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Abstract—In this work, we derive a distributed resource
allocation scheme for the uplink of an OFDMA-based small-
cell network. The mobile terminals are modeled as utility-driven
rational agents that aim at maximizing the number of bits
correctly delivered at destination per unit of energy consumed,
under minimum-rate constraints. The theoretical analysis of the
underlying game equilibrium is exploited to derive an iterative
and distributed algorithm that allows each terminal to select its
optimal power allocation over subcarriers. Extensive simulations
show that the proposed technique is able to properly allocate the
resources across the network in a scalable and adaptive manner,
while improving the performance of each user in terms of energy
efficiency compared to an iterative waterfilling criterion.

I. INTRODUCTION

The data traffic in wireless networks has experienced a
tremendous growth in the past couple of decades. At the
same time, energy consumption and energy pollution of the
Information and Communication Technology (ICT) industry
are becoming main societal and economical concerns [1].
Although the ICT contribution to the global emissions still
is and will probably remain a rather small percentage of the
global figures (approximately 2%), the general trend of a 10%
yearly increase in ICT-related carbon emission is alarming.
Reducing the energy consumption is not only a matter of
being environment-aware, it is also very much an economically
important issue, especially from the standpoint of operators.
Hence, more network capacity on the one hand, and less energy
consumption on the other, are the seemingly contradictory
future requirements on ICT. This has stimulated an intense
research activity in both academia and industry in an innovative
research area (recently spurred out by the SMART 2020 report
[2] and the GreenTouch consortium [3]) called green cellular
networks [4], whose ultimate goal is to design the architectures
and technologies needed to meet the explosive growth in
cellular data demand while reducing energy consumption.

A promising solution in this direction is the so-called small-
cell network technology [5], based on the idea of a very dense
deployment of operator-installed low-cost and low-power base
stations endowed with multiple antennas and equipped with
advanced auto-configuration and self-organization capabilities.

The research leading to these results has received funding from the People
Programme (Marie Curie Actions) of the European Unions FP7 under REA
Grant agreements no. PIOF-GA-2011-302520 GRAND-CRU and PIEF-GA-
2012-330731 Dense4Green, and from the European Commission in the
framework of the FP7 Network of Excellence in Wireless COMmunications
NEWCOM# (Grant agreement no. 318306).

Operationally, small-cell networks could automatically be in-
tegrated into existing macro-cellular networks used to ensure
wide-area coverage with small cells carrying most of data traf-
fic. Despite its promise, the deployment of small-cell networks
poses several technical challenges, mainly because small cells
are likely to be connected via an unreliable backhaul infras-
tructure whose features may strongly vary from case to case,
with variable characteristics of error rate, delay, and capacity.
A possible solution in this direction is to find good signal
processing techniques that approach the ideal cooperative gains
while relaying on mostly local channel state information and
local user data. This problem is referred to as distributed
cooperation and is as challenging as important. One of the key
frameworks to induce distributed cooperation among rational
entities such as the small-cell terminals is provided by game
theory [6], both in the cooperative and in the noncooperative
formulation (see for example [7], [8] and references therein).

In this work, we exploit a noncooperative game-theoretic
formulation to identify an efficient and scalable resource
allocation scheme that can be used by the small-cell users
to share the common available resources. In particular, we
focus on the uplink of an OFDMA-based small-cell network,
in which it is of paramount importance to properly allocate the
resources so as to exploit the frequency diversity [9], in order
to achieve some desired quality of service (QoS) requirements
while keeping the interference at a tolerable level. Dealing
with battery-powered mobile terminals, we also include in the
problem formulation the concept of link capacity per unit cost,
widely adopted in many different contexts [10], [11]. This
is achieved by modeling the small-cell terminals as rational
agents that engage in a noncooperative game, using their own
local information to select their optimal subcarriers and powers
so as to maximize their achievable rates per unit of power
(including nonradiative ones) consumed, while satisfying some
minimum-rate constraints.

