivalent to an SPARQL query (or more general - a graph based query). How-
ever, there are situations when SQL queries are much more awkward, harder to
construct and less legible. So, it is tempting to keep asking queries based on
graphs and get all the benefits of RDF representation, but answer these queries
using the SQL engine. This approach does not require a permanent data trans-
formation from the relational form into the RDF form and can be very efficient
and scalable. Moreover, it is easy to implement this approach to work with ex-
isting systems, as no legacy system changes are needed. These advantages have
been noticed and there is an increased activity in the area of incorporating rela-
tional data into the RDF-based reasoning systems. During the W3C workshop
(W3C, 2007) on an RDF access to relational databases, a number of proposals
and systems have been presented that serve this purpose. For example, the
Virtuoso system (Erling and Mikhailov, 2007) uses database views and some
rewriting algorithms to represent and query relational data in the RDF form,
and the D2RQ (Bizer et al., 2006) is an application that transforms relational
data to RDF data on demand and transparently to a client application. Re-
cently, we presented a method that transforms a query to an RDF data structure
(i.e. SPARQL, Prud’hommeaux and Seaborne, 2007) to an SQL query executed
by an RDBMS (Falkowski and Jędrzejek, 2007). In this work that method is ex-
tended to handle one-to-many and many-to-many relationships. It will be also
demonstrated that our method of enabling an RDF access to the relational data
that relies on a query rewriting has some advantages over other approaches, as
discussed in Section 2.

The paper is organized as follows. Section 2 discusses the need of expressing
data semantics and reviews relevant data structures, mainly RDF. It is also
shown in Section 2 how relational data can be transformed into RDF data.
Section 3 discusses a graph matching problem. In Section 4 we present the
architecture of a reasoning system that uses SQL queries to extract semantic
data from relational databases. In Section 5 an algorithm of transforming a
graph query to an SQL query, based on a mapping between predicate labels
and relational table columns, is shown. Section 6 gives conclusions and future
work prospects.

2. Semantic data structures

In the world of today, with many connected computer systems that share in-
formation, the problem of common data understanding is crucial. Applications
often operate on data from many different sources and have to deal with differ-
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ent naming conventions, different languages, metrics and others factors. Lack
of precise data meaning can lead to serious problems, but data structures and
models that are currently most popular (that is, the relational data model and
databases for machine processable data, and HTML for human readable data)
do not provide facilities to express data semantics. In the Semantic Web project
a new data model was developed, which together with domain conceptualiza-
tions (called ontologies) allows to express data and its semantics in an easy,
shareable and reusable way. This data model, called RDF (Resource Descrip-
tion Framework) is at the time the most common method of expressing data
semantics (Klyne and Carroll, 2004). The base element of the RDF model is
a triple: a resource (the subject) is linked to another resource or literal (the
object) through an arc labeled with a third resource (the predicate). The mean-
ing of such a triple is that <subject> has a property <predicate> valued by
<object>. For example, the triple in Fig. 1 could be read as “John Black Has
Telephone No. 1234567898”.

Figure 1. An example of the RDF triple

According to the RDF standard (Klyne and Carroll, 2004), subject and pred-
icate labels have to be URI identifiers, and object can be a URI or a literal value.
However, in this paper, for the sake of brevity, we name all RDF labels with
short terms not in a URI form. The RDF alone is just a data model, and its
ability to express semantics lies in that URI labels can be concepts (classes or
properties) from a common ontology. In this context ontologies can be regarded
as dictionaries, and have the necessary features that allow them to precisely
define any relation or class and to describe them in different languages, and it
is always possible and easy (because of URI naming) to check what a particular
RDF triple means. Based on the RDF a few languages were developed, allow-
ing for building ontologies. First was the RDF Schema (RDFS) (Brickley and
Guha, 2004), which introduced classes and some properties, such as: rdfs:Class,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:range, rdfs:domain, and others. It al-
lows for building a simple concept hierarchy. OWL (Patel-Schneider, Hayes and
Horrocks, 2004) is built on RDF and RDF Schema and adds more properties
and expressive power; in particular, relations between classes (e.g. disjointness),
some applications of cardinality (e.g. “exactly one”), the equality, a richer typ-
ing of properties, characteristics of properties (e.g. symmetry), and enumerated
classes. OWL has three increasingly-expressive sublanguages: OWL Lite, OWL
DL, and OWL Full (however, OWL Full is not decidable). OWL DL is a subset
of OWL Full that can assure existence of a decidable reasoning procedure. The
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RDF data model is simple but powerful and it can be used to express any kind
of information. It is also possible to transform data between the relational data
model and the RDF data model. To do such a transformation it is necessary to
know the source (relational) data semantics. In the simplest case a relational
table represents an entity set and each row represents an instantiation of entity
properties (values of table columns). Table name can be viewed as an entity
class name and based on that and the table primary key value, an RDF identi-
fier (URI) can be built. Names of columns are predicates and values of columns
in a tuple are objects. An example is represented in Table 1.

