
LOWER BOUNDS FOR THE CHVÁTAL-GOMORY RANK
IN THE 0/1 CUBE

SEBASTIAN POKUTTA‡ AND GAUTIER STAUFFER∗

ABSTRACT. We revisit the method of Chvátal, Cook, and Hartmann to establish lower
bounds on the Chvátal-Gomory rank and develop a simpler method. We provide new
families of polytopes in the 0/1 cube with high rank and we describe a deterministic
family achieving a rank of at least (1+ 1/e)n− 1> n. Finally, we show how integrality
gaps lead to lower bounds.

1. INTRODUCTION

The Chvátal-Gomory procedure (see e.g., [8, 9, 5]) is a well-known cutting-plane
operator to derive the integral hull of a given polyhedron. More precisely, for P ⊆ Rn

the Chvátal-Gomory closure is defined as

P ′ :=
⋂

(c,δ)∈Zn×Q
cx≤δ valid for P

cx ≤ bδc .

It is well-known that P ′ is a polyhedron again (cf., e.g., [12]) if P is a rational poly-
hedron. Clearly, conv (P ∩Zn) =: PI ⊆ P ′ and we can iterate the operator by setting
P(i+1) := (P(i))′ with P(1) := P ′ and P(0) := P for consistency. The (Chvátal-Gomory)
rank of a polyhedron P is then defined to be the smallest i ∈ N such that P(i) = PI holds
and we denote it by rk(P). The rank of a polyhedron P is always finite ([5, 11]) but
can be arbitrarily large, even for n= 2. If we confine ourselves however to polytopes
P ⊆ [0,1]n, the rank of P is bounded by a function of n. The first known bound was
exponential in the dimension n and was subsequently reduced to O(n3 log(n)) (cf. [2])
and later to O(n2 log(n)) (cf. [7]). Rank bounds of a related closure, the Small Chvátal
operator, have been investigated in [4]. On the other hand, the best-known lower
bound so far is based on the existence (non-constructive) of a family of polytopes Pn
with rk(Pn)≥ (1+ ε)n, for ε≤ 3.12 · 10−6, leaving a large relative gap of n log(n).

The later result relies on a lower bound result for the fractional stable set polytope
due to [6]. Let G = (V, E) be a graph on n vertices and K be the family of all cliques of
G. We denote by α(G) the maximum size of a stable set in G. The stable set polytope of
G (denoted by STAB(G)) is the convex hull of (the characteristic vectors of) all stable
sets in G. The fractional stable set polytope of G (denoted by QSTAB(G)) is a relaxation
of STAB(G) defined by the following inequalities:

x(K)≤ 1, ∀K ∈K
xv ≥ 0, ∀v ∈ V

Chvátal, Cook, and Hartmann established the following bound on the rank of this
polytope: (e := (1, . . . , 1) denotes the all-one vector)
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Lemma 1.1. [6, Proof of Lemma 3.1] Let k < s be positive integers and let G be a graph
with n vertices such that every subgraph of G on s vertices is k-colorable. Let P be a
polyhedron that contains STAB(G) and the point 1

k
e. Then rk(P)≥ s

k
ln n

kα(G)
.

This result is then applied to a certain class of random graphs. More precisely,
with e being the Euler constant, Erdős proved that there exists δ > 0 and a family of
graphs G with arbitrarily many vertices such that for all G ∈ G we have α(G)< n

3e
and

every subgraph of G with at most δn vertices is 3-colorable (see e.g., [1]). Applying
Lemma 1.1 to this family yields:

Corollary 1.2. There exists δ > 0 and a family of graphs G such that for all n0 >
1
δ

,
there exists G ∈ G with n≥ n0 vertices and any polytope P containing STAB(G) and 1

k
e

satisfies rk(P)≥ bδnc
3
≥ δn

6
.

Let An ⊆ [0, 1]n be the polytope defined as

An := {x ∈ [0, 1]n :
∑

i∈I

x i +
∑

i 6∈I

(1− x i)≥
1

2
}.

