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Abstract Previous works on maintaining temporal consistency of real-time data ob-
jects mainly focuses on real-time database systems in which the transmission delays
(jitters) of update jobs are simply ignored. However, this assumption does not hold
in distributed real-time systems where the jitters of the update jobs can be large and
change unpredictably with time. In this paper, we examine the design problems when
the More-Less (ML) approach (Xiong and Ramamritham in Proc. of the IEEE real-
time systems symposium 1999; IEEE Trans Comput 53:567–583, 2004), known to
be an efficient scheme for maintaining temporal consistency of real-time data ob-
jects, is applied in a distributed real-time system environment. We propose two new
extensions based on ML, called Jitter-based More-Less (JB-ML) and Statistical Jitter-
based More-Less (SJB-ML) to address the jitter problems. JB-ML assumes that in
the system the jitter is a constant for each update task, and it provides a determinis-
tic guarantee in temporal consistency of the real-time data objects. SJB-ML further
relaxes this restriction and provides a statistical guarantee based on the given QoS
requirements of the real-time data objects. We demonstrate through extensive simu-
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lation experiments that both JB-ML and SJB-ML are effective approaches and they
significantly outperform ML in terms of improving schedulability.

Keywords Real-time databases · Temporal consistency · Data freshness ·
Scheduling and jitters

1 Introduction

One of the important applications in distributed real-time systems is to continuously
monitor the system environment status to respond to critical events. Example ap-
plications include coal mine monitoring (Li and Liu 2009), industrial process con-
trol (Song et al. 2008; Han et al. 2011) and road traffic control (Papageorgiou et al.
2005). In these systems, various sensors capture the current status of the physical
entities in the system to generate sensor data periodically. These data are typical
examples of real-time data objects which are associated with temporal validity to in-
dicate that the sampled values are valid only for a time interval (Ramamritham 1993;
Shanker et al. 2008; Ramamritham et al. 2004). A real-time data object is tem-
porally consistent if its value “truly” reflects the current status of the correspond-
ing physical entity. A new data value needs to be installed into a database to re-
fresh the corresponding data object before the validity interval of the old value
expires (Ramamritham 1993). Accessing invalid or stale data values can result in
the inability to respond to environmental changes timely and even worse making
wrong decisions (Xiong et al. 2010; Ramamritham et al. 2004; Golab et al. 2009;
Amirijoo et al. 2006; Kang et al. 2004).

Although extensive research work has been devoted to the design of high-
performance distributed real-time systems (Di Natale and Stankovic 1994; Lu et al.
2005; Shanker et al. 2008; Han et al. 2011), maintaining temporal consistency of real-
time data objects in distributed real-time systems is still a challenging problem and
has not received sufficient attention. On the other hand, the efficient methods pro-
posed for maintaining temporal data validity in traditional real-time systems, such as
Half-Half (HH) (Ho et al. 1997), More-Less (ML) (Xiong and Ramamritham 2004),
EDF-based More-Less (MLEDF ) (Xiong et al. 2008b) and Deferrable Scheduling
(DS-FP) (Xiong et al. 2008a), cannot be directly applied in distributed real-time sys-
tems since they are designed for systems where the transmission delays of update jobs
are not considered. In distributed real-time systems, a newly generated data value is
forwarded as an update job from a sensor or a task generator to a real-time controller
through a network where the transmission delay (called jitter in the paper) cannot be
simply ignored (Han et al. 2011). The controller maintains a database of real-time
data objects to install data updates, process various types of control queries, and con-
duct data aggregation operations (Tan et al. 2009).

An extension of ML (Xiong and Ramamritham 2004) has considered the transmis-
sion delays of update jobs. However, it only assumes a simple transmission model
and uses the maximum transmission delay of all the tasks to calculate the periods
and deadlines for the tasks. In many distributed real-time systems, it is difficult to
determine the maximum transmission delay of a set of update tasks, and the actual



Real-Time Syst (2012) 48:387–429 389

transmission delay of individual update job can be unbounded and not predictable
due to transmission failures and the effect of dynamic network workloads.

As will be explained in a later section, variability in transmission delays makes the
problem of maintaining temporal consistency in distributed real-time systems more
difficult and the overhead for installing the updates more expensive. Even worse,
delay variability can seriously affect the schedulability of the systems. To address
these problems, in this paper, we first propose an extension of ML, called Jitter-based
More-Less (JB-ML). JB-ML follows a similar approach as ML to assign the deadline
and period for each update task to provide a deterministic guarantee in temporal con-
sistency of real-time data objects. However, the assignment order is decided by the
Short Validity minus Jitter First policy (SV-JF) (Zuhily and Burns 2007) instead of
the Shortest Validity First (SVF) in ML. Based on JB-ML, with the introduction of
the concept of statistical temporal consistency, we further propose another extension
called Statistical Jitter-based More-Less (SJB-ML) to tolerate a certain degree of vio-
lation to the temporal validity constraints while still providing a statistical guarantee
in temporal consistency. SJB-ML first determines the deadlines and periods of update
tasks according to reference jitter values that are derived from the quality of services
(QoS) required for the data objects, and then enforces an admission control test on
each late job with the purpose to increase the number of late jobs completed before
their deadlines and at the same time to prevent the late jobs affecting the scheduling
of the remaining jobs.

The remainder of the paper is organized as follows. In Sect. 2, we briefly review
previous research work on maintaining temporal consistency of real-time data ob-
jects. In Sect. 3, we describe the basic principles of ML and discuss its limitations in
handling transmission delays. The details of the two proposed methods, JB-ML and
SJB-ML are presented in Sects. 4 and 5 respectively. Section 6 presents our perfor-
mance studies. We conclude the paper and discuss the future works in Sect. 7.

2 Related works

There has been extensive work in the literature on maintaining the temporal consis-
tency of real-time data objects (Golab et al. 2009; Labrinidis and Roussopoulos 2001;
Xiong and Ramamritham 1999, 2004; Xiong et al. 2005, 2006, 2010, 2008a; Han
et al. 2009, 2008; Lam et al. 2004; Ahmed and Vrbsky 2000; Gustafsson and Hans-
son 2004; Xiang et al. 2008). Some of them are based on the periodic update model
while the others use the sporadic update model in which no assumption is made on the
generation and arrival patterns of update jobs. The methods based on the sporadic up-
date model are mainly designed for soft real-time systems (Ramamritham et al. 2004;
Ramamritham 1993; Amirijoo et al. 2006) and the main problem to be tackled is how
to schedule update jobs in runtime to maximize the freshness of real-time data objects
while minimizing their impacts to the execution of real-time transactions from ap-
plications. In Amirijoo et al. (2006), feedback control mechanisms were proposed to
schedule update transactions together with user transactions from applications to deal
with unpredictable workloads and transient overloading with the purpose to maintain
the overall performance of the system within a specified QoS. It divides the workload
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into mandatory and optional, and tries to identify which ones should be scheduled
using feedback control, based on QoS metrics. The mechanisms have been demon-
strated to be effective for maintaining freshness in soft real-time systems such as
the stock trading systems. Labrinidis and Roussopoulos (2001) studied the update
scheduling problem for maintaining real-time information contained in dynamic web
pages. Based on the popularity of the information, a quality-aware update schedul-
ing algorithm was proposed. In Golab et al. (2009), based on the earliest deadline
first (EDF) scheduling, a maximum benefit with look-ahead scheme was proposed
to assign priorities to different updates to minimize the overall averaged staleness
of real-time data objects. Qu and Labrinidis (2007) proposed a two-level scheduling
algorithm called query update time sharing (QUTS). At the lower level, queries and
updates have their own priority queues; at the higher level QUTS dynamically adjusts
the share of CPU between the real-time queries and updates to maximize overall sys-
tem profit. In Ahmed and Vrbsky (2000), Gustafsson and Hansson (2004), Xiang
et al. (2008), various on-demand methods were proposed to reduce the number of
unnecessary updates and thus minimize the CPU utilization for processing updates.
The main weakness of these methods for hard real-time systems is that they do not
consider the generations of update jobs and assume a given stream of updates whose
arrival rate may be sporadic and uncontrollable. Thus, they cannot guarantee the tem-
poral consistency by changing the periods for update job generations.