Table 1. Table Person

Person
ID First name Last name IdCardNo Born Place of living
1 Matthew Black 81070102357 01.07.1981 Warsaw

The entity Person can be represented in the form shown in Fig. 2.

Figure 2. Entity Person in RDF representation

In this example we assume that ID is the primary key of a table. In such
a case every row of the table contains information about an entity named Per-
son_?x, where ?x is the row ID value. Relations between entities (tables) are
expressed in the relational data model by a foreign key constraint. The value
of a foreign key constrained column is not a literal value (such as a name or
a date of birth), but another entity, identified by its unique ID (for example,
father’s ID). In the relational case this foreign ID (a foreign key) points to the
target table and its primary key. In the RDF case, upon knowing the name of
the target table and the value of its primary key, RDF identifier can be built,
as mentioned earlier. Table 2 and Fig. 3 contain an example of such a relational
schema and the corresponding RDF data.
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Table 2. Table Person and table Doctor

Person
ID First name ... DoctorID
1 Matthew ... 1

Doctor
ID First name Last name ...
1 Steven Cure ...

Figure 3. Entities Person, Doctor and their relation in RDF representation

Using a foreign key in the way described above can be helpful in expressing
one-to-one or one-to-many relationships. Modeling many-to-many relationships
between tables requires a separate table, consisting of foreign keys of relationship
entities (e.g. patient’s ID, doctor’s ID and diagnosis ID) and optional relation-
ship properties (e.g. date). In the simplest case, when the relationships table
consists of two foreign key columns only (Table Visit in Table 3), it can be
modeled as a single RDF property, named after that table name. If there exist
more than two such columns (Table VisitWithDate in Table 3), for example an
additional relationship attribute (such as date) column, it is necessary to define
a separate entity. This is because all RDF statements are binary and it is not
possible to express relationship attributes directly. Examples of such cases are
shown in Figs. 4, 5 and Table 3.

Table 3. Table Visit and table VisitWithDate

Visit
PatientID DoctorID

1 1
1 2
2 1

VisitWithDate
PatientID DoctorID Date

1 1 01.01.2007
1 2 01.02.2007
2 1 01.03.2007

In the remaining figures in this section relations marked with solid lines come
from Visit (and VisitWithDate) tables directly, and relations marked with dot-
ted lines come from tables associated with them through foreign key constraint
and presented earlier (table Person and table Doctor).
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Figure 4. Entities of the Visit table in RDF representation

Figure 5. Entities of the VisitWithDate table in RDF representation

RDF representations of similar relational tables differ. Two-column table
Visit, containing foreign keys only, can be modeled as a single RDF property
(’visited’) between entities referenced by foreign keys, as shown in Fig. 4. For the
sake of clarity we omitted the second possible property, the reverse to ’visited’,
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from the Doctor entity to the Patient entity. Modeling a table as a property
is not possible for the second table, VisitWithDate. That table contains an
additional parameter, namely Date, and because of that has to be modeled as
a separate entity, named Visit (Fig. 5).

3. Basic RDF graph definitions

Our formalism is similar to the one used in Flesca, Furfaro and Greco (2006)
but specialized to RDF graphs.

3.1. Data graph, query graph, graph matching and a graph deriva-

tion

Let Γ be a set of all possible labels, ΓURI a set of labels which are URI, ΓL a
set of labels which are literals, ΓV a set of labels, which denote variables, ΓU a
set of labels, which do not include literals, and ΓN = ΓU ∪ ΓL a set of labels
which include literals.

