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Abstract—In compressive sensing (CS), a challenge is to find a
space in which the signal is sparse and, hence, faithfully recov-
erable. Since many natural signals such as images have locally
varying statistics, the sparse space varies in time/spatial domain.
As such, CS recovery should be conducted in locally adaptive
signal-dependent spaces to counter the fact that the CS measure-
ments are global and irrespective of signal structures. On the
contrary, existing CS reconstruction methods use a fixed set of
bases (e.g., wavelets, DCT, and gradient spaces) for the entirety of
a signal. To rectify this problem, we propose a new framework for
model-guided adaptive recovery of compressive sensing (MARX)
and show how a 2-D piecewise autoregressive model can be inte-
grated into the MARX framework to make CS recovery adaptive
to spatially varying second order statistics of an image. In addi-
tion, MARX offers a mechanism of characterizing and exploiting
structured sparsities of natural images, greatly restricting the CS
solution space. Simulation results over a wide range of natural
images show that the proposed MARX technique can improve the
reconstruction quality of existing CS methods by 2–7 dB.

Index Terms—Adaptive modeling, autoregressive process, com-
pressive sensing (CS), inverse problem.

I. INTRODUCTION

T HE RECENT development of compressive sensing (CS)
theory [1], [2] has stirred quite an amount of excitement

in signal processing community. Many applications of CS in
image processing and computer vision are being explored. The
CS theory reveals, in a pleasant surprise, the possibility of re-
constructing a signal from a small number of random measure-
ments, as long as the signal has a sparse representation in some
space . Signal of length is said to be sparse in
space of base if transform coefficients ,

, are mostly zero or nearly sparse in space if
a dominant portion of these coefficients are either zero or
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very close to zero. The sparsity of in is quantified by the
number of significant (nonzero) coefficients . The signal can
be perfectly recovered from observa-
tions with high probability.
Given CS measurements , with producing the

random projections, the CS recovery of from is posed as the
following constrained optimization problem:

subject to (1)

The minimization problem of (1) can be solved by linear
programming [3]. Few other CS recovery algorithms were re-
cently proposed, i.e., gradient projection sparse reconstruction
[4], matching pursuit [5], and iterative thresholding [6].
A much celebrated property of CS is its ability to compactly

encode signal in total blindness of any structures of , i.e., the
same random projections can be performed on all signals, re-
gardless of the differences in their characteristics. However, this
does not mean that one can escape from the issue of adapting or
optimizing the CS recovery process to the specific signal on
hand. Indeed, a thorny issue in practice is what space should
be chosen to recover a particular . For example, in signal com-
pression, while conventional methods strive to encode in a
transform domain that achieves maximum energy packing of ,
CS methods need to recover from in space in which
exhibits a high degree of sparsity. Thus, from a system point
of view, CS merely transfers the task of signal-dependent code
optimization from the encoder to the decoder. Finding sparse
space for optimal CS recovery of signal poses as much, if
not more, a challenge as finding an adaptive transform to com-
pletely decorrelate . This is attested by so far disappointing
performance of CS-based compression methods, despite the en-
thusiasm to change the prevailing practice of “oversampling fol-
lowed by massive dumping” in image acquisition and compres-
sion by CS.
Nevertheless, by shifting the burden of code optimization to

the decoder, the CS-based compression approach greatly sim-
plifies the pipeline of signal acquisition and encoding. The en-
coder simply makes a small number of random projections of
the signal and quantizes and transmits the projection values.
This asymmetric design is highly desired when the data ac-
quisition devices must be simple and operate on limited power
budget (e.g., inexpensive resource-deprived sensors) and when
high-density sampling can harm the object being captured (e.g.,
medical imaging). In such scenarios, the signal reconstruction
quality is up to the CS decoder, given the number of CS mea-
surements .
The poor rate-distortion performance of current CS recovery

techniques relative to conventional coding techniques is rooted
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in a major drawback of the problem formulation (1) for CS re-
covery. Natural signal typically has locally varying statistics,
and there exists no space in which all segments of exhibit
sparsity. The problem is particularly acute for images. For a
nonstationary 2-D image signal , in
two different areas and of the spatial domain, subimages

and can have very different waveforms (e.g.,
smooth shade versus strong edge), and hence, they are sparse
in different spaces and . Thus, performing CS recovery
in fixed space , such as that of DCT, a wavelet, or total vari-
ation (TV), is inefficient and requires more measurements than
if adaptive sparse spaces are used. This critique motivates us to
seek for a locally adaptive strategy to recover CS-acquired im-
ages.
In this paper, we propose a new framework of model-based

adaptive recovery of compressive sensing (MARX) to rectify
the flaw in the current CS recovery problem formulation (1). The
defining feature ofMARX, which distinguishes it from other CS
recovery techniques, is a locally adaptive sparse signal represen-
tation facilitated by a piecewise autoregressive (PAR) model.
The PAR model is defined by