The periodic update model is mainly adopted for hard real-time systems where a
guarantee in temporal consistency is required as accessing invalid data objects by user
transactions or queries may generate incorrect results and the consequences could be
similar to missing their deadlines and be catastrophic. Unlike the methods mentioned
in above, the main problems to be studied are: (1) how to determine the period and
deadline for each update task to maintain temporal consistency of each real-time data
object; and (2) how to define a schedule such that the deadlines of all the update tasks
can be guaranteed. One of the earliest proposals is the Half-Half (HH) method (Ho
et al. 1997). In HH, both the period and relative deadline of an update task are set
to be half of the validity interval of the data object to be updated. To further reduce
the update workload, the More-Less (ML) approach (Xiong and Ramamritham 1999,
2004), which will be reviewed in Sect. 3, was proposed. ML applied the deadline
monotonic scheduling (Leung and Whitehead 1982) to assign priorities to different
update tasks. In contrast to HH and ML, the deferrable scheduling algorithm for fixed-
priority transactions (DS-FP) (Xiong et al. 2005, 2008a) followed a sporadic update
model. DS-FP exploited the semantics of temporal validity constraint of real-time
data objects by judiciously deferring the sampling times of update jobs as late as
possible, thus significantly outperformed ML in terms of reducing processor work-
load. To reduce the online scheduling overhead of DS-FP, (Xiong et al. 2006, 2010)
proposed two extensions to produce a hyperperiod for DS-FP so that the schedule
generated by repeating the hyperperiod infinitely will satisfy the temporal validity
constraints of the real-time data objects.

The problem of temporal consistency maintenance using dynamic priority schedul-
ing was examined in Xiong et al. (2008b). Based on a sufficient feasibility condition
of EDF scheduling, it proposed MLEDF , a linear time algorithm to solve the pe-
riod and deadline assignment problem. To achieve an optimal solution in discrete
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systems, Xiong et al. (2008b) further proposed the OSEDF algorithm by relaxing
the deadline constraints to be arbitrary. A heuristic search-based algorithm, called
HSEDF , was also proposed to find the optimal solution more efficiently. In Li et al.
(2011), an enhancement of ML is provided for multiprocessor systems.

Providing a complete guarantee in performance in real-time systems can be very
expensive due to the existence of various unpredictable system factors. In some real-
time systems, accessing some stale data values occasionally are tolerable. Amirijoo
et al. (2006) proposed a framework for specification and management of QoS in real-
time data management and transaction processing. Lam et al. (2004) proposed a fam-
ily of Statistical More-Less (SML) algorithms to achieve the tradeoff between quality
of services (QoS) of temporal consistency and the schedulability of systems. SML
extended ML for the real-time database systems where the jobs from an update task
may have high variation in computation time and having a certain degree of temporal
inconsistency is acceptable. Han et al. (2009) investigated the cost of data freshness
maintenance and online scheduling overhead in the presence of mode changes in real-
time systems as a result of dynamic system workloads. It proposed to apply periodic
scheduling policies when the imposed update workload was low to maintain high data
freshness; when the update workload became high, it switched to more sophisticated
algorithms to improve schedulability.

In this paper, we follow the periodic update model for update job generations and
concentrate on the problems for the real-time systems which require a guarantee in
temporal consistency. Unlike previous works, we try to resolve the problems due to
jitters in update job transmissions in distributed real-time systems. Except Xiong and
Ramamritham (2004), all the aforementioned works using the periodic update model
assumed that the transmission delays are small enough to be ignorable for ease of
analysis. However, this assumption is not practical in distributed real-time systems.
Our work will relax this assumption and investigate the problem of maintaining real-
time data temporal consistency with considerations on the variability in transmission
delays. This relaxation makes the problem more challenging and the overhead for
installing the updates more expensive. To our best knowledge, this is the first paper
on using the periodic update model for maintaining temporal consistency of real-time
data objects with considerations on variation of jitters in update job transmissions.

3 Backgrounds and preliminaries

In this section, we will first introduce the concept of real-time data temporal con-
sistency. Then, we will present the well-known algorithm ML which is based on the
periodic update model, and then discuss its limitations. For ease of reading, we sum-
marize the symbols that will be used throughout the paper in Table 1.

3.1 Temporal consistency of real-time data

Real-time data objects are defined to represent the current status of physical entities
in a real-time system. The act of measurement implements a function ζi → Xi which
maps the current status of the physical entity ζi to the value of a real-time data object



392 Real-Time Syst (2012) 48:387–429

Table 1 Symbols and
definitions Symbol Definition

Xi Real-time data object i

� The set of update tasks

τi Update task for updating Xi

Ji,j The j + 1th job of task τi (i = 1, . . . ,m; j = 0,1,2, . . .)

Vi Validity interval of Xi

Ci Worst-case execution time of task τi

Di Relative deadline of task τi

Pi Period of task τi

Ri Worst case response time of task τi

δi Jitter of task τi

δmax The maximum jitter of all the tasks

Q∗
i

Statistical QoS requirement on temporal consistency of Xi

δ∗
i

Reference jitter of task τi to meet the QoS requirement Q∗
i

δi,j Jitter of Ji,j

si,j Sampling time of Ji,j

ri,j Release time of Ji,j

di,j Absolute deadline of Ji,j

fi (δ) Probability density function of the jitters of τi

Fi (δ) Discrete cumulative density function of the jitters of τi

Xi in the database. Since the status of ζi can be highly dynamic, e.g., the location of
a fast moving object, the value of Xi may become invalid with the passage of time.
To maintain the validity of a real-time data object Xi , update jobs are generated by a
task periodically to capture the latest status of ζi . However, if the generation period
for a job is short, the total update processing workload could be heavy. Thus, the
main design issue is how to achieve a balance between maintaining the temporal va-
lidity of a set of real-time data objects and minimizing the total update workload.
In database systems, this is called the data currency problem. Various best-effort
approaches have been proposed in database systems research (Golab et al. 2009;
Labrinidis and Roussopoulos 2001). However, different from conventional database
systems, an essential concern of real-time systems is to provide a guarantee in data
quality instead of maximizing the average currency of data accessed by applications.