II. SYSTEM AND SIGNAL MODEL

We consider the uplink of a network composed by S small
cells operating in an OFDMA-based open-access licensed
spectrum.1 The sth small cell uses a set of orthogonal subcar-

1The following notation is used throughout the paper. Matrices and vectors
are denoted by boldface letters, IL, 0L, and 1L are the L×L identity matrix,
the L× 1 all-zero column vector, and the L× 1 all-one column vector, resp.,
and ‖ · ‖2, (·)T and (·)H denote Euclidean norm of the enclosed vector,
transposition and Hermitian transposition, resp. The notation (x)+ stands for
max(0, x), W (·) denotes the Lambert function [12], and R+ denotes the set
of positive real numbers (including 0).



riers to serve the Ks user equipments (UEs) falling within its
coverage radius ρs. For simplicity, we assume that the same set
of subcarriers N = {1, . . . , N} is used by all small cells. The
latter is assigned by the macro-cell network and thus does not
represent a parameter of our optimization problem. To exploit
the frequency diversity, we assume the subcarrier spacing to be
larger than the coherence bandwidth Bc experienced by each
user. Each small-cell access point (SAP) is equipped with M
receiving antennas, whereas a single antenna is employed at
the UEs to keep the complexity of the front-end limited.

Let hkj,n ∈ CM×1 denote the uplink channel vector whose
entries [hkj,n]m represent the (frequency) channel gains over
subcarrier n from the jth UE to the mth receive antenna of user
k’s serving SAP, i.e., the sth SAP whose distance from user
k is smaller than ρs with k, j ∈ K = {1, . . . ,K} and K =
∑S

s=1 Ks. The vector xk,n ∈ CM×1 collecting the samples
received at the UE k’s serving SAP over the nth subcarrier
can be written as

xk,n =
∑K

j=1
hkj,n

√
pj,nzj,n +wk,n (1)

where wk,n ∈ CM×1 is a Gaussian vector with zero mean
and covariance matrix σ2IM accounting for background noise,
whereas pj,n and zj,n denote UE j’s transmit power and data
symbol over subcarrier n, respectively. To keep the complexity
of the SAP at a tolerable level, a simple linear detection scheme
is employed for data detection. This means that the entries of
xk,n are linearly combined to form yk,n = gH

k,nxk,n, where
gk,n is the vector employed for recovering the data transmitted
by user k over subcarrier n. The signal-to-interference-plus-
noise ratio (SINR) achieved by user k at its serving SAP over
subcarrier n takes the form

γk,n = µk,n(p\k,n)pk,n (2)

with

µk,n(p\k,n) =
|gH

k,nhkk,n|2
‖gk,n‖2σ2 +

∑

j 6=k |gH
k,nhkj,n|2pj,n

(3)

where we have explicitly reported the dependence on p\k,n =
[p1,n, . . . , pk−1,n, pk+1,n, . . . , pK,n]

T , which is the vector col-
lecting all powers transmitted over subcarrier n except user
k’s one. Using (2), the achievable rate (normalized to the
subcarrier bandwidth, and thus measured in b/s/Hz) of the kth
user is given by

rk (P) =
∑N

n=1
log2 (1 + γk,n/Γ) (4)

where Γ is the SINR gap with respect to the Shannon capacity

[13], and P = [pT
1 , . . . ,p

T
K ]T ∈ R

K×N
+ collects the transmit

powers by all users over all subcarriers, where the (row)
vector pk = [pk,1, . . . , pk,N ] denotes user k’s powers over
all subcarriers, with pk,n ≥ 0 (if pk,n = 0, user k is not
transmitting over subcarrier n). Note that user k’s multiple
access interference (MAI), measured by the summation at the
denominator of (3), comes from both intra-cell interference
(generated by other UEs being served by the same SAP) and
inter-cell interference (from UEs served by all other S − 1
SAPs), whereas macro-cell users are assumed to be orthogonal
thanks to a proper frequency resource planning operated by the
macro-cell network (if needed, macro-cell interference can be
included into σ2). For simplicity of notation, the dependence
of µk,n and rk on others’ powers is neglected from now on.