(2)

For image processing applications, is the vector by stacking
all pixels of image , and

is a real-valued square matrix with all elements on the
main diagonal being zero. Term is a random vector
that is the excitation of the 2-D autoregressive process. The th
row vector of is denoted by , , .
In the view that an image is a random Markov field (RMF) of
a modest order, each row vector is sparse, i.e., only a very
small portion of the elements of are nonzero. The nonzero
elements of constitute the 2-D support of regression relation

for pixel . The spatial configuration and the
order of the regression support for are given by the image
waveform at pixel location .
Respecting the fact that a natural image is a nonstationary

RMF, MARX allows the PAR model parameters to vary in
. As such, via its parameter matrix , the PAR model offers a
sparse and yet adaptive representation of image signal . There-
fore, the CS recovery of can be formulated as the following
problem of minimization:

subject to (3)

We stress the contrast between the variability of in (3)
and the predetermined bases of in (1). Needless to say, the
proposed MARX sparsity mechanism can fit image local struc-
tures (e.g., edges, textures, and smooth shades) much better than
wavelet, curvelet, DCT or whatever predetermined bases of .
The generality of the PAR model is ensured by the fact that

the Gauss–Markov process of form ,
where ’s are independent and identically distributed

, is the maximum entropy rate stochastic process,
if ’s are chosen such that , ,
for all [7, p. 274]. Thus, the AR model class is versatile and
expressive, and the parametric space of in (3) is capable of

yielding sparse representation for image waveforms ranging
from smooth shades, periodic textures to transients such as
edges.
Granted, the proposed MARX objective function is compu-

tationally more complex than that in the current CS problem
formulation. The former involves joint estimation of image
and its underlying PAR model , rather than estimating in
fixed space . The added search space of makes the in-
verse problem of CS recovery severely underdetermined. In the
following sections, we will develop algorithm techniques to
overcome this difficulty, making the MARX solution feasible
and robust. In pursuing maximum confinement of the solution
space for (3), we exploit structured sparsities due to fractal be-
havior (self-similarities) of natural images. We show how the
PAR model can be made a convenient machinery to incorpo-
rate the structured sparsities into the framework of MARX. The
resulting technique not only makes the MARX process compu-
tationally tractable but also greatly improves the performance
of existing CS recovery algorithms. Extensive experiments on a
broad class of natural images, ranging from conventional pho-
tographs to biomedical images, establish the superior recovery
quality of MARX over other CS methods. The gap in perfor-
mance can be as much as 2–7 dB, with the advantage of MARX
being the most prominent in the recovery of local structural in-
formation (fine and subtle image details).
The remainder of this paper is structured as follows: In

Section II, we solve the severely underdetermined inverse
problem of MARX by imposing constraints stemmed from the
Markov property and self-similarities of an image signal. In
Section III, we develop a pattern classification technique to
characterize and explore structured sparsity in the PAR param-
eter space and reduce the complexity of MARX. Simulation
results are reported and discussed in Section IV. Section V
concludes this paper.

II. MARX ALGORITHM BASED ON STRUCTURED SPARSITY

Here, we develop algorithm techniques to solve the MARX
problem (3). The power of adaptive PAR model lies in its
capability of providing, by varying , different sparse repre-
sentations for image waveforms in different spatial locations.
However, one should fully use statistical knowledge of natural
images to structure ’s in ways to confine the solution space
of the underdetermined inverse problem (3). Consider the CS
constraints of (3) as

(4)

each of which involves the PAR prediction of pixel , i.e.,
, , . For natural images are RMF,

only depends on pixels in a local window, i.e.,

(5)

Symbol denotes the index of the th neighbor of pixel
in the image domain. The ordering of potentially effecting

pixels is given by a fixed 2-D traversal
(e.g., raster scan) with respect to pixel location . We set to
zero those coefficients in that correspond to spatial locations
outside of local window and impose a structure of sparsity
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in that is intrinsic to the physical problem. Structured sparsity
model is defined as