The temporal consistency concept was proposed for defining the validity of real-
time data objects (Ramamritham 1993). It is assumed that the maximum “rate of
change” in the physical status of an entity can be estimated such that within any time
interval of length not exceeding a given validity interval Vi , the status of the physical
entity is considered by all applications to be adequately represented by any value of
the data object within the time interval. We say that any two values of the data object
are “similar” within the validity interval. A data object is temporally consistent if its
value is determined within its validity interval from the last measurement.
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Definition 1 A real-time data object Xi at time t is temporally consistent if, for its
update job Ji,j , finished before t , the sampling time si,j of Ji,j plus the validity length
Vi of the data object is not less than t , that is, si,j + Vi ≥ t (Ramamritham 1993).

It is obvious that the length of the validity interval for a real-time data object is
application-dependent. Short intervals are for data objects corresponding to highly
dynamic entities. The importance of temporal consistency is that if a data object
accessed by a query is temporally consistent, the degree of currency of the data object
is guaranteed. Another important property of this criterion for temporal validity is that
it can be applied with the concept of data similarity (Kuo and Mok 1993) for resolving
the problem in concurrency control between update jobs and user transactions. Under
the concept of data similarity, the values from two successive update jobs for the same
data object could be considered to be “similar” if the difference in their sampling
times is smaller than the validity interval of the data object (Kuo and Mok 1993).
If there are data conflicts amongst a user transaction and two update jobs, which
are similar to each other, the serialization order amongst them can be adjusted to
make the final schedule to be serializable (Bernstein et al. 1987; Lam and Kuo 2001).
Therefore, it does not need to provide a concurrency control mechanism for resolving
data conflicts between update jobs and user transactions (Kuo and Mok 1993; Kuo
and Mok 1994).

3.2 Maintaining temporal consistency with Jitter

Data transmission delay is physically unavoidable for the jobs in distributed real-
time systems. In this paper, the jitter of an update job Ji,j is denoted by δi,j , and
δi,j = ri,j − si,j , where ri,j and si,j are the release time and sampling time of Ji,j

respectively. The sampling time of Ji,j is the time when it is created while the release
time is the time when it arrives the controller and is ready for processing. Hereafter,
transmission delay and jitter will be used interchangeably.

In distributed real-time systems, large jitters are possible and usually can not be
ignored. In addition, they are always hard to predict and may change with the dynamic
workload of the underlying network. Furthermore, for wireless networks, the jitter
for transmitting a job is also highly affected by various environmental factors such as
interferences, path loss and signal attenuation.

Since the jitters of different tasks and among the jobs of the same task could have
different values, how to include them into the calculation of periods and deadlines
for the update tasks is not a simple problem. Xiong and Ramamritham (2004), the
extension of Xiong and Ramamritham (1999) uses the maximum jitter value among
all the tasks in determining the deadlines and periods. This simple scheme, how-
ever, imposes serious limitations on system performance which will be elaborated in
Sect. 3.3.

In this paper, we follow the WirelessHART mesh network model (Song et al. 2008;
Han et al. 2011; Saifullah et al. 2011, 2010) as an example to discuss how to esti-
mate the jitter values and the worst-case jitters. WirelessHART with standard number
IEC 62591 is the first open wireless communication standard specifically designed



394 Real-Time Syst (2012) 48:387–429

Fig. 1 A typical topology of WirelessHART networks

for process measurement and control applications. It is a real-time and reliable net-
work communication protocol such that the performance of the network is more pre-
dictable. This assumption is valid for many industrial process control systems where
the data link layers are mostly TDMA-based. Most of these data link layers have ACK
and retry mechanisms. If the transmission is not successful after a given number of
retries, the transmission will be taken as a failure. Thus, the communication delays for
successful transmissions in such industrial wireless networks are bounded (Saifullah
et al. 2010).

The topology of a typical WirelessHART network is depicted in Fig. 1. In the
figure, Si represents a sensor node which is attached to an industrial process and
talks to the gateway G through a multi-hop wireless mesh. Each sensor node Si has
a running task τi . It generates update jobs periodically to relay the process data to
the gateway based on a predefined scan period. The gateway G maintains a real-time
controller C, which is responsible for scheduling the jobs released from all the update
tasks. The jitter (transmission delay) of the jobs of task τi from Si to the gateway is
denoted by δi . If δi is small compared with its computation time (e.g., S1 is only one
hop away from G and the communication is reliable without any additional delay or
retry), then the jitter may be ignored and assumed to be zero. If δi cannot be ignored
but its value is similar for the jobs from the same task (e.g., S2 is three hops away
from G and the number of retries is assumed to be bounded for each hop.), then
all the jobs of the same task may be assumed to have a constant jitter or bounded
by a worst-case jitter. However, in practice, for the reliability purpose in industrial
wireless mesh (Han et al. 2011), many applications require sensor nodes to have
multiple routes to the gateway to tolerate link and node failures (e.g., S5 is configured
with five different routes to G). For this reason, the jitter for individual job of an
update task may change a lot with the variations of the network condition and the
actual route and number of retries taken in the runtime. In these scenarios, the jitter
δi is not a constant and the worst-case jitter could be unbounded.

As a summary, based on different assumptions on the jitter values, the problem
of maintaining temporal consistency for real-time data objects can be classified into
three cases:
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• Case I: No jitter is considered. i.e., δi = 0 (1 ≤ i ≤ m).
• Case II: The jitter of each task is a constant or bounded by a worst-case jitter value,

and the jitters of different tasks are independent. i.e., ∀j, k, δi,j = δi,k .
• Case III: The jitters of the jobs generated from the same task may vary. i.e.,

∃j, k, δi,j �= δi,k , and the jitters are unpredictable and unbounded.

Case I was studied in ML (Xiong and Ramamritham 1999). The extension of
ML (Xiong and Ramamritham 2004) proposed a simple scheme to deal with Case
II by choosing the maximum jitter value among all the tasks to determine the dead-
lines and periods. It is the focus of this paper to provide a better solution for Case II
and a solution for Case III.

3.3 The more-less method and its limitations

ML (Xiong and Ramamritham 1999, 2004) is an off-line deterministic method based
on the periodic update model. ML is designed for systems where either: (1) separated
computing resources are assigned for processing update jobs and applications such
that the scheduling of update jobs will not be affected by the scheduling of applica-
tion queries and transactions; or (2) the update jobs are assigned to higher priorities
for execution comparing with other applications and user transactions. In the follow-
ing discussions, we will concentrate on the second case. In addition, it is assumed
that data synchronization delays due to concurrent accesses of shared real-time data
objects between user transactions (i.e., from applications) and update jobs are small
and do not significantly affect the schedulability of the update jobs. An effective way
to minimize the synchronization delay is to use the priority inheritance method (Sha
et al. 1990) such that during the synchronization delay, the lower priority user trans-
action will be executed at the priority of the higher priority job which is waiting to
access to the shared data object reading by the user transaction. The priority of the
user transaction will resume to its own priority when it finishes reading the shared
data object. Thus, the goal of ML is concentrated on the generation and scheduling of
update tasks to provide a guarantee in temporal consistency of real-time data objects
while minimizing the CPU utilization for job updating. To achieve this, in ML, there
are three constraints to follow for each task τi (1 ≤ i ≤ m):

• Validity constraint: the sum of the period Pi and relative deadline Di of task τi

is always no larger than Vi , i.e., Pi + Di ≤ Vi , as shown in Fig. 2. The absolute
deadline di,j of job Ji,j is the sampling time si,j plus Di .