III. GAME-THEORETIC RESOURCE ALLOCATION

As mentioned in Sect. I, an energy-efficient design of the
network, that is of primary importance when dealing with
mobile, battery-power UEs, must properly take into account
the energy consumption incurred by each UE. To this aim,
it is worth noting that, beside the radiative powers pk at the
output of the radio-frequency front-end, each terminal k also
incurs circuit power consumption during transmission, mostly
due to the power dissipated in the power amplifier [10]. The
overall power consumption PT,k of the kth UE is thus given

by PT,k = pc + Pk, where Pk =
∑N

n=1 pk,n = pk1N is the
radiative power consumed by user k over the whole spectrum,
and pc represents the average current power consumed by the
device electronics, which is assumed to be independent of the
transmission state and equal for all UEs. Following [10], [14],
the energy efficiency of the link can be measured (in b/J/Hz)
by the utility function

uk

(

P
)

=
rk
PT,k

=

∑N
n=1 log2 (1 + µk,npk,n/Γ)

pc +
∑N

n=1 pk,n
(5)

where the dependence of all others’ transmit powers over all
subcarriers is collected by the gains {µk,n}Nn=1. Observe that,
in data-oriented wireless networks, users are usually required
to satisfy QoS requirements in terms of minimum achieved
rates θk > 0, i.e., rk ≥ θk.

To summarize, the design of an energy-efficient resource
allocation scheme, that encompasses both subcarrier allocation
and power control (by setting, for each UE k, pk,n = 0 on
unused subcarriers, and pk,n > 0 on used subcarriers), requires
to solve, for each UE k, the following optimization problem:

p⋆
k = arg max

pk∈R
N
+

∑N
n=1 log2 (1 + µk,npk,n/Γ)

pc +
∑N

n=1 pk,n
(6)

subject to pk,n ≥ 0 ∀n = 1, . . . , N (7)
∑N

n=1 log2 (1 + µk,npk,n/Γ) ≥ θk (8)

where the constraint (7) ensures each transmit power to be
positive, whereas (8) forces each user to fulfill a requirement
on the minimum normalized rate θk. Note that, unlike other
formulations in the field of OFDMA resource allocation (e.g.,
[15], [16]), here the problem is tackled in a joint manner,
by simultaneously addressing the subcarrier selection and the
power loading among the K users (or the power allocation
over the available subcarriers problem). Furthermore, the in-
terplay among the UEs in K makes (6) a multidimensional
optimization problem in which each UE k ∈ K aims at
unilaterally choosing its own transmit power allocations pk so
as to optimize its own link energy efficiency uk

(

P
)

. In doing
this, each UE affects the choice of all other UEs as well.

The natural framework to study this kind of interactions
is offered by the framework of non-cooperative game theory
[6]. In particular, the underlying game G played by the UEs is
defined as the tuple G = [K, {Pk}, {uk

(

P
)

}], in which K is

the player set; Pk ⊆ RN
+ denotes the strategy set for which the

constraints (7)-(8) are satisfied; and uk

(

P
)

is player k’s payoff
function defined in (5). Note that user k’s action set depends
on the actions of the other players, i.e., Pk = Pk

(

P\k

)

,
where P\k = P \pk = [p\k,1, . . . ,p\k,N ] is the power matrix
P excluding the kth row pk, because of the rate constraint



rk ≥ θk. In this case, the solution concept to be used is the
generalized Nash equilibrium (GNE) [17], defined as follows.

Definition 1: Formally, a transmit power allocation P⋆ =
[(p⋆

1)
T , . . . , (p⋆

K)T ]T is a GNE of the game G if, for all players
k ∈ K, we have that

uk

(

P⋆
)

≥ uk

(

P̌k

)

(9)

for all powers pk ∈ Pk that meet the constraints (7)-(8), where
P̌k = [(p⋆

1)
T , . . . , (p⋆

k−1)
T , (pk)

T , (p⋆
k+1)

T , . . . , (p⋆
K)T ]T

(i.e., it differs from the matrix P⋆ only for the kth row). �

The GNE is of particular interest in the context of dis-
tributed algorithms since it offers a predictable outcome of
the game in which multiple agents (in this case, the small-
cell UEs) with conflicting interests compete through self-
optimization and reach a stable equilibrium point.