(6)

This means that the signal exhibits not only sparsity in PAR
parameter space, i.e., most of the elements of are zero, but
the zero and nonzero elements are highly structured in the
way that, for a given pixel, only parameters associated with
its neighbors may be nonzero or significant. This structured
sparsity shares the same spirit as [8], but it has different con-
notations in specifics.
The structure of our sparsity is actually richer than the

aforementioned local configuration of nonzero parameters and
clustering of zero parameters. A more important and beneficial
structured sparsity of presents itself if one considers fractal
property of natural images. Namely, image often exhibits a
similar waveform structure, i.e., having similar second-order
statistics, in different localities and scales. To characterize the
2-D image waveform and noting that PAR parameters and
are the same if , we associate each pixel

with a mean-removed feature vector, i.e.,

(7)

Observing that and are generated by an underlying
PAR model of the same or similar parameters if the two corre-
sponding feature vectors and are close to each other, we
can strengthen the MARX formulation of (3) to

subject to

(8)

where is a normalizing factor, and is a threshold to select
samples having similar 2-D waveform as to learn . This
technique of enforcing similar autoregressive functions on sim-
ilar patches of the image bears some resemblance to nonlocal
image modeling [9].
Even with added constraints of structured sparsity, directly

solving (8) is still difficult and numerically less stable. We pro-
pose an iterative approach of constructing PAR model and
recovering from alternatingly in the MARX framework.
Specifically, we estimate the PAR model parameters in with
respect to an initial estimated image , i.e., solving the con-
strained minimization problem (8) given . The re-
sulting estimated PAR model is then used to improve
to , and in turn, is used to improve to , and
so forth. In iteration , given computed by solving (8), the
next estimated image is obtained by solving the following
optimization problem:

subject to (9)

To show that formulation (9) is essentially a CS recovery
problem, we let and

, and rewrite (9) as

subject to (10)

Since is a sparse signal in the
image domain, (10) is the conventional formulation of the CS
problem.
Initial estimated image can be obtained by a nonadaptive

CS recovery technique, for instance, the TV method [4], i.e.,

subject to (11)

where is the 2-D Laplacian operator. Other CS recovery
methods can be also used to produce , such as wavelet-based
method, DCT-based method, and matching pursuit. This iter-
ative procedure is also applied to solve simplified versions of
the MARX problem in (15) and (18).
The impact of approximation error vector on the

solution of (8), i.e., , is greatly reduced by imposing
CS constraints in (8). Since natural image signals
are not strictly sparse with many small but nonzero coefficients
in the recovery space, error is caused by setting those small
nonzero coefficients to zero [8]. The discarded coefficients rep-
resent insignificant high-frequency components of , and thus,
approximation error has zero mean. Therefore

(12)

meaning that the use of has almost the same effect
as though true was known.
Since the accuracy of initial estimate increases in the

number of CS measurements , the value of in (8) should
be adjusted for and decreases in subsequent iterations as
the estimation precision improves. As to the termination crite-
rion for the iterative MARX algorithm, we monitor the succes-
sive model fit errors , which are
the by-product of solving (9). The MARX algorithm terminates
when , where is a threshold, or the algorithm can
terminate after a given number of iterations. In our experiments,
we observe that two to three iterations suffice to produce good
results.
In (8), the sets of PAR parameters (all row vectors of )

are jointly estimated. The complexity of the MARX algorithm
can be greatly reduced without materially affecting the perfor-
mance by individually estimating , i.e., ,
in iteration of the estimation process. Estimating one row
vector at a time reduces the number of unknowns by folds.
Denote by

(13)
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Fig. 1. Sample images. (Top row) Mic. Image1; Mic. Image 2; Girl; MRA-Vessel; MRA-Brain. (Middle row) Monarch; Parrot; Barbara; Bike; Boat. (Bottom
row) Hat; House; Leaves; Lena; Peppers.

the mean-removed feature vector of the th estimated pixel ,
and let

...

...