• Deadline constraint: the period Pi of task τi is assigned to be more than half of the
validity length Vi , while Di is less than half of Vi . For τi to be schedulable, Di

must be greater than or equal to Ci , the worst-case execution time of τi , plus the
worst-case jitter among all the tasks, i.e., δmax + Ci ≤ Di ≤ Pi ; and

• Schedulability constraint: for a given set of periodic tasks � = {τi}(1 ≤ i ≤ m),
the deadline monotonic scheduling algorithm (DM) (Leung and Whitehead 1982)
is used to schedule them. Thus,

δmax +
i−1∑

j=1

nij × Cj + Ci ≤ Di
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Fig. 2 An illustration of the more-less approach

where nij denotes the number of times task τj is executed before the first job
of τi is completed, and δmax is the worst-case jitter of all the tasks, i.e., δmax =
max{δi}(1 ≤ i ≤ m).

In calculating the deadlines and periods, ML follows the Shortest Validity First
(SVF) policy to determine the assignment order of the tasks, i.e., in the inverse order
of validity length, and ties are resolved in favor of the task with smaller slack, i.e.,
Vi − Ci for τi .

Although ML has been shown to be effective in maintaining temporal data consis-
tency, the following limitations restrict it from being directly applied to distributed
real-time systems where jitters cannot be ignored:

• ML uses the worst-case jitter among all the tasks, δmax , to determine the deadlines
and periods. This unnecessarily increases the relative deadline, and thus reduces
the period of each task. Therefore, the CPU utilization, U = ∑m

i=1(
Ci

Pi
) will be

increased accordingly.
• The increase in the worst-case response time of higher-priority tasks will lead to the

increase in the relative deadlines of lower-priority tasks. This further increases the
possibility of violations to the deadline constraint listed in above and can severely
hurt the schedulability of the system.

• ML applies DM to schedule the update tasks. A new scheduling method, dead-
line minus jitter monotonic ((D-J)-monotonic) (Burns et al. 1995), was proven
in Zuhily and Burns (2007) to outperform DM when jitters cannot be ignored.

4 Jitter-based more-less

In this section, we will introduce an enhancement of ML, called Jitter-based More-
Less (JB-ML) for distributed real-time systems where different tasks have different
jitter values (Case II in Sect. 3.2). Similar to ML, the objective of JB-ML is to de-
termine the deadlines and periods for a set of update tasks such that the total CPU
utilization is minimized while the temporal consistency of the set of real-time data
objects is still guaranteed. Since JB-ML is an extension of ML, it follows the assump-
tions made in ML, i.e., update tasks are executed at higher priorities and synchroniza-
tion delays in accessing shared data objects between update jobs and user transactions
from applications are small and do not affect the schedulability of the update tasks.
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Fig. 3 Execution of τi between two consecutive jobs of τm

4.1 Theoretical preliminaries

Before introducing JB-ML formally, we first present several theoretical preliminaries.
We denote the worst-case response time (WCRT) for any job of task τi by Ri , i.e.,
the maximum response time of all released jobs, Ji,j s (j ≥ 0). As in ML, the relative
deadline Di of τi is assigned to be its WCRT plus the jitter, i.e., Di = Ri + δi . If a
job of task τi with WCRT = Ri can be finished before its deadline, all the other jobs
of task τi can also be finished before their deadlines.

Lemma 1 Consider a set of periodic tasks � = {τi}(1 ≤ i ≤ m) with the sampling
time of the first job si,0, jitter δi and the release time ri,k = (si,0 + δi + k × Pi) for
the kth job of τi . The WCRT of τi , Ri , occurs for the first job of τi when the first jobs
of all the tasks are released simultaneously, i.e., ri,0 = rj,0,∀i, j,1 ≤ i, j ≤ m.

Proof Let τ1, τ2, . . . , τm denote a set of priority-ordered tasks with τm being the
task with the lowest priority. Consider a particular job, Jm,l(l ≥ 0), of τm which is
sampled at t1 and released at t1 + δm. The next job, Jm,l+1, of τm to be sampled will
be at t1 + Pm. Suppose between t1 and t1 + Pm, the release times of task τi(i < m)

are t2 + δi , t2 + δi + Pi , t2 + δi + 2Pi , . . . , t2 + δi + kPi , as shown in Fig. 3.
The shaded gray areas in Fig. 3 show the execution of the jobs of task τi in the

time interval [t1, t1 + Pm]. These jobs may preempt the execution of Jm,l unless
Jm,l is completed before t2 + δi , which is the earliest release time of τi ’s jobs in
[t1, t1 + Pm]. The preemptions from τi will delay the completion time of Jm,l . Now,
we will analyze how the response time of Jm,l may change when the earliest release
time t2 + δi of task τi is varied. First, we assume that the completion time of Jm,l

is tc and t2 + δi = t1 + δm. If t2 + δi > t1 + δm, the completion time of Jm,l will
be either unchanged or before tc since Jm,l may be executed in the time interval
[t1 + δm, t2 + δi ]. Thus, the response time of Jm,l will be unchanged or smaller. If
t2 + δi < t1 + δm, the beginning time of Jm,l could be earlier as τi may be executed
in time interval [t2 + δi, t1 + δm]. Thus, the completion time of Jm,l will be equal
to tc or earlier. Therefore, the WCRT of task τm occurs when t2 + δi = t1 + δm,
i.e., the jobs from tasks τi and τm are released at the same time. Repeating the same
argument for all τi , i = 1,2, . . . ,m−1, we conclude that the WCRT of task τm occurs
when all the first jobs of higher-priority tasks (including task τm itself) are released
simultaneously.



398 Real-Time Syst (2012) 48:387–429

For any task τj (1 ≤ j < m), based on the above deduction, we can also conclude
that the WCRT of τj occurs when all the first jobs of higher-priority tasks (including
task τj itself) are released simultaneously. Therefore, the lemma is proved. �

Lemma 2 For a set of periodic tasks � = {τi} (1 ≤ i ≤ m) with Di ≤ Pi , and having
the same release time for their first jobs, the (D-J)-monotonic policy is an optimal
fixed priority scheduling algorithm. This is true even if the task jitter is larger than
zero. A task set is schedulable by (D-J)-monotonic if the first job of each task meets
its deadline at the worst case as stated in Lemma 1 (Zuhily and Burns 2007).

Lemma 1 implies that if jitters cannot be ignored, the WCRT happens when the
first job of each task is released at the same time. Combining with Lemma 2, if the
deadlines and periods of the task set can be derived by JB-ML, it will be schedulable.

Since (D-J)-monotonic is an optimal fixed priority scheduling algorithm for a set
of tasks {τi} (1 ≤ i ≤ m) with Di ≤ Pi and jitters cannot be ignored, we adopt it in
JB-ML for task scheduling.