Proposition 1: If the problem (6) is feasible, i.e., if there
exists a power allocation Preq, with elements 0 ≤ preq

k,n < ∞
for all k ∈ K and all n ∈ N , such that the QoS constraint
(8) is met with equality for all k ∈ K, then there exists at
least one power allocation P⋆ that is a GNE of the game G.
The elements p⋆k,n of the matrix P⋆ are the solutions to the
following fixed-point system of equations:

p⋆k,n =

{

br
(

p⋆
k,\n,P

⋆
\k

)

if rk(P̃k,n) ≥ θk

wf
(

P⋆
\k

)

if rk(P̃k,n) < θk
(10)

where p⋆
k,\n = [p⋆k,1, . . . , p

⋆
k,n−1, p

⋆
k,n+1, p

⋆
k,N ], and P̃k,n =

[(p⋆
1)

T , . . . , (p⋆
k−1)

T , (p̃k,n)
T , (p⋆

k+1)
T , . . . , (p⋆

K)T ]T , with
p̃k,n denoting the tentative power vector with nth component

p̃k,n = br
(

p⋆
k,\n,P

⋆
\k

)

, and p̃k,ℓ = p⋆k,ℓ for any ℓ 6= n; the

best-response operator br(·) is defined as

br
(

pk,\n,P\k

)

=

{

0 αk,n < βk,n
Γ

µk,n
[f(αk,n, βk,n)− 1] αk,n ≥ βk,n

(11)

where f(αk,n, βk,n) = eW((αk,n−1)·e(βk,n−1))−(βk,n−1) with

αk,n =
µk,n

Γ



pc +
∑

ℓ 6=n

pk,ℓ



 (12)

βk,n =
∑

ℓ 6=n

ln (1 + µk,ℓpk,ℓ/Γ) (13)

and the waterfilling (WF) operator wf
(

·
)

is defined as

wf
(

P\k

)

=

(

νk −
Γ

µk,n

)+

(14)

with the water level νk given by

νk = Γ · N

√

eθk ln 2
/

∏N
ℓ=1 µk,ℓ . (15)

Proof: The proof is briefly outlined in the Appendix.

Remark 1: Similarly to [11] in which the authors deal with
the same problem in (6) with no minimum rate constraints (i.e.,
θk = 0 for all k ∈ K), the GNE of the proposed game might
not be unique. In particular, the fixed-point system of equations
(10) might lead to more than one solution when the channel

Algorithm 1 Iterative algorithm to solve problem (6).

set t = 0.
initialize pk[t] = 0N for all users k ∈ K
repeat

update t = t+ 1.
for k = 1 to K do
{loop over the users}
for n = 1 to N do
{loop over the carriers}
update pk,n[t] according to (11) {meeting (7)}

end for
if
∑N

n=1 log2 (1 + γk,n[t]/Γ) < θk then
apply Algorithm 2 {meeting (8)}

end if
end for

until pk[t] = pk[t− 1] for all k ∈ K

realizations among the users are particularly unbalanced. Fur-
ther work is needed to formalize a condition under which the
GNE of the game G is unique.

Remark 2: Unlike what we did for the single-carrier case
in [18], a necessary and sufficient condition under which the
optimization (6) is feasible (in the sense of Prop. 1) is hard
to obtain. Further work is needed to fulfil this lack. Using the
properties of non-negative matrices [19], only sufficient condi-
tions (very loose in the practice) can be provided. A possible
route to follow might be that of extending the Perron-Frobenius
theorem illustrated in [19] to the problem at hand taking into
account that an efficient subcarrier allocation scheme turn
off those subcarriers experiencing deeply faded channels. In
this work, the feasibility of the optimization problem is only
assessed a-posteriori simply by letting each player achieve the
minimum-rate constraint (8) with equality.

IV. DISTRIBUTED IMPLEMENTATION

To derive a practical criterion to let each small-cell UE
k ∈ K reach the GNE of G in a distributed fashion, we start by
assuming that the UEs with indices j 6= k have already chosen
their optimal transmit powers (i.e., in an asynchronous resource
allocation scenario). This amounts to assuming P\k = P⋆

\k.