A basic element of a graph, a triple, can be defined as:

t = (s, p, o)|s, p ∈ ΓU , o ∈ ΓN . (1)

The RDF triple consists of three elements: a subject (s), a predicate (p)
and an object (o), of which the first two (s, p) cannot be labeled with literals.
Elements s and o are vertices of the graph, and p is an arc between them. The
components of a triple t will be denoted by S(t), P (t) and O(t) respectively
for a subject, a predicate and an object of the triple. Note that in the RDF
model it is not allowed to have graphs with nodes not connected to any other
node, and that a basic element of the graph is a triple; neither nodes themselves
nor arcs. A graph G can be then defined as a set of triples t, G = {t}. In the
following, for a graph X notation X = tX is used, where tX denotes a set of
triples of the graph X .

Graphs differ according to allowed label sets used to constitute graph triples.
A graph made of triples where ΓU = ΓURI (and thus ΓN = ΓURI ∪ΓL) is called
a data graph, and a graph made of triples where ΓU = ΓURI ∪ ΓV (and thus
ΓN = ΓURI ∪ΓV ∪ΓL) is called a query graph. Data graphs consist of triples in
which all nodes and arcs are URI or literals, and query graphs allow also using
variables. In the following, variables are denoted by strings preceded by a ’?’.

3.2. Answering graph queries

Answering a query, described by a query graph Q, over data described by a data
graph D is a process of identifying such sub-structures of D which matches the
pattern defined by Q. For this, we define a function which unifies a query graph
with a given data graph, and we define a new entity, called a mapping pair,
consisting of a query graph and a mapping (unifying) function, which associates
query graph variable nodes with data graph nodes.
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3.2.1. Definition 1 - label matching and mapping

Let γ, γ’ ∈ Γ be two labels, where Γ = ΓURI ∪ΓV ∪ΓL. Such two labels match,
if there exists a mapping function ζ : Γ → Γ, such that:

γ, γ′ /∈ ΓV ⇒ γ = γ′, ζ(γ) = γ, ζ(γ′) = γ′ or, (2)

γ ∈ ΓV ⇒ ζ(γ) = γ′ or, (3)

γ′ ∈ ΓV ⇒ ζ(γ′) = γ. (4)

Two labels match if they are not variables and are equal, (2), or at least
one of them is a variable, (3, 4). In the first case, a mapping function ζ maps
labels to themselves, and in the second case ζ maps a variable label to another
(constant or variable) label. Matching of two labels γ, γ′ by a function ζ will
be denoted in the following by:

label_match(ζ, γ, γ′). (5)

3.2.2. Definition 2 - triples matching

Let t, t′ be triples constituted over labels Γ = ΓURI ∪ ΓV ∪ ΓL. A triple t
matches the triple t′ if a mapping function ζ exists, such that:

label_match(ζ, S(t), S(t′)) (6)

label_match(ζ, P (t), P (t′)) (7)

label_match(ζ, O(t), O(t′)). (8)

Two triples match if there exists such a function ζ, which maps corresponding
labels of these triples - subject labels (6), predicate labels (7) and object labels
(8). If corresponding labels of the matching triples are constants (URI or literal),
then they must be equal for the match to be successful; and if at least one of
them is a variable, then mapping from that variable to another label must be
the same in the scope of the triple (for all occurrences of that variable in the
triple). Matching of two triples t, t′ by a function ζ will be denoted in the
following by:

triples_match(ζ, t, t′). (9)

3.2.3. Definition 3 - graph matching

Let Q = tq be a query graph, D = tq be a data graph. A mapping from Q to
D exists if a label mapping function ζ exists, such that for each triple tq ∈ tq a
matching triple td ∈ td exists that:

triples_match(ζ, tq, td). (10)
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A graph Q can be mapped to a graph D if there exists such a mapping
function ζ for which all triples in Q can be matched to triples in D (10). Note
that the same function ζ is used to match all triples in a query graph, thus the
same variable labels, which occur in different triples, are all mapped to the same
label.