4.2 JB-ML approach

4.2.1 Principles

Instead of using the maximum of the worst-case jitters among all the tasks as pro-
posed in ML, in JB-ML, the worst-case jitter or simply call jitter δi of each task τi

is included in the calculation of period and deadline for each task. The estimation of
the worst-case jitter for a task could be based on the network configuration for update
job transmissions. For example since we assume that the network is a TDMA-based
mesh network such as the WirelessHART introduced in Fig. 1, the worst-case jitter
for an end-to-end transmission between a sensor node and the controller can be esti-
mated based on the number of hops between the sensor node and the controller and
the maximum number of retries required for each transmission (Saifullah et al. 2011).
Note that in real cases, the maximum number of retries could be unbounded due to
various factors that may affect update job transmissions. This is the reason why we
will propose a further enhancement of JB-ML called SJB-ML to resolve the problem
in estimating the worst-case jitters.

In JB-ML, we assume that δi for each task is an independent constant (Case II in
Sect. 3.2). Similar to ML, JB-ML is an off-line deterministic method. It determines
the deadlines and periods for the tasks such that the following three constraints are
satisfied:

• Validity constraint: Pi + Di ≤ Vi ;
• Deadline constraint: δi + Ci ≤ Di ≤ Pi ;
• Schedulability constraint: As the tasks are scheduled by (D-J)-monotonic, the fol-

lowing inequality constraint must hold:

i−1∑

j=1

nij × Cj + Ci ≤ Di − δi (1 ≤ i ≤ m)
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where nij denotes the number of times task τj occurs before the first job of τi

completes and n1,j = 0.

Theorem 1 Given a set of periodic tasks � = {τi} (1 ≤ i ≤ m) with deadlines and
periods determined by JB-ML, the task set is schedulable and the temporal consis-
tency of the data objects is guaranteed.

Proof we need to prove that the three constraints of JB-ML can guarantee the schedu-
lability of the tasks and temporal consistency of the data objects. Because of the
schedulability constraint, the first job of each task can meet its deadline. The dead-
line and schedulability constraints combining with Lemma 1 ensure that the set of
tasks can be scheduled by (D-J)-monotonic (Zuhily and Burns 2007). Since the set
of tasks satisfies the validity constraint, the temporal consistency can also be guaran-
teed. Hence, the set of tasks is schedulable and the temporal consistency of the data
objects is guaranteed. �

4.2.2 Assignment order policy in JB-ML

ML applies SVF to determine the assignment orders for calculating the deadline and
period for each task in the task set. It was proved to be optimal such that the CPU
utilization is minimized if jitters can be ignored and the following two restrictions are
satisfied (Xiong and Ramamritham 2004):

m∑

i=1

Ci ≤ min

(
Vj

2

)
(1 ≤ j ≤ m), (1)

{
V1 ≤ V2 ≤ · · · ≤ Vm

�Ci+1,i ≤ 2 · �Vi+1,i (1 ≤ i ≤ m),
(2)

where �Ci+1,i = Ci+1 − Ci and �Vi+1,i = Vi+1 − Vi . Since (D-J)-monotonic has
been shown to give a better performance compared with DM when jitters are consid-
ered, we choose to use (D-J)-monotonic to assign priorities to schedule the released
jobs at the real-time controller. Because the tasks may have very different jitter val-
ues, a task with a smaller validity interval may have a larger jitter comparing with
a task with a larger validity interval. To make the assignment orders consistent with
the priorities of the jobs from the tasks, in JB-ML, we use SV-JF instead of SVF
for determining the assignment orders to calculate the deadlines and periods for the
tasks, i.e., in the inverse order of Vi − δi , and ties are resolved by Vi − δi −Ci . SV-JF
guarantees a task that has a higher order in calculating the deadline will also has a
smaller Di − δi , i.e., higher priority in scheduling using (D-J)-monotonic. For exam-
ple, considering tasks τi and τj with Vi − δi < Vj − δj , task τi has a higher order in
calculating the deadline according to SV-JF. Note that the deadline of task τi is the
sum of Ri and its worst-case jitter, i.e., Di = Ri + δi . According to the Schedulability
Constraint, we can get Ri < Rj , and furthermore, Di − δi < Dj − δj , which means
that τi has a higher priority in scheduling under the (D-J)-monotonic policy. Thus,
the priorities of any tasks in calculating the deadline and in scheduling are consistent
with each other.
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Algorithm 1 Determine deadlines and periods in JB-ML
1: Input: A set of update tasks �={τi}mi=1 (m≥1) with worst-case execution times {Ci}mi=1, validity

intervals {Vi}mi=1, and jitters {δi }mi=1 as well as a priority assignment order τ1 → τ2 → ·· · → τm.
2: Output: deadlines {Di }mi=1 and periods {Pi }mi=1
3: /*Compute deadline and period for τ0*/
4: D0 = δ0 + C0;
5: P0 = V0 − D0;
6: /*Compute Di and Pi for τi*/
7: for i = 1 to m do
8: Ri,0 = Ci ;
9: repeat

10: Di = Ri,0;
11: Ri,0 = Ci ;
12: for j = 1 to i − 1 do
13: /*calculate Ri,0 iteratively*/

14: Ri,0 = Ri,0 + 	Di
Pj


 × Cj ;
15: end for
16: until (Ri,0 == Di ) or (Ri,0 + δi >

Vi
2 )

17: if ((Ri,0 + δi ) >
Vi
2 ) then

18: return Abort;
19: else
20: Di = Ri,0 + δi ;
21: Pi = Vi − Di ;
22: end if
23: end for
24: return Successful;

4.2.3 JB-ML algorithm

Algorithm 1 shows how the deadlines and periods of the tasks are computed accord-
ing to the orders determined from SV-JF. The algorithm is extended from the ML
algorithm and the main difference is that the jitter δi for each task τi is used in calcu-
lation such that the three constraints of JB-ML can be satisfied.

4.3 Comparison of JB-ML with more-less

In this section, we will present the theoretical comparison between ML and JB-ML,
and give the condition that JB-ML outperforms ML in minimizing CPU utilization. In
the analysis, we assume that at least one jitter is not equal to the largest value δmax ,
i.e., ∃i, and δi �= δmax . Otherwise, if ∀i, δi = δmax , the problem will be reduced to the
one studied in Xiong and Ramamritham (2004).

Theorem 2 Consider a set of periodic tasks in Case II. If ∀i, j (1 ≤ i < j ≤ m)

Vi < Vj and Vi − δi < Vj − δj , then the deadline assigned to any task using ML is
larger than or equal to the deadline assigned to that task using JB-ML.

Proof If Vi < Vj and Vi − δi < Vj − δj (1 ≤ i < j ≤ m), the tasks will have the
same priorities in both ML and JB-ML. We know that ML uses the largest jitter δmax

to calculate deadlines and periods, while JB-ML uses jitter δi for task τi . According
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to the schedulability constraints in ML and JB-ML, the deadlines of task τi derived
from ML and JB-ML are, respectively:

Dml
i = δmax +

i−1∑

j=1

(nml
ij × Cj) + Ci (1 ≤ i ≤ m), (3)

D
jb
i = δi +

i−1∑

j=1

(n
jb
ij × Cj ) + Ci (1 ≤ i ≤ m), (4)

where nml
ij and n

jb
ij denote the number of times task τj occurs before the first job of

τi is completed in ML and JB-ML, respectively. Mathematically, nml
ij = 	Dml

i −δmax

Pml
j




and n
jb
ij = 	D

jb
i −δi

P
jb
j


.