Hence, from (3), we have that the gains µk,n(p
⋆
\k,n) needed

to implement (10) can be obtained by

µk,n(p
⋆
\k,n) =

γk,n
pk,n

(16)

for all n ∈ N . Otherwise stated, the only local information
that is not available at the kth UE to compute the optimal
powers {p⋆k,n} is the set of SINRs {γk,n} measured at UE k’s
serving SAP. This can be fed back by the SAP with a modest
feedback rate requirement on the return channel (a discussion
on the impact of a limited feedback can be adapted to this
specific scenario from [20]).

Based on the above considerations, we can derive an
iterative and fully decentralized algorithm to be adopted by
each UE k at each time step t to solve (10) with a low-
complexity, scalable and adaptive procedure. The pseudocode
for the whole network is summarized in Algorithm 1. Note
that, in practice, each UE k needs only to implement the



Algorithm 2 Iterative waterfilling for user k.

compute qk using (17) {sorting the power gains}
set na = N
for n = 1 to N do

ν̃k = Γ ·
{

eθk ln 2
/
∏n

ℓ=1 µk,qk,ℓ

}1/n

if
(

ν̃k < Γ/µk,qk,n

)

then
na = n− 1 {computing the number of active carriers}
break

else
νk = ν̃k {updating the water level}

end if
end for
for n = 1 to na do
pk,qk,n

[t] = νk − Γ/µk,qk,n

end for
for n = na + 1 to N do
pk,qk,n

[t] = 0
end for

steps enclosed in the inner cycle. For the sake of clarity, the
WF algorithm is reported in Algorithm 2, in which na is
the number of active carriers (a carrier n is active for user
k if pk,n > 0), and the vector qk = [qk,1, . . . , qk,N ], with
1 ≤ qk,n ≤ N , is defined such that

µk,qk,1
≥ µk,qk,2

≥ · · · ≥ µk,qk,N
(17)

i.e., the power gains {µk,n} are sorted in a descending order
(this can easily be done using standard sorting algorithms).

It is worth noting that the proposed iterative algorithm can
be easily modified to accommodate further constraints on a
per-subcarrier maximum power pk,n (such that pk,n ≤ pk,n)

and/or on a per-user maximum sum-power P k (such that
∑N

n=1 pk,n ≤ P k). These additional constraints (usually re-
quired to ensure that power masks dictated by the standard are
not violated) can be applied by introducing a further case on
(11) (to account for pk,n) and a power-based WF after Algo-
rithm 2 (that, although not reported for brevity, can be derived
in a dual manner, to account for P k). Note that, similarly to
the single-carrier case investigated in [18], introducing upper
bounds on the transmit powers might impact on the existence
of the GNE. This situation typically occurs when there is a
UE that is too close to its serving SAP, and cannot thus reach
its local optimum when the powers are limited. However, this
can be effectively avoided by properly setting sufficiently high
power limits and a reasonable forbidden drop radius within
each small cell, as considered in Sect. V. Finally, note that this
algorithm is suitable for a dynamic network configuration, in
which UEs come and go: each UE just needs to stick to the
steps listed in the inner cycle of Algorithm 1, that only require
the SINRs fed back by the serving SAP, without any further
information on the network and/or small-cell status.

V. SIMULATION RESULTS

In this section, we investigate the performance of Al-
gorithm 1 by means of an extensive simulation campaign.
Throughout the simulations, the following parameters are
adopted. We consider S = 7 small cells with a radius ρs = ρ =
20m and randomly distributed over a 200m×200m area. Each
SAP s, equipped with M = 2 receive antennas, serves Ks = 4
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Fig. 1. Random realization of a network with S = 7 small cells and K = 28
UEs, sharing N = 12 subcarriers in an OFDMA-based scenario.