A mapping pair MD over a graph D consists of a query graph Q a and
mapping function ζ, MD = (Q, ζ). If a mapping pair exists for a given data
graph and a query graph, then the answer for this query over that data exists.
It is possible that for a given query graph and a data graph multiple answers
exist. Every answer maps every element (triple) of a query to an element of the
data; constant elements of the query are mapped to exactly the same elements
in the data graph, and thus the most interesting part of mapping is the variable
mapping - every variable is mapped to a value, and that mappings can differ
between answers. On the basis of a mapping pair MD, it is easy to create an
answer graph QA - the graph of the same structure as the query graph Q, but
with variable labels replaced by a function ζ, in such a way that it forms a sub
graph of the data graph. An example of such a mapping and resulting graphs
is shown in Fig. 6.

Figure 6. An example of matching graphs.
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Here, query graphs (Q0 and Q1) are mapped to a data graph D, resulting in
answer (data) graphs QA

0
and QA

1
. Mapping functions ζ in above cases are:

ζ0 = {?x : X, ?y : Y, ?z : Z} (11)

ζ1 = {?x : X, ?y : Z, ?q : Q, ?z : W}. (12)

3.3. Definition 4 - query graphs transforming

A query graph can be transformed according to a given set of rules. A rule
r is an entity, which consists of a precondition (body) B and a postcondition
(head) H, r = (B, H). A precondition B is a query type graph, in which variable
labels are allowed. A postcondition H is a single triple, also with variable labels
allowed. H(r) denotes the head of a rule r, and B(r) denotes the body of a rule
r. A rule can be matched to a triple. A rule r matches triple t if H(r) matches
t. H(r) and t are single triples, in which variables can appear, and are matched
if a matching function exists, such that triple_match(ζ, H(r), t), (9), is true.

Given a set of rules R = r, triples tq of a query graph Q can contain separate
sets of terminal triples Tt and non-terminal triples Tn.

Tn = {t|t ∈ tq, ∃r ∈ R.triple_match(ζ, H(r), t)} (13)

Tt = {t|t ∈ tq,¬∃r ∈ R.triple_match(ζ, H(r), t)}. (14)

The set Tn ∈ tq consists of triples for which at least one rule from the rule
set can be matched. Tt = tq \ Tn and consists of triples for which no rule can
be matched.

A query graph, which contains at least one non-terminal triple is called a
non-terminal graph. A query graph, which contains no non-terminal triples is
called a terminal graph.

A non-terminal query graph Q (a source graph) can be transformed according
to rules to a target graph Q‘ if a non-terminal triple t ∈ tq is matched to a rule r
by a function ζ. The target graph Q‘ is:

Q‘ = (Q \ t) ∪ ζ(B(r)). (15)

A target graph consists of triples from a source graph, except for the matched
triple, and of triples of the body of a rule with labels substituted according to
a function ζ. For a given source graph it is possible to find multiple mapping
functions ζ, which map different rules to different triples. Target graphs can be
terminal or non-terminal, and in the second case can be further transformed.
Thus, for a given non-terminal query graph, a transformation tree can be de-
ducted, with the original graph as the root, non-terminal, intermediate graphs
as nodes and terminal graphs as leaves. Child nodes of such a tree are parent
nodes transformed using (15) according to a particular rule. A single rule can
produce multiple descendant nodes when applied to different triples of a parent
node, and the parent node can be transformed by multiple rules. A set of child
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nodes is composed of all possible transformations of the parent node. An ex-
ample of such a derivation is shown in Fig. 7. The only rule used here has the
following form:

(?x a ?y) :- (?x b ?q) (?q b ?y).

Figure 7. An example of a query graph processing with a rule

3.4. The use of the formalism

The formalism introduced in Section 3 serves finding patterns of data. Pat-
terns have a form of query graphs (not necessarily of a tree form as for XQuery
search), whose nodes can be variables or constants, and edges represent pred-
icates. An atomic part of a graph is a triple. To define a pattern one can use
predicates obtained from columns of tables of relational schemas. In addition,
one can create new predicates out of existing ones. Obtained rules consist of
a precondition and a conclusion. A precondition may consist of several triples
whereas a conclusion is a triple. For example, a predicate hasGrandfather may
be created by a twofold use of a predicate hasFather as seen in Fig. 8.
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Figure 8. An example of a graph transforming rule