Assuming that τk (1 ≤ k ≤ m) is the highest-priority task that satisfies δk < δmax ,
i.e., δi = δmax for 1 ≤ i ≤ k − 1. By reorganizing Eq. (3) and Eq. (4), we can get

Rml
i =

i−1∑

j=1

(⌈
Rml

i

P ml
j

⌉
× Cj

)
+ Ci (1 ≤ i ≤ m), (5)

R
jb
i =

i−1∑

j=1

(⌈
R

jb
i

P
jb
j

⌉
× Cj

)
+ Ci (1 ≤ i ≤ m), (6)

where Rml
i = Dml

i − δmax and R
jb
i = D

jb
i − δi . Rml

i (or R
jb
i ) is the worst case re-

sponse time of task τi in ML (or JB-ML). Note that in order to reduce the CPU uti-
lization of the task set, the summation of the deadline and the period for each task
should be equal to the validity interval in both ML and JB-ML, i.e., Dml

i + P ml
i = Vi

and D
jb
i + P

jb
i = Vi (1 ≤ i ≤ m).

If 1 ≤ i ≤ k − 1, we have δi = δmax(1 ≤ i ≤ k − 1). The calculation of the worst
case response time for τi (1 ≤ i ≤ k − 1) in both ML and JB-ML is the same, thus we
have Rml

i = R
jb
i , Dml

i = D
jb
i , and P ml

i = P
jb
i for all τi (1 ≤ i ≤ k − 1).

If i = k, we have P ml
i = P

jb
i for all τi (1 ≤ i ≤ k − 1) and the preemption from

each task τi (1 ≤ i ≤ k−1) on task τk is the same in ML and JB-ML. This implies that
Rml

k = R
jb
k , i.e., Dml

k − δmax = D
jb
k − δk . Since δk < δmax , we can get Dml

k > D
jb
k

and P ml
k < P

jb
k .

If i = k + 1, because task τi (1 ≤ i ≤ k − 1) has the same period in ML and JB-
ML, i.e., P ml

i = P
jb
i (1 ≤ i ≤ k − 1), the preemption from these tasks on τk+1 in ML

will be equal to that in JB-ML. In addition, since task τk satisfies P
jb
k > P ml

k , the
preemption from task τk on task τk+1 in ML is at least no smaller than that in JB-
ML. Overall, the preemption from the previous k higher-priority tasks on task τk+1

in ML is no smaller than that in JB-ML, i.e., Rml
k+1 ≥ R

jb

k+1. Thus we can derive that

Dml
k+1 − δmax ≥ D

jb

k+1 − δk+1 and Dml
k+1 ≥ D

jb

k+1. The same analysis can be applied

on the task τi (k + 1 < i ≤ m), and we can derive that Dml
i ≥ D

jb
i and P ml

i ≤ P
jb
i

for τi (k + 1 < i ≤ m).
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Table 2 Parameters and results
for Example 1 i δi Ci Vi ML JB-ML

Pi Di Pi Di

1 1 1 12 7 5 10 2

2 1 2 16 9 7 12 4

3 4 1 24 16 8 16 8

Table 3 The result of CPU
utilization with increasing δ3 for
Example 1

Algorithm δ3

3 4 5 6 7 8

JB-ML 0.325 0.329 0.333 0.338 0.344 0.35

ML 0.384 0.423 0.483 N/A N/A N/A

This proves that if ∀i, j (1 ≤ i < j ≤ m) Vi < Vj and Vi − δi < Vj − δj , Dml
i ≥

D
jb
i holds for all τi (1 ≤ i ≤ m). �

Corollary 1 Consider a set of periodic tasks in Case II. If ∀i, j (1 ≤ i < j ≤ m)

Vi < Vj and Vi − δi < Vj − δj , and the task set is schedulable using both ML and
JB-ML, then the CPU utilization obtained from JB-ML is lower than that from ML.

Proof The total CPU utilization is:

U =
m∑

i=1

(
Ci

Pi

)
. (7)

From Theorem 2, we know that P ml
i ≤ P

jb
i and at least one equality does not hold.

According to Eq. (7), it is easy to see that the CPU utilization obtained from JB-ML
is consistently lower than that obtained from ML. �

Example 1 Consider three tasks τ1, τ2, τ3 with computation times 1, 2, 1, validity in-
tervals 12, 16, 24, and jitters 1, 1, 4, respectively. Table 2 shows the relative deadlines
and periods derived by ML and JB-ML respectively. As shown in Table 3, the CPU
utilization of ML is 0.423, while that of JB-ML is only 0.329. Table 3 also shows the
change in CPU utilization when the value for δ3, the largest jitter among the three
tasks, is varied. As shown in Table 3, the CPU utilization of ML is always higher than
that of JB-ML. When δ3 equals to or larger than 5, the task set cannot be scheduled
in ML, but JB-ML still can schedule it.

5 Statistical Jitter-based more-less

In this section, taking JB-ML as a building block, we propose the Statistical Jitter-
based More-Less approach (SJB-ML). In SJB-ML, all the assumptions of ML and JB-
ML are followed except the assumption on the worst-case jitter. In SJB-ML, the jitter
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values for the tasks can be unbounded. Instead of guaranteeing a complete temporal
consistency, SJB-ML aims at providing a good balance between statistical guarantee
in temporal consistency for real-time data objects and the schedulability of update
tasks.

5.1 Statistical guarantee in temporal consistency

Deterministic methods for maintaining real-time data temporal consistency, such as
ML (Xiong and Ramamritham 1999) and its extension (Xiong and Ramamritham
2004), take the WCRT as the deadline for each task. However, if the jitters of the up-
date jobs are not constant and even worse are unbounded, it will be difficult to have a
good estimation on the WCRT and impossible to deterministically guarantee the tem-
poral consistency of all the real-time data objects. Some of the update jobs may arrive
too late to be scheduled and have to be dropped. On the other hand, in some real-time
systems, it is generally tolerable to allow applications to read a certain percents of
stale data, especially when the update cost for achieving deterministic temporal con-
sistency is very high while the impact of missing some update deadlines is tolerable.
For these systems, an approach for maintaining statistical temporal consistency of
real-time data objects could be a better solution.

Definition 2 Q∗
i percents of statistical guarantee in temporal consistency for a real-

time data object Xi is achieved if at least Q∗
i percents of jobs of τi can be completed

before their deadlines over an arbitrarily long period of time.

Note that if the QoS is guaranteed at Q∗
i , the probability for n consecutive jobs of

a task to miss their deadlines is (1 − Q∗
i )

n, which could be very small if n is large.

5.2 Principles of SJB-ML

In this section, we will discuss the principles and the details of SJB-ML. Unlike ML
and JB-ML, SJB-ML is designed for distributed real-time systems where the jitters of
the update jobs from the same task may vary (Case III in Sect. 3.2). Since the tem-
poral consistency of real-time data objects and schedulability of update tasks can be
seriously affected by the variation of jitters, the main challenge here is how to min-
imize the impacts of the varying jitters such that the required QoS of real-time data
temporal consistency can be met and maximized. SJB-ML addresses this problem
by adopting a mixed scheduling approach: (1) it defines an off-line schedule simi-
lar to ML and JB-ML; and (2) it maintains an on-line scheduler to adaptively handle
the varying jitters of update jobs. The three main steps of SJB-ML as shown in Al-
gorithm 2 are summarized in below, and their details will be elaborated in the next
sub-section.