(14)

Then, the original sparse estimation problem of (8) can be
broken into minimization problems of much smaller size
and approximately solve

subject to

(15)

III. MARX WITH PATTERN CLASSIFICATION

In the previous section, the MARX algorithm employs dis-
tinct PARmodels, one for each pixel , . The intent
is to allow the maximum degree of freedom in modeling. How-
ever, for natural images, the second-order statistics may spa-
tially change, but the change is smooth. Furthermore, the change
may be periodic so that a waveform can repeat itself in different
locations. Therefore, we can induce an even stronger structure in
sparse matrix by grouping the pixels into classes
of waveforms. The classifier is de-
signed by a -clustering of the feature vectors ,

. Each of the resulting representative waveforms is fit to a
PARmodel, and as such, image can be described in theMARX
framework by PAR models, one per classified waveform.
For our purpose of classification, the difference metric be-

tween two mean-removed feature vectors and is defined
as

(16)

where is the squared Euclidean distance between
two feature vectors and , and is the squared geo-
metric distance between pixels and . Weight is used to ad-
just the relative importance of the waveform difference and geo-
metric distance. The inclusion of in is to improve
the performance of MARX by incorporating the prior knowl-
edge that natural images tend to be piecewise stationary, and
the second-order statistics only smoothly change. In particular,
this technique translates spatial coherence of edge pixels (e.g.,
orientation consistency) into structured sparsity in .
Let be the index of the feature

class that falls into and be the model parameter vector
for class . To keep the compact notation for PAR model

, we introduce permutation on the elements of
such that . Now, the coefficient matrix of the
PAR models becomes

...

...

(17)

in which there are only distinct row vectors up to
the permutation as the same model acts on all pixels
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TABLE I
PSNR (IN DECIBELS) RESULTS FOR DIFFERENT CS RECOVERY METHODS
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. Feature classifier imposes strong signal-de-
pendent structures in sparse model parameter matrix and re-
duces the MARX objective function to

subject to

(18)

The iterative MARX algorithm developed in the previous
section can be straightforwardly extended to solving the esti-
mation problem of (18). We only need to replace by ,
which is the parameter array of the PAR models corresponding
to the feature classes that are updated in iteration .
Similar to the development in (14) and (19), we can estimate
one at a time for , reducing the size of the

optimization problem by folds. In iteration of the estimation
process, each is computed as follows:

subject to

(19)

where is the centroid of all mean-
removed feature vectors that are quantized to class .

IV. EMPIRICAL RESULTS AND REMARKS

Here, we report the experimental results of the proposed
MARX technique and discuss our findings. In our implementa-
tion, the parameters are set as follows: The order of PAR model
is set to 9 (3 3 window); the number of CS measurements
is given as the percentage of the total number of pixels;

instead of specifying a value of in (8) and (18), we use the
closest matched patches; in (16) is empirically

set to 0.1; the algorithm termination threshold is set to 4.
In fact, we found that two iterations suffice to generate good
recovery results.
To highlight the importance of spatial adaptability of a CS

recovery method and verify the efficacy of MARX in this
regard, we conduct a comparative study between MARX and
the conventional CS method in a “sparse” space of choice. A
fairly general set of test images was used in our comparative
study, including photographic images commonly found in the
literature (e.g., Lena, House, Barb, and Monarch) and many
biomedical images. Fifteen of these test images are shown in
Fig. 1. To evaluate the benefits of the pattern classification, we
report the results of the two proposed methods, i.e., the MARX
method without pattern classification (denoted by MARX) and
the MARX with pattern classification (denoted by MARX-PC).
Table I lists the peak signal-to-noise ratio (PSNR) values

versus the number of CS measurements (presented as the
percentage of the total number of pixels ) for different CS
recovery methods. Our experiments are set up to benefit the

Fig. 2. CS recovered MRA-Vessels images (part) with N measure-
ments. (a) Original; (b) TV recovery (26.06 dB); (c) [10] recovery (25.84 dB);
(d) [11] recovery (26.08 dB); (e) MARX recovery (30.84 dB); (f) MARX-PC
recovery (32.98 dB).

Fig. 3. CS recovered micrograph 1 images (part) with N measure-
ments. (a) Original; (b) TV recovery (22.72 dB); (c) [10] recovery (22.63 dB);
(d) [11] recovery (22.43 dB); (e) MARX recovery (24.72 dB); (f) MARX-PC
recovery (25.86 dB).