4. An architecture of a reasoning system using SQL query

to RDF semantic data

In the current data management environment most structured data reside in
relational databases. Semantic data have to be extracted from text (HTML)
or made from relational data. As shown before, a transformation between the
relational data model and the RDF data model is possible. There are three
main methods of utilizing relational data in RDF systems. Conceptually, all of
them rely on relations between relational data tables and columns, and RDF
predicates and classes (Berners-Lee, 1998). The first and conceptually simplest
approach is a one-time permanent transformation. Based on relational data and
transformation rules, RDF data are generated. In such a process an RDF copy of
the relational data is created. The problem here is to store and efficiently query
those data, and special schemas of relational tables can be used. An example
of such a storage facility is the Oracle’s RDF_TRIPLE data type, which is
designed to store RDF triples in relational tables. It is also possible to develop
specialized schemas, based on RDFS or OWL concepts, or even ontology classes
and properties that can store semantic data. These approaches are less generic,
but can be better suited for specialized systems. The general advantage of a
permanent data transformation is the possible increase of query efficiency, as
the transformation part is done once and in further operations (querying) is
omitted. There are also disadvantages, such as maintaining and synchronizing
both copies of data, the SQL one (for legacy systems) and the RDF one for
semantic queries, which for large data volumes could be very expensive.

The second approach is to develop an on-demand data transformation adap-
ter between an RDF application and a relational database. Such an adapter
could use an appropriate mapping and generate RDF data from relational data
“on the fly”, transparently for the requesting application. An example of such a
system is D2RQ (Bizer et al., 2006). The advantages of creating the RDF data
on demand are: avoiding of data copy synchronization problems, always up-to-
date RDF data and easy integration with existing database systems and RDF
tools, because no database modifications are required. To enable RDF access to
relational data with such an adapter it is sufficient to define how the RDF data
is to be created from the relational data, and when an RDF application requests
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such a data, the adapter formulates and executes SQL query, transforms results
to the RDF form and passes it to the application. The main drawback is the
low efficiency. This is because the adapter only extracts data, and it has to be
processed at the application side. At the moment the data leave database all the
profits of indexing and efficient data storage are lost. The RDF data querying
is done at the client side and does not exploit mature and fast data retrieval
algorithms implemented in the RDBMS. The example of a system architecture
is presented in Fig. 9.

Figure 9. A traditional reasoning system architecture

The central part is an inferencing subsystem such as Racer Pro, Pellet, or
Jena2. Data comes from a repository usually populated by ontologies, native
RDF data (not shown in Fig. 9), and virtual RDF data created by a subsystem
such as D2RQ. This data is queried by an application, possibly with the use of
a set of rules or ontologies. The inferencing system provides an answer to the
controlling application through a complex flow of data. The relational data have
to be (possibly virtually) transformed to an RDF format. After this step the
semantics of information does not change, but many advantages of the RDBMS
efficient data storage are lost (such as B-trees and indices). As a result, the time
needed to answer queries may be significantly longer than for the equivalent
queries to relational data.

The third approach is to transform queries instead of data and push as much
processing (data extraction mainly) into the RDBMS as possible. The results,
in the form of relational tuples, can then be transformed to RDF triples and
passed to a semantic, RDF application. The advantages of such a method,
that is scalability and efficiency, come off data processing in RDBMS. Another
advantage is a seamless integration with existing database systems, like in the
second approach. The drawback is that client applications are restricted to use
the backward reasoning only. The forward reasoning cannot be done because
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of lack of data instantiations. An example of a complete RDF system architec-
ture that uses backward inference engine and a query transformation module is
shown in Fig. 10. Preliminary tests of such a system proved a good efficiency
in comparison to existing applications.

The proposed reasoning system architecture is shown in Fig. 10. Functions

Figure 10. An architecture of reasoning proposed in this work

of the reasoning system have been divided into two subsystems. The first one
takes a graph query (such as SPARQL) and a set of rules, but not RDF data.
Using backward reasoning the first subsystem generates all elementary (termi-
nal) graph queries, which contain only predicates directly mapped to database
columns. The second subsystem translates graph queries to elementary SQL
queries and joins them. All known efficient mechanisms developed for RDBMS
such as index optimization or materialized views may be employed. Answers are
in a form of tuples that in sequence can be transformed to the RDF data and
returned to the controlling application. The reasoning subsystem is optional,
and if a query graph is a terminal graph, it can be omitted. Table 4 presents
the summary of the three presented methods.