1. Construct the jitter distribution for each task τi based on the jitter values collected
in a given time window;

2. Determine the reference jitter δ∗
i according to the required QoS Q∗

i for each data
object Xi and then calculate the relative deadline Di and period Pi for each task
τi based on the reference jitter δ∗

i ; and
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Algorithm 2 Framework of the SJB-ML algorithm
1: Input: A set of update tasks � = {τi}mi=1 (m ≥ 1) with worst-case execution times

{Ci}mi=1, validity intervals {Vi}mi=1, required QoS {Q∗
i
}m
i=1, and jitter distribution {Fi}mi=1

as well as a priority assignment order τ1 → τ2 → ·· · → τm.
2: Output: A schedule of the task set T .

3: /*Q, Qe and Ql store the normal, early and late jobs.*/
4: Q = Qe = Ql = null;
5: /* Step 1: Construct the distribution of the jitters for each task τi . */
6: Construct(Fi ) (1 ≤ i ≤ m);

7: /* Step 2: Derive the reference jitter {δ∗
i
}m
i=1 and calculate deadlines and periods

according to Algorithm 1. */
8: Calc_Reference_Jitter({Q∗

i
}m
i=1, {fi(δ)}mi=1);

9: JB-ML({Vi}mi=1, {Ci}mi=1, {δ∗
i
}m
i=1);

10: /* Step 3: Admit and schedule the jobs online. */
11: Schedule(Qe , Q, Ql );

3. In runtime, execute an admission control test (ACT) on each late job such that
a late job will be admitted only if it can be finished before its deadline without
affecting the required QoS guaranteed to any data objects; and then schedule all
the jobs using the (D-J)-monotonic scheduling.

Note that in runtime, it monitors the QoS of temporal consistency provided by
each update task over a chosen long period of operation time. If the temporal consis-
tency of a data object over the period of time is lower than or dropped close to the
required QoS, a new distribution for the jitters will be constructed (Step 1), and then
the reference jitter, the relative deadline and period of each task will also be recalcu-
lated (Step 2). As will be illustrated in the experiment section, the admission control
test can effectively maximize the total QoS provided to be significantly higher than
the required QoS, recalculation of jitter distribution is only required when there is a
great change in jitter distribution continuously for a long period of time.

5.3 Algorithm details

5.3.1 Determination of the reference Jitters, periods and deadlines

Figure 4(a) shows a probability density function (PDF) fi(δ) to illustrate the jitter
distribution for the jobs of task τi . If Q∗

i percents of the jobs from task τi have to be
guaranteed to be completed before their deadlines, we determine a jitter δ∗

i , called
the reference jitter, from Eq. (8) such that the percentage of the jobs whose jitters are
no larger than reference jitter δ∗

i is Q∗
i percents.

Q∗
i =

∫ δ∗
i

0
fi(δ)d(δ) (8)

In practice it may not be easy to model the jitter and derive its probability density
function (PDF) for each update task. Therefore, in SJB-ML, we construct the empiri-
cal cumulative distribution function (ECDF) F̂i(δ) instead of PDF fi(δ) based on the
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Fig. 4 Illustration of Jitter
distribution

jitter values collected in the latest time window W with a fixed length of time L. The
time window length L is chosen to be a large value to make sure that the constructed
ECDF is stable and the required QoS can be satisfied. This will also help reduce the
number of unnecessary ECDF computation and update. Then, according to the gener-
alized inverse distribution function of F̂i which will be described later, we derive the
reference jitter δ∗

i satisfying the QoS requirement Q∗
i of task τi , as shown in Fig. 4(b).

If all the jobs of task τi with jitters no larger than the reference jitter δ∗
i are completed

before their deadlines, at least Q∗
i percents of τi ’s jobs can be guaranteed, and the

required QoS is also guaranteed. Hereafter, we call the jobs whose jitters equal to δ∗
i

as normal jobs. The jobs whose jitters are smaller than δ∗
i are called early jobs, and

the jobs whose jitters are larger than δ∗
i are called late jobs.

Note that in the system initialization stage (when the system time t is 0), if we do
not have the jitter values of the tasks for building the ECDF F̂i(δ) for each task, we
may use the method proposed in JB-ML to obtain the maximum (worst-case) jitter δi

for each update task τi and assign it to be the reference jitter δ∗
i . When the system

time t is larger than L, we will construct the empirical CDF F̂i(δ) for δi based on the
collected jitter values in the time window (t − L, t]. If we define for y ∈ [0,1], the
generalized inverse distribution function of F̂i is F̂−1

i (y) = infx∈R{F̂i(x) ≥ y}, then
the reference jitter δ∗

i will be calculated as the Q∗
i percentile, i.e., F̂−1

i (Q∗
i ):
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Fig. 5 An example of the early job, late job and normal job

δ∗
i =

{
δi if t < L

F̂−1
i (Q∗

i ) if t ≥ L

To reduce the computation and communication overheads, instead of updating
F̂i(δ) and δ∗

i continuously, the controller records the accepted update jobs, which
are completed before their deadlines, on the fly for each task. This value indicates
the degree of temporal consistency provided for each task in the current operation
period L. Once the percentage of accepted update jobs is lower than or dropped to be
close to the given QoS Q∗

i , it will reconstruct the empirical CDF for δi by sorting the
collected jitter values in the latest time window of size L in the ascending order and
derive the new reference jitter as the Q∗

i percentile.
Line 9 in Algorithm 2 determines the period and relative deadline for each update

task using the reference jitters obtained above. The calculation in SJB-ML follows the
constraints defined in JB-ML, but it uses the reference jitter δ∗

i to replace δi for each
task.

5.3.2 Online scheduling of released jobs

In Step 3 (Line 11), when an update job arrives (or called released), the scheduler at
the real-time controller first decides if it is a normal job, a late job or an early job.
Since the jitters of the jobs from a task may change with time, as shown in Fig. 5,
the released jobs may be affected by or affect the execution of other released jobs.
Case 1 shows that Ji,j+1 is a normal job, i.e., δi,j+1 = δ∗

i . According to JB-ML,
Ji,j+1 can be finished before its deadline if the total preemption time from higher
priority jobs is no more than that incurred in JB-ML. Case 2 shows an early job
Ji,j+1, which is released at r ′

i,j+1. It may preempt the lower-priority jobs that are to
be executed during the time interval [r ′

i,j+1, ri,j+1] and make them not schedulable.
At the same time, Ji,j+1 may also be preempted by other higher-priority jobs and
cannot be finished before its deadline. Case 3 shows a late job Ji,j+1. Its late arrival
may also affect the execution of other lower-priority jobs.