competing methods of MARX. For each test image, conven-
tional CS recovery is performed in wavelet, DCT, and gradient
space separately, and the space of best reconstruction quality
is selected. It turns out that for all test images but one, the TV
method is better than the CS recovery in either wavelet or DCT
space. Only for test image Barb, the CS reconstruction in DCT
space is better than the TV reconstruction. To demonstrate
the advantage of the proposed method, some other recently
proposed adaptive CS recovery methods [10], [11] are also
included in the comparison group.
As shown in Table I, the MARX algorithm outperforms other

competing methods on most of test images and the numbers
of CS measurements. With pattern classification, the proposed
MARX algorithm consistently outperforms other methods on all
test images and over different numbers of CSmeasurements and
further increases the performance advantage of the proposed
MARX algorithm over other methods. The average PSNR gain
over [11] that is ranked number 3 in the comparison group can be
up to 3.35 dB (at N measurements). In most cases, the
MARX-PC algorithm can obtain comparable and even higher
PSNR than the other methods using 0.1 N fewer measurements.
By relating the PSNR gains of the MARX algorithms to the
types of images shown in Fig. 1, we see that the MARX al-
gorithm enjoys greater advantage over competing methods for
images of rich anisotropic spatial structures (mostly in the form
of edges). This observation manifests the capability of MARX
to adapt to spatially varying second-order statistics of the image
signal and the great benefit of utilizing structured sparsity in CS
recovery.
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Fig. 4. CS recovered micrograph 2 images (part) with N measure-
ments. (a) Original; (b) TV recovery (21.25 dB); (c) [10] recovery (21.09 dB);
(d) [11] recovery (21.02 dB); (e) MARX recovery (22.84 dB); (f) MARX-PC
recovery (24.33 dB).

Fig. 5. CS recovered Barbara images (part) with N measurements.
(a) TV recovery (24.78 dB); (b) [10] recovery (24.51 dB); (c) [11] recovery
(24.70 dB); (d) MARX-PC recovery (30.24 dB).

Perhaps more importantly than higher PSNR, the MARX al-
gorithm also offers far superior visual quality. To verify this, we
present and invite the reader to compare, in Figs. 2–8, the recov-
ered CS-sampled images by competing algorithms for various
numbers of CS measurements. In many cases, the MARX algo-
rithm can reproduce sharper and cleaner images than the other
methods while using only two thirds as many CSmeasurements.
This should be evident by comparing the MARX-PC result of

N with the results of other competing methods of
N [i.e., Fig. 5(d) versus Fig. 6(a)–(c) and Fig. 7(d)

versus Fig. 8(a)–(c)]. Such large differences in visual quality are
due to the fact that the human visual system is highly sensitive
to distortions of spatial coherence of edges, and this semanti-
cally vital structural information is more faithfully reproduced
by MARX.
Finally, we examine the computational complexity of the

MARX method. In MARX, computations are performed in
three stages: 1) the initial TV-based estimation; 2) the com-
putation of the PAR model; and 3) the image recovery using

Fig. 6. CS recovered Barbara images (part) with N measurements.
(a) TV recovery (26.72 dB); (b) [10] recovery (26.48 dB); (c) [11] recovery
(26.81 dB); (d) MARX-PC recovery (33.76 dB).

Fig. 7. CS recovered leaf images (part) with N measurements. (a)
TV recovery (23.51 dB); (b) [10] recovery (23.54 dB); (c) [11] recovery (23.78
dB); (d) MARX-PC recovery (30.60 dB).

the learned PAR model. We apply the basis pursuit algorithm
[12] to obtain an initial estimate of the image in
operations. Since the determination of the PAR parameters
is posed as a set of minimization problems (14), the
total computational cost for computing the PAR model is

, where is the size of the sample set used to
estimate the PAR parameters. With the estimated PAR model
, the reconstruction of the image requires oper-

ations. Therefore, the total complexity of the MARX method is
.

V. CONCLUSION

We have argued for the importance of adapting to local 2-D
waveforms in the recovery of CS-acquired images and departed
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Fig. 8. CS recovered leaf images (part) with N measurements. (a)
TV recovery (27.22 dB); (b) [10] recovery (27.37 dB); (c) [11] recovery (27.82
dB); (d) MARX-PC recovery (34.24 dB).

from the current practice of recovering a CS-acquired signal in a
fixed “sparse” space. Instead, we have proposed an adaptive CS
recovery strategy MARX that fits the recovered signal to a PAR
model. By adjusting the model parameters, the model-based CS
recovery can track spatially varying second-order statistics and
thus outperform existing CS recovery methods by 2–7 dB. In ad-
dition to obtaining higher PSNR, the spatially adaptive recovery
of MARX conveys signal semantics much better than other CS
recovery methods.
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