UEs, for a total of K = 28 UEs deployed in the network,
assuming a forbidden disk radius equal to 0.2m. The set of
available subcarriers is composed by N = 12 subcarriers, each
having a bandwidth B ≅ 11 kHz and spaced by 100 kHz,
whereas each UE’s coherence bandwidth is assumed to be
Bc ≅ 90 kHz, using a 24-tap channel model to reproduce
multipath effects. To simulate the effects of fading and shad-
owing, we use a path-loss exponent equal to ς = 4. For
simplicity, perfect channel estimation is assumed at the receive
side, and the maximum ratio combining (MRC) technique is
considered, which amounts to setting gk,n = hkk,n for all k
and n. We also assume an SINR gap equal to Γ = 1 = 0 dB
and normalize all powers with respect to σ2. In particular, we
set pc/σ

2 = +20 dB, P k/σ
2 = +35 dB for all k ∈ K, and

pk,n/σ
2 = +30 dB for all k ∈ K and for all n ∈ N .

To evaluate the proposed algorithm in a practical setting,
Fig. 1 reports a random realization of the network with the
parameters described above. Using the distributed algorithm
described in Sect. IV, after 9 iterations we get the solution of
the system (10), representing the optimal power allocation at
the GNE of the game G, and reported in Fig. 2. As seen, this
method tends to allocate the subcarriers in an exclusive manner
whenever the MAI across UEs within the same small cell is too
large (e.g., see the 2nd small cell, in which only subcarrier 6 is
shared by 3 users), and to share the same subcarrier when the
MAI across users is at a tolerable level (which also includes
the interference generated by UEs from neighboring cells), as
occurs in the 3rd small cell. On the right hand side, we report
the minimum rate constraints versus the achieved rates at the
GNE (the unit b/s/Hz is not reported due to space constraints).
As can be verified, only in 3 cases out of 28, the UEs transmit
at their minimum required rates θk, while it is convenient for
the others to increase their transmit power so as to obtain better
performance in terms of energy efficiency. It is interesting to
observe that most WF users are in the 7th cell, in which there
is one UE much closer to the SAP than the others (see Fig. 1):
in this case, it gets most of the resources (black bars are much
smaller than the other colors, due to a much better channel
realization), which translates into (i) obtaining a rate much
higher than the minimum one, and (ii) forcing the others to
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Fig. 2. Outcome of the resource allocation for the scenario of Fig. 1.

operate a WF so as to meet their constraints (8). Finally, note
that maximum powers are not selected by any of the K users.

To evaluate the improvement in terms of energy efficiency
of the proposed algorithm, we compare its performance with
that achieved by a WF-based solution, in which all users aim
at meeting θk with equality (in other words, each UE solves
problem (6) when the equality in (8) holds, by using the
WF criterion (14)). Fig. 3 reports the average rates obtained
by averaging over all possible positions of a particular UE
(say user 1) within a small cell, using 100, 000 independent
realizations of a feasible network scenario,2 whereas Fig. 4
depicts the average utility (normalized by the AWGN power
σ2) achieved at the GNE. Both results are plotted as a function
of a specific minimum rate θ1, while all others randomize their
constraints θk for k 6= 1 in [0, 20] [b/s/Hz].

As expected, WF users get exactly their demanded rate
(Fig. 3), whereas energy-efficient users always achieve nor-
malized rates from roughly 10 b/s/Hz on, due to a differ-
ent optimization criterion. Interestingly, the energy efficiency
achieved by users using (10) for larger θ1 is lower than the
one obtained by all users adopting the WF criterion. This result
does not contradict the proposed formulation, as it is mainly
due to a weaker MAI caused by the WF users, that transmit
at lower powers than energy-efficient ones (not reported for
the sake of brevity). To better illustrate this phenomenon,
we also report the performance when only the observed user
adopts the energy-efficient criterion (10), while all others use
(14) (green curve). As can be seen, the energy efficiency
achieved at the GNE is always higher than the WF-based one.
To further support this conclusion, note that, averaging over
all network realizations, the proposed algorithm achieves an
average normalized utility of approximately 0.047, whereas
the WF one obtains 0.042, also introducing fairness among
the users, as its performance is weakly dependent on the QoS
requirement θk. The drawback of the proposed technique is
the larger convergence time as it requires about 14 iterations
for its convergence, compared to roughly 7 steps employed

2Throughout the simulations, feasible scenarios using the parameters intro-
duced above occur about 95% of the times.
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by the WF algorithm, while bearing a similar computational
complexity at each step of the algorithm.