Recall that we need to provide a statistical guarantee in temporal consistency for
each data object Xi to be at least Q∗

i . To achieve this, we design a scheduler, in here,
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Fig. 6 The base scheduler and the iterative scheduler in SJB-ML

called the Base Scheduler which admits all normal jobs and early jobs but rejects all
late jobs. If all the early and normal jobs of τi are admitted and can be completed
before their deadlines, the required Q∗

i will be achieved. However, as explained in
above example, some of the early and normal jobs may miss their deadlines due
to preemptions from higher-priority early jobs. To resolve this problem, the Base
Scheduler maintains two queues, Qe for early jobs and Q for normal jobs. In Qe

and Q, the jobs are sorted according to their priorities. Each time, the scheduler
selects a job from Q with the highest priority for execution. If Q is empty, the job
in Qe with the highest priority will be chosen. An early job will be moved from Qe

into Q if the current time t is equal to its release time as determined by its reference
jitter, i.e., t = si,j +δ∗

i . Once it is moved into Q, its priority will be compared with the
currently executing job. If its priority is higher, it will preempt the currently executing
job for execution.

Although the Base Scheduler can achieve the required QoS of temporal consis-
tency of a real-time data object as all its normal and early jobs are finished timely,
some of the late jobs which may be able to be completed before their deadlines are re-
jected unnecessarily. Furthermore, postponing the release time of an early job Ji,j+1
from r ′

i,j+1 to ri,j+1 defers its finish time. In addition, the processor will be idle
during the time interval [r ′

i,j+1, ri,j+1] if only early jobs are waiting to be executed
while Q is empty. To complete more jobs especially the late jobs to further improve
the real-time data temporal consistency above the required QoS, as shown in Fig. 6,
the scheduler maintains one more queue, Ql for the late jobs, and adds an Admis-
sion Control Test (ACT) module to test the schedulability of the late jobs maintained
in Ql . If a late job can be scheduled, it will be admitted instead of being rejected
immediately. We call the enhanced scheduler as the Iterative Scheduler.

In the Iterative Scheduler, the ACT performs a schedulability test on the late jobs in
Ql when a job switch is happened, i.e., the schedulability test is executed when either
(1) the currently executing job is preempted by a higher-priority job; or (2) a new job
arrives when the processor is idle. To minimize the testing cost, the test is performed
on the jobs in Ql with priority higher than the job that preempts the processor when
a job switch is happened. These candidate jobs take the schedulability test according
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to their priorities determined by (D-J)-monotonic. Once any one of them passes the
test, it will be moved into Q and the test will be stopped. After the schedulability test,
the jobs in Q and Qe are scheduled in the same way as in the Base Scheduler.

The schedulability test algorithm is summarized in Algorithm 3. For a late job
Ji,j , if the total remaining execution time from the higher-priority jobs that have
been released and maintained in Q, Qe and Ql plus Ci is larger than di,j − ri,j ,
Ji,j will fail to pass the schedulability test and will be rejected, i.e., deleted from
the queue Ql (Line 5). Otherwise, the algorithm estimates the total preemption time
from all higher-priority jobs that will be released before the deadline of Ji,j with
the assumption that all these jobs have a jitter equal to their reference jitters. If the
estimated total preemption time plus Ci is smaller than the deadline of Ji,j , i.e., the
late job passes the test and Ji,j will be moved into Q. Then, the late job will be treated
as a normal job (Line 21). If the estimated total preemption time plus Ci exceeds the
deadline of Ji,j , Ji,j will fail to pass the schedulability test and has to wait for the
next round of testing (as shown in Fig. 6) hoping that some of the higher-priority jobs
may be rejected later (Line 19) and then it can be admitted.

It can be observed in Algorithm 3 that the total cost for performing the schedu-
lability test is low and this will also be illustrated in the performance studies to be
reported in the next section. The cost of the schedulability test for each late job con-
sists of two parts: the cost for each schedulability test and the number of schedula-
bility tests performed for each late job. Note that no schedulability test is necessary
for early and normal jobs. As shown in Algorithm 3, the complexity of each schedu-
lability test is Vi/2 · O(i) because the complexity of the for loop is O(i) and the
repeat loop may at most execute di,j − ri,j times, where i(1 ≤ i ≤ m) is the task in-
dex and di,j − ri,j ≤ Di ≤ Vi/2. For each late job, at most Di number of tests will be
taken. The worst case happens if the late job takes a schedulability test at each time
point from its release time to its absolute deadline. Normally, as shown in Table 5 in
Sect. 6.3, the number of tests for each late job is low, around 3, on average.

6 Performance evaluation

In this section, we will report the important results obtained from our performance
studies on JB-ML and SJB-ML as compared with ML. Section 6.1 describes the sim-
ulation model and experiment settings. Sections 6.2 and 6.3 report the performance
of JB-ML and SJB-ML respectively. Section 6.4 reports the impacts of ML, JB-ML
and SJB-ML on the performance of user transactions for a system using the update
first method (Xiong and Ramamritham 2004) to co-schedule the update jobs and user
transactions.

6.1 Simulation model and parameters

The simulation model was developed based on the network model introduced in
Fig. 1. It consisted of a real-time controller and a fixed set of sensor nodes. The
sensor nodes were connected to the controller through a wireless mesh network sim-
ilar to the one shown in Fig. 1. Each sensor node ran an update task. It generated
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Algorithm 3 Schedulability test by ACT on Ji,j

1: Input: job Ji,j with δi,j > δ∗
i

.
2: Output: if job Ji,j passes the test, it is admitted for execution; otherwise, it will be rejected or waits

for the next round of test.

3: sum = ∑i−1
h=1 Jh,k.cremain; /* calculate the total remaining execution time of all released higher pri-

ority jobs Jh,ks at t . */
4: if (ri,j + sum + Ci >= di,j ) then
5: reject Ji,j and return FALSE; /*The preemptions from the released higher-priority jobs make Ji,j

to miss its deadline.*/
6: else
7: Ri,j = sum + Ci ;
8: /*The repeat and while loop calculates the preemptions from the released and future (non-released)

higher-priority jobs.*/
9: repeat

10: R′
i,j

= Ri,j ; /*Temporally keep Ri,j for comparison.*/
11: Ri,j = sum + Ci ; /* Initialize Ri,j for recompute it.*/
12: /* Compute the preemptions from higher-priority tasks. */
13: for each higher priority job Jh,k (h < i) to be admitted in [t, t + Ri,j ] do

14: Ri,j = Ri,j + (⌈R′
i,j

Ph

⌉ − 1
) × Ch;

15: end for
16: d ′

i,j
= ri,j + Ri,j ; /*d ′

i,j
is the deadline of Ji,j considering the preemptions from all the re-

leased and future higher-priority jobs.*/
17: until (d ′

i,j
> di,j or R′

i,j
== Ri,j )

18: if d ′
i,j

> di,j then
19: wait for the next round of test and return FALSE;
20: else
21: accept Ji,j and return TRUE;
22: end if
23: end if

update jobs following a period determined by the adopted method, i.e., ML, JB-ML
or SJB-ML. The generated update jobs were forwarded to the controller to update
the corresponding real-time data objects maintained at the controller. It was assumed
that the controller was a single processor system and the real-time data objects were
maintained in the main memory. Since each update job accessed to one data object,
no concurrency control was required for resolving the data conflicts between update
jobs. The length of each experiment run was at least 1,000 times of the longest valid-
ity interval amongst all the tasks so that the main results generated were stable, i.e.,
further increase in the simulation length did