On Two Short Proofs About List Coloring Graphs

October 26, 2003

CHROMATIC NUMBER

DEF: A k-coloring of a graph G is a function $c: V(G) \rightarrow\{1,2, \ldots k\}$. A proper $k-$ coloring of a graph G is a coloring of G with k colors so that no 2 distinct adjacent vertices are the same color.

The chromatic number of $G, \chi(G)$, is the smallest k such that a proper k-coloring of G exists.

LIST COLORINGS AND CHOICE NUMBER

DEF: A k - list assignment, L, is an assignment of sets (called lists) to the vertices so that

$$
|L(v)| \geq k
$$

for all vertices v, an L-list coloring is a coloring such that the color assigned to v is in $L(v)$ for all vertices v. If G is such that a coloring exists for all possible k-list assignments, we say that G is k choosable. The smallest k for which G is k choosable is the choice number of G, denoted $\operatorname{ch}(G)$.

NOTICE: A k coloring is an L-list coloring where all lists are $\{1,2, \ldots, k\}$.

FACT: For all graphs on n vertices,

$$
\chi(G) \leq \operatorname{ch}(G) \leq \chi(G) \ln (n)
$$

EXAMPLES OF LIST COLORING

Planar Graphs

DEF: A graph is planar if it can be drawn in the plane with no edge crossings.

DEF: A graph is bipartite if and only if its chromatic number is 2 .

Chronology:

1. Chromatic Number
(a) Heawood 1890, 5-color theorm

For planar graphs
(b) Grötzsch 1959, 3-color theorem

For planar graphs of girth 4
(c) Grünbaum 1962, 3-color theorem

For planar graphs with at most 3 3cycles
(d) Appel, \& Haken 1976, 4-color theorem For planar graphs
(e) N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas, 1996, 4-color theorem

For planar graphs
2. List Coloring and Choice Number
(a) Alon \& Tarsi 1992, 3-choosable

For planar and bipartite
(b) Thomassen 1994, 5-choosable For planar graphs Implies (1a)
(c) Thomassen 1995, 3-choosable, For planar graphs of girth 5 Implies (1b)
(d) Thomassen 2003, 3-choosable, For planar graphs of girth 5 A short proof

Thomassen 5-color

1994 Thomassen

THM: If G is planar then the choice number is at most 5 .

He proved something stronger:

THM: Let G be planar with outercircuit $C=$ $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$, and let L be a list assignment such that for $v \in V(C),|L(v)| \geq 3$ otherwise $|L(v)| \geq 5$. For any precoloring, c, of the vertices v_{1} and v_{2}, c can be extended to an L coloring of G.

Proof

Thomassen's implies Grotzsch

(A) Grotzsch: Every planar graph G of girth at least 4 is 3 -colorable.

Moreover, if G has an outer cycle of length 4 or 5 then any 3 -coloring of the outer cycle can be extended to a 3-coloring of G.
(B) Grotzsch's girth 5 version: Every planar graph G of girth at least 5 is 3 -colorable.

Moreover, if G has an outer cycle of length 5 then any 3-coloring of the outer cycle can be extended to a 3-coloring of G.

Use (B) to prove (A).

Thomassen's Long proof

Let G be a planar graph of girth at least 5 . Let A be a set of vertices in G such that each vertex of A is on the outer cycle. Assume that either
(i) $G(A)$ has no edge or
(ii) $G(A)$ has precisely one edge $x y$ and G has no 2-path from x to a vertex of A.

Assume that L is a color assignment such that $|L(v)| \geq 2$ for each vertex in G and $|L(v)| \geq 3$ for each vertex in $V(G) \backslash A$. Let u, w be any adjacent vertices in G both on the outer face boundary and let $c(u), c(w)$ be distinct colors in $L(u)$ and $L(w)$ respectively. Then c can be extended to a list coloring of G.

Thomassen's Short proof

Let G be a plane graph of girth at least 5 . Let c be a 3 -coloring of a path or cycle P : $v_{1}, v_{2}, \ldots, v_{q}, 1 \leq q \leq 6$ such that all vertices of P are on the outer face boundary.

For all $v \in V(G)$, let $L(v)$ be its list of colors. If $v \in P$ then $L(v)=\{c(v)\}$. Otherwise $|L(v)| \geq 2$. If v is not on the outer face boundary then $|L(v)|=3$.

There are no edges joining vertices whose lists have at most 2 colors, except the edges of P.

Then c can be extended to an L-coloring of G.

Grotzsch's girth 5 version

Notice that both of these imply Grotzsch's girth 5 version.

General Graphs

1979 Erdös, Rubin and Taylor

- Characterized all 2-choosable graphs
- Showed that for every n, there exists a c such that $c h\left(K_{n, n}\right)>c \ln n$.
- If G is connected, not K_{n}, not and odd cycle then $\operatorname{ch}(G)$ is at most its maximum degree.

Line Graphs

DEF: The line graph of a graph G is the graph whose vertices are the edges of G and two are adjacent if and only if their corresponding edges in G share and endpoint.

In 1985, the following mathematicians, Vizing, Albertson, Collins, Tucker, Gupta, Bollobás and Harris, made the following conjecture.

CONJ: For all G, the choice number of the line graph of G is equal to the chromatic number of the line graph of G.

In 1995, Galvin proved the conjecture for bipartite graphs. This fact was then used to solve a well known conjecture of Dinitz (1979). He used algebraic techniques of Alon \& Tarsi.

Tomaž Slivnik 1996, A short proof of Galvin's theorem on the list-chormatic index of a bipartite multigraph.

DINITZ' (THEOREM)

THM: Given an $n \times n$ array, and for each i, j, a set, $A_{i, j}$ of n numbers, there exists an assignment of a number to each position where for position i, j the number comes from set $A_{i, j}$ and there are no repeats in any row or in any column.