VI. CONCLUSIONS AND PERSPECTIVES

This work has investigated the problem of energy-efficient
resource allocation for the uplink of an single-input multiple-
output small-cell network, in which the users select their
optimal subcarrier and power loading in a joint manner. The
theoretical tools of noncooperative game theory are employed
to solve the rate-constrained resource allocation problem, and
to derive an iterative, decentralized and scalable algorithm.
Numerical results are provided to show the effectiveness of the
proposed solution and to evaluate the performance improve-
ment with respect to an iterative waterfilling algorithm in terms
of energy efficiency and fairness. Given the general formula-
tion of the problem, this method can be applied to different
contexts: macro-cell systems, relay-assisted communications,
and cognitive networks, just to mention a few. Further work
is needed to assess the feasibility of the problem given a
particular network realization, and to measure the complexity
of the algorithm as a function of the system parameters.



APPENDIX

Due to space limitations, only the main guidelines of the
proof are given in the sequel. The GNE problem (6) is the
multicarrier extension of the one investigated in [18], in which
the case N = 1 is investigated for a relay-based cellular
network. Similarly to [18], the existence of a GNE follows
from the topology of the action set Pk(·) [17], interpreted as
a point-to-set mapping [21], jointly with the continuity and
quasi-concavity properties of the payoff function uk

(

·
)

as a
function of pk for all k ∈ K.

To compute the optimal power allocation P⋆ at the GNE,
we must satisfy the Karush-Kuhn-Tucker (KKT) conditions
[22]. To this aim, we can define the Lagrangian function

L (pk, ξk, νk)=

∑N
n=1 log2 (1 + µk,npk,n/Γ)

pc +
∑N

n=1 pk,n
+

N
∑

n=1

ξk,npk,n

+ νk

(

N
∑

n=1

log2 (1 + µk,npk,n/Γ)− θk

)

(18)

where ξk = {ξk,n}Nn=1 and νk are the KKT multipliers to
include constraints (7)-(8).

Let us suppose that the constraints are not active (i.e., ξk =
0N , and νk = 0). Hence, using (18) yields

∂L (pk, ξk, νk)

∂pk,n
=

µk,n/Γ
1+γk,n/Γ

(

pc +
∑N

ℓ=1 pk,ℓ

)

−∑N
ℓ=1 ln (1 + γk,ℓ/Γ)

ln 2 ·
(

pc +
∑N

ℓ=1 pk,ℓ

)2 . (19)

Hence, when seeking the solution(s) of the equation
∂L (pk, ξk, νk)/∂pk,n = 0, using (12), (13) and (19) we can
write

αk,n + γk,n/Γ

1 + γk,n/Γ
= βk,n + ln (1 + γk,n/Γ) . (20)

By manipulating on (20), we can finally get

pk,n =
Γ [f(αk,n, βk,n)− 1]

µk,n
. (21)

Let us now introduce back the constraint (7), and suppose that,
for some subcarrier n, the constraint pk,n = 0 is active. This
means that ξk,n > 0. If we compute ∂L (pk, ξk, νk)/∂pk,n,
we get

αk,n+γk,n/Γ
1+γk,n/Γ

− [βk,n + ln (1 + γk,n/Γ)]

ln 2 · (αk,n + γk,n)
2
/ (µk,n)

2 = −ξk,n < 0. (22)

By adopting similar steps as above, and using the properties
of W (·) [12], we can see that (22) implies αk,n < βk,n. This
makes sense, because, if αk,n < βk,n, ∂uk/∂pk,n < 0. This
implies that uk is a decreasing function of pk,n for any pk,n ≥
0, and hence the optimal choice is pk,n = 0 (in other words, a
rational user will not use subcarrier n, as the channel quality
is too bad). Thus, in general, user k’s best response can be
summarized as in (11).

When instead only (8) is active, (6) is equivalent
to minimize the sum-power Pk under the assumption

∑N
n=1 log2 (1 + γk,n/Γ) = θk. Using the KKT conditions, we

get 1 − νk · µk,n/Γ
1+µk,npk,n/Γ

= 0 from which using (7) we get

(14), where νk can be obtained as in (15), by using (8).
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