In [7] the authors considered the family of polytopes PG = conv
�

QSTAB(G)∪ An
�

for
all G ∈ G with n vertices. Using the fact that 1

2
e ∈ A(n−1)

n and thus 1
3
e ∈ PG Lemma 1.1

can be applied to P(n−1)
G . This yields rk(PG)≥

δ

6
n+ n− 1. The linear factor however is

very small; a simple calculation shows that δ
6
≤ 3.12 · 10−6 (cf. [1, p.136]). Beyond the

existence of the family of graphs provided by Erdős, this result, at its core, relies on the
following lemma to establish lower bounds. Let [n] denote the set {1, . . . , n} and [n]0
denote the set {0, . . . , n} for n ∈ N.

Lemma 1.3. [6, Lemma 2.1] Let P be a rational polyhedron in Rn. Further let u and v
be points in Rn and m1, m2, . . . , md be positive numbers. Write x ( j) = u−

∑ j
i=1

1
mi

v for all
j ∈ [d]0. If u ∈ P and if, for all j ∈ [d], every inequality ax ≤ b valid of PI with a ∈ Zn

and av < m j satisfies ax ( j) ≤ b, then x ( j) ∈ P( j) for all j ∈ [d]0.

While this Lemma is very powerful, it is rather difficult to apply it without, a priori,
having a precise idea of the sequence of points ones wants to consider. Furthermore, it
does not provide an immediate lower bound estimate for the rank. This inconvenience
motivated us to introduce a reformulation that is slightly more restricted but has certain
advantages: we trade generality for simplicity. In order to apply it, no further knowledge
about candidate sequences of points is needed and we readily obtain a lower bound on
the rank. Furthermore, the lemma can be weakened slightly more to turn any (relative)
integrality gap into a lower bound estimate for the Chvátal-Gomory rank.

The outline of the article is as follows. We introduce our new lemma in Section 2
and discuss its application to known results. In Section 3 we exploit our technique to
build a deterministic family of polytopes whose rank is at least (1+ 1/e)n− 1 and thus
improve on the result given in [7]. Finally in Section 4 we show how our result can be
used to estimate the rank of a polytope by examining its integrality gap.

2. A SIMPLE TECHNIQUE FOR ESTABLISHING LOWER BOUNDS

We will now establish a new lemma for proving lower bounds on the Chvátal-Gomory
rank. It is inspired by the techniques established in [6], however we shifted the focus
towards the intrinsic geometric progression in order to facilitate its application. Let
P ⊆ [0, 1]n be a polytope and cx ≤ δ with (c,δ) ∈ Zn+1 be valid for PI . Then the depth
of cx ≤ δ (with respect to P) is the minimum number of applications ` of the Chvátal-
Gomory procedure so that cx ≤ δ is valid for P(`). The maximal depth of all facets of
PI equals the rank of P. We call a polytope P ⊆ [0,1]n monotone (or equivalently: of
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anti-blocking type) if whenever x ∈ P and y ∈ [0, 1]n with y ≤ x coordinate-wise, then
y ∈ P holds.

Lemma 2.1. Let P ⊆ [0, 1]n be a polytope, Q I ⊆ PI be monotone and cx ≤ d be valid for
PI . Further, let x∗ ∈ P such that cx∗ > d and define δ :=min{a∈Nn:ax∗>maxx∈QI ax}

�

maxx∈Q I
ax
�

.
If δ > 0 then the depth of cx ≤ d is at least

κ=

&

ln( cx∗

d
)

ln((δ+ 1)/δ)

'

≥
�

ln
�

cx∗

d

�

·δ
�

.

Moreover if x∗ ≤ 1
k
e for some k ∈ N, then

κ≥









ln
�

cx∗

d

�

·
1

k
min

a∈{0,1}n :
a 6∈k·QI

(ae− 1)









.

where k ·Q I denotes the Minkowski sum of k copies of Q I .

Proof. Let x∗0 = x∗ and x∗l+1 = λx∗l for all l ∈ N+ with λ = δ

1+δ
. We prove first

by induction that x∗l ∈ P(l) for all l ≥ 0. Clearly, the hypothesis holds for l = 0.
Thus let l ≥ 0 and ax ≤ b be a valid inequality for P(l) with a ∈ Zn and let us
consider the corresponding inequality ax ≤ bbc, valid for P(l+1). Let a+ be the re-
striction of a to its positive coefficients. Observe that since Q I is monotone it holds
maxx∈Q I

ax = maxx∈Q I
a+x . Suppose first that a is such that a+x∗ ≤ max

x∈Q I

ax . Then

bbc ≥maxx∈Q I
ax ≥ a+x∗ ≥ a+x∗l+1 ≥ ax∗l+1 and thus x∗l+1 ∈ P(l+1). Now suppose that

a is such that a+x∗ > max
x∈Q I

ax = max
x∈Q I

a+x . By definition maxx∈Q I
a+x ≥ δ and thus

bbc ≥maxx∈Q I
ax =maxx∈Q I

a+x ≥ δ. Then ax∗l+1 = λax∗l ≤ λb+ (1−λ)(bbc −δ)≤
λ(bbc+1)+(1−λ)(bbc−δ) = bbc+λ−(1−λ)δ = bbc. Again we obtain x∗l+1 ∈ P(l+1).

Next we show that while l ≤
ln( cx∗

d
)

ln(1/λ)
we have x∗l 6∈ PI . To this end it suffices to observe

that since cx∗l = λ
l cx∗ we obtain that cx∗l > d if and only if λl cx∗ > d. We obtain κ as

claimed and further we have κ≥
 

ln( cx∗

d
) ·δ
£

since ln(1/λ)≤ 1−λ
λ
= 1/δ and the first

part of the result follows.
It remains to prove the second statement. Let k ∈ N be arbitrary. For a ∈ Nn

let supp(a) ∈ {0,1}n denote the characteristic vector of the support. We claim that
ae/k > maxx∈Q I

ax implies that supp(a) 6∈ k · Q I . For contradiction suppose that
supp(a) ∈ k ·Q I . Then there exist x1, . . . , xk ∈Q I such that supp(a) =

∑

i∈[k] x i . Thus
ae =

∑

i∈[k] ax i ≤ k ·maxx∈Q I
ax and so ae/k ≤maxx∈Q I

ax; a contradiction. Therefore

we have {a ∈ Nn : ae/k > maxx∈Q I
ax} ⊆

�

a ∈ Nn : supp(a) 6∈ k ·Q I
	

. If x∗ ≤ 1
k
e for

some k ∈ N, then we have

δ ≥ min
a∈Nn :

1
k ae>maxx∈QI ax

�

max
x∈Q I

ax
�

≥ min
a∈Nn :

supp(a)6∈k·QI

�

max
x∈Q I

ax
�

≥ min
a∈Nn :

supp(a)6∈k·QI

�

max
x∈Q I

supp(a)x
�

= min
a∈{0,1}n :

a 6∈k·QI

�

max
x∈Q I

ax
�

.

Observe that we can assume that a 6∈ k ·Q I and a− ei ∈ k ·Q I for all i with ai = 1;
otherwise we could replace a with a− ei . Therefore δ ≥ 1

k
mina∈{0,1}n:a 6∈k·Q I

(ae−1). �

We now demonstrate the strength of Lemma 2.1 by illustrating its application to the
classical result of [5] for the rank of clique inequalities and by providing an alternative
proof of Lemma 1.1. Let log(.) denote the logarithm to the basis 2.
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Lemma 2.2. Let Kn be a clique on n vertices. Let P = {x ∈ [0,1]n : x i + x j ≤ 1,∀i, j ∈
[n]}. Then rk(P)≥ dlog( n

2
)e.

Proof. We apply Lemma 2.1 with Q I = PI and x∗ = 1
2
e and we consider the inequality

ex ≤ 1. Since ei ∈ PI for all i ∈ [n] we have ae ≥ 2 for all a 6∈ PI . The result follows. �

Lemma 1.1. Let k < s be positive integers and let G be a graph with n vertices such
that every subgraph of G on s vertices is k-colorable. Let P be a polyhedron that contains
STAB(G) and the point 1

k
e. Then rk(P)≥ s

k
ln n

kα(G)
.

Proof. We apply Lemma 2.1 with Q I = PI and x∗ = 1
k
e and we consider the inequality

ex ≤ α(G) that is valid for PI . Since every subgraph of size s of G is k-colorable we
have that a 6∈ k · PI only if ae > s. The result follows. �

3. CONSTRUCTING A BETTER LOWER BOUND

As we have seen, we can use Lemma 2.1 to prove bounds of the order of εn (with
ε≤ 3.1210−6) for the rank of polytopes in [0,1]n. We will now show that we can do
better by providing a new family of polytopes whose rank asymptotically equals to n/e.

Lemma 3.1. Let P = conv ({x ∈ [0,1]n : ex ≤ d} ∪ {x∗}) for d ∈ [n] and x∗ = m−1
m

e for

m ∈ N∗. Then rk(P)≥ ln
�

(m−1)·n
m·d

�

· d.

Proof. It is easy to see that PI = {x ∈ [0, 1]n : ex ≤ d} holds. We apply Lemma 2.1 with
Q I = PI to the inequality ex ≤ d and choose k = 1. As mina∈{0,1}n:a 6∈PI

∑

i ai − 1 ≥ d.
The result follows. �

The rank of P in Lemma 3.1, provided that m tends to∞, is maximized by choosing
d close to n/e. We obtain the following corollary.

Corollary 3.2. For any ε > 0 and any n0 ∈ N+, there exists n≥ n0 ∈ N+ and a polytope
P ⊆ [0,1]n with rk(P)≥ n/e− ε.

Observe that our construction is deterministic as compared to the construction in
[6] which relies on a random graph. Moreover, the split rank of P in Corollary 3.2
is 1 whereas the Chvátal-Gomory rank is Ω(n). Furthermore PI is given by a uniform
matroid and we can thus optimize over PI in polynomial time. Last but not least, P
is almost integral, i.e., P ∩

�

x i = l
	

= PI ∩
�

x i = l
	

for all (i, l) ∈ [n]× {0,1} and so
we can optimize over PI by optimizing over P with any arbitrary coordinate first being
fixed to 0, and then to 1. The optimum is obtained as the min/max of the two.

It is worthwhile to note that the polytopes in Corollary 3.2 are not monotone. In fact,
it can be shown that P can be described by 4n inequalities (see [3]).

Remark 3.3. Let P = conv ({x ∈ [0, 1]n : ex ≤ d} ∪ {λe}) ⊆ [0,1]n with d ∈ [n] and
λ ∈ [ d

n
, 1) be defined as in Lemma 3.1. Then P is given by the following inequalities:

x i ≥ 0 ∀ i ∈ [n]
x i ≤ 1 ∀ i ∈ [n]

ex − (n− d/λ)x i ≤ d ∀ i ∈ [n]
(1−λ)ex − (d −λn)x i ≤ λ(n− d) ∀ i ∈ [n]

One might wonder if the lower bound provided by Lemma 2.1 when applied to our
construction is a good estimate of the true rank. We use the upper bounds provided in
[6, Theorem 9.1] to address this question. For c ∈ Zn

+ let ||c||1 := ce be the 1-norm of c.
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Lemma 3.4. [6, Theorem 9.1] Let P ⊆ [0,1]n be a monotone polytope and let cx ≤ δ
be valid for P and further let τ=maxx∈PI

cx. If ||c||1 ≥ 2τ+ 1 then an upper bound on
the depth of cx ≤ τ over P is given by

τ+ 1+
�

(2τ+ 1) ln
||c||1

2τ+ 1

�

.

Since the results of [6] only applies to monotone polytopes, we consider monotone
polytopes containing our family. Instead of considering conv({x ∈ [0,1]n : ex ≤ d}
∪{x∗}), we consider conv ({x ∈ [0, 1]n : ex ≤ d} ∪ {x ∈ [0,1]n : x ≤ x∗}). In this case,
as {x ∈ [0,1]n : ex ≤ d}= PI and both PI and {x ∈ [0,1]n : x ≤ x∗} are monotone, it
readily follows that conv ({x ∈ [0,1]n : ex ≤ d} ∪ {x ∈ [0, 1]n : x ≤ x∗}) is monotone.
Applying Lemma 3.4 to this family of polytopes we obtain that rk(P) ≤ 3−ln(4)

e
n ≈

0.594 · n. In comparison to this, our lower bound is rk(P)≥ 1
e
· n≈ 0.368 · n leading to

an overall gap of 3− ln(4). In this sense the provided lower bound is rather tight for
our construction.

We are now ready to slightly improve the lower bound result of [7].

Theorem 3.5. For any ε > 0 and any n0 ∈ N+, there exists n ≥ n0 ∈ N and a polytope
P ⊆ [0,1]n with rk(P)≥ (1+ 1/e)n− 1− ε.

Proof. Let Q be the polytope defined in Corollary 3.2 with m = 2. Define P :=
conv

�

Q ∪ An
�

and note that PI =Q I as (An)I = ; (and no 0/1 point in the cube can be
expressed as a convex combination of other points from the cube). It is well-known that
1
2
e ∈ A(n−1)

n and thus 1
2
e ∈ P(n−1). We therefore obtain that Q ⊆ P(n−1) and by Corol-

lary 3.2 we know that Q has rank of at least n
e
−ε. Together with rk(Q)≤ rk(P(n−1)) we

derive that the rank of P is at least n− 1+ n/e− ε= (1+ 1/e)n− 1− ε. �

We would like to close this section by pointing out that, independently, [10] have
recently shown that a different family of polytopes stemming from matroid matching
problems can achieve rank arbitrarily close to n/2e. We use our Lemma to provide
an alternative proof of their result. Clearly their result can be extended in the same
spirit as Theorem 3.5 to build a family of polytopes achieving rank arbitrarily close to
(1+ 1/2e)n− 1.

Corollary 3.6. Let P := {y ∈ [0,1]n :
∑

i∈T yi ≤
1
2
(t + |T |),∀T ⊆ [n], |T | > t}. Then

rk(P)≥ ln( n/2
t
) · t.

Proof. We apply Lemma 2.1 with Q I = PI and x∗ = 1
2
e and we consider the valid

inequality ex ≤ t and choose k = 1. Together with mina∈{0,1}n:a 6∈PI
(ae− 1) ≥ t. The

result follows. �

4. ESTIMATING RANK FROM INTEGRALITY GAPS

We conclude by explaining how we can use Lemma 2.1 to establish lower bounds on
the Chvátal-Gomory rank by examining the (relative) integrality gap of a polyhedral
relaxation. We say that a polytope P ⊆ [0, 1]n has integrality gap (of at least) k if there
exists c ∈ Zn

+ such that
max
x∈P

cx/max
x∈PI

cx ≥ k.

Note that we consider only non-negative vectors c here; otherwise the integrality gap is
not well defined. We will assume that P ⊆ [0, 1]n contains the vectors ei for all i ∈ [n];
in case of monotone polytopes the relaxation is weak otherwise and we can immediately
round the particular coordinate, i.e., we have x i ≤ bεc for ε < 1. We can establish the
following result:
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Theorem 4.1. Let P ⊆ [0, 1]n be a polytope with 0 ∈ P and ei ∈ P for all i ∈ [n]. Further
let the integrality gap of P be k. Then

rk(P)≥ log(k).

Proof. We apply Lemma 2.1 with Q I = {x ∈ [0,1]n :
∑

i∈[n] x i ≤ 1} and x∗ = 1
2
e and

we consider a valid inequality cx ≤ d maximizing the integrality gap. Together with
mina∈{0,1}n:a 6∈Q I

(ae− 1)≥ 1 the result follows. �

We would also like to point out that the above bound is rather conservative as
we assume the worst-case progression in every round. Nonetheless, whenever the
integrality gap is non-constant Theorem 4.1 establishes a non-constant rank. Also note
that when c 6≥ 0 we can apply coordinate flips. In this case however the condition ei ∈ P
should apply to the flipped polytope.
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