5. Query graph to SQL query translation algorithm

In this section a query rewriting algorithm is presented. For the sake of simplic-
ity we assume that only one-to-one and one-to-many relations between tables
are present in the relational schema over which the query is asked. Includ-
ing many-to-many relations requires some small changes and extensions to the
presented method, but would affect clarity and were omitted.
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Table 4. Summary of methods of utilizing relational data in RDF systems

Method Advantages Disadvantages Description

Permanent data Possible high effi- The need of Takes data in re-

transformation ciency due to spe- maintaining and lational form and

cialized storage synchronizing outputs in RDF

data copies form

Online data Seamless integra- Low efficiency Takes data in re-

transformation tion with existing lational form and

databases, always outputs in RDF

up-to-date data form on demand

Query rewriting Always up-to-date Client applications Takes SPARQL

data, seamless can use backward query and out-

integration with reasoning only puts SQL query

existing databases,

good efficiency

(Falkowski and

Jędrzejek, 2008)

5.1. The algorithm

Definition 5 - predicate labels to a table.column mapping function m
To translate a query graph (a query to RDF data model) to an SQL query

(a query to relational schema) it is necessary to know a mapping between RDF
predicate labels and corresponding relational tables and columns. This mapping
can be done by a function m : ΓURI → tab.col. Function m maps URI labels
to pair table.column. By Tab(m) we denote the table part of this pair, and by
Col(m) we denote the column part of this pair.

Query graph to SQL query translation algorithm

Input: query graph Q, predicate labels to column names mapping function m
Output: SQL query

1. Group all triples t ∈ Q into groups gi, such that every triple in a given
group has the same subject:

gi = {t|t ∈ Q, ∀t, t′ ∈ gi.S(t) = S(t′)} .

2. Associate a relational table T (gi) with every group gi, such that predicates
of all triples within a group have a corresponding column in the same table
T (gi), based on a mapping function m:

T (gi) =table|∀t, t′ ∈ gi.∃(Tab(m(P (t))), T ab(m(P (t′)))).table =

Tab(m(P (t))) = Tab(m(P (t′))) .
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3. Assign a unique table alias ai to every group gi.
4. For every triple t ∈ Q:

(a) Assign a mapping string W to every subject that is a variable:
S(t) ∈ ΓV ⇒ W (S(t)) = ai.ID

(b) and a mapping string W ′ to every subject that is not a variable:
S(t) /∈ ΓV ⇒ W ′(S(t)) = ai.ID
where ai is the alias of a group where t belongs

(c) Assign a mapping string E to every object that is a variable:
O(t) ∈ ΓV ⇒ E(O(t)) = ai.T (gi)

(d) and a mapping string E′ to every object that is not a variable: O(t)
/∈ ΓV ⇒ E′(O(t)) = ai.T (gi)
where gi is the group where t belongs and ai is its alias

5. Add every element of W and E to SELECT part of a query.
6. Add every group alias ai to FROM part of a query.
7. For every triple t | S(t) /∈ ΓV add WHERE element of form:

W ′(S(t)) = S(t)
8. For every triple t | O(t) /∈ ΓV add WHERE element of form:

E′(S(t)) = O(t) if S(t) /∈ ΓV or
E(S(t)) = O(t) if S(t) ∈ ΓV

9. For every pair t, t′ that S(t) = O(t′) add WHERE element of the form:
W (S(t)) = E(O(t′))

10. The final result is a composition of SELECT, FROM and WHERE blocks.

5.2. Example of functioning of the algorithm

For illustration we demonstrate a query to the schema described in Table 5.

Figure 11. Example of a query

In the natural language the query from Fig. 11 would read: “Find persons
whose first name is John and whose father has an address in the city of Poznan”.
In a relational model the relevant information can be stored in two tables:
Person and Address (Table 5).
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Table 5. Table Person and Address

Person
ID FirstName LastName Father’sId AddressId

Address
ID PostalCode Street City

Mappings of properties into column names has the following form:

m = {hasFather: Person(Father’sId), hasFirstName: Person(FirstName),
hasLastName: Person(LastName), hasAddress: Person(AddressId),
Street: Address(Street), City: Address(City) }

These are input data to the algorithm. In the following, steps of the algo-
rithm are presented according to Section 5.1.

1. Grouping triples according to their subject.
The first step of the algorithm is to divide query triples into groups with
the same subject. Each group represents one entity, and thus one tuple
in an appropriate table. Dividing the graph in Fig. 11 gives three groups
illustrated in Fig. 12.

Figure 12. Query groups for a query in Fig. 11

2. Assigning relational tables to groups.
The second step is to assign an appropriate table to every group. For ex-
ample, group ’a’ has two predicates: hasFather and hasFirstName, which
both, according to m, are mapped to Persons table, columns Father’s Id
and FirstName, respectively. Similar to group ’a’, other groups have to
be processed, resulting in the following:
group a - Table Person, alias O1,
group b - Table Person, alias O2,
group c - Table Address, alias A1.

3. Assigning aliases.
Assigning aliases to groups has been shown in the previous step.
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4. Assigning SQL statements:

(a) to subjects that are variables

• group a: W(?x) = O1.ID

• group b: W(?y) = O2.ID

• group c: W(?z) = A1.ID

(b) to subjects that are not variables
There are no non-variable subjects in the example query

(c) to objects that are variables

• group a: E(?y) = O1.Father’sId

• group b: E(?z) = O2.AddressId

(d) to objects that are not variables

• group a: E’(’John’) = O1.FirstName

• group c: E’(’Poznań’) = A1.City

5. Construct the SELECT part of the query
The SELECT part is constructed of elements of W:

SELECT O1.ID, O2.ID, A1.ID
6. Construct the FROM part of the query

The FROM part of the query is formed using tables and aliases associated
with particular groups (each entity (group) has its table and alias):

FROM Person O1, Person O2, Address A1
7. Constructing the WHERE part of the query from subject constraints

In the example query all subjects are variables and thus there are no
constraints on their value.

8. Constructing the WHERE part of the query from object constraints
There are two object constraints (elements of E’ set):

• group a: O1.FirstName = ’John’

• group c: A1.City = ’Poznań’

9. Constructing the WHERE part of the query from object-is-subject con-
straints
There are two variables (the intersection of W and E sets) that function
as an object and a subject:

• group a: O2.ID = O1.Father’sId

• group c: A1.ID = O2.AddressId

Conditions from 7, 8 and 9 together form the WHERE clause:
WHERE O1.FirstName = ’John’ AND A1.City = ’Poznań’
AND O2.ID = O1.Father’sId AND A1.ID = O2.AddressId

10. The final result
Concatenated query parts constructed in 5, 6, 7, 8 and 9 form the final
query:
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SELECT O1.ID, O2.ID, A1.ID FROM Person O1, Person O2,
Address A1 WHERE O1.FirstName = ’John’ AND A1.City =

’Poznań’ AND O2.ID = O1.Father’sId AND A1.ID =
O2.AddressId

6. Summary

In this paper we presented a method that translates a query to a graph into an
SQL query to relational data of the same semantics as the original (virtual) RDF
data. In the process of this translation, the use of rules (or ontologies) is allowed
to transform original query to terminal queries. This method divides reasoning
with rules into two steps - expanding queries according to rules (with backward
reasoning) and answering these queries. The last step exploits the power of
efficient data extracting of RDBMS. The method can be an important element of
a reasoning engine, improving scalability and retaining all efficient mechanisms
of RDBMS. In many cases a graph-model query provides better readability
than a direct SQL query, and our method allows for asking readable and easy
to formulate graph queries. In a future work we will concentrate on extending
graph queries with additional constructs, such as cardinality constraints on the
number of occurrences of some entity in a given relation, which we find useful
and possible to translate to SQL queries. We will also try to employ an external
rule reasoner, such as Prolog, to transform graph queries efficiently. One of main
obstacles to the widespread use of semantic data is low efficiency of queries to
semantic structures (possibly several hundred times compared to equivalent SQL
queries). In this paper we were not concerned with efficiency of our method,
but we have demonstrated elsewhere (Falkowski and Jędrzejek, 2008) that much
progress in this area can be achieved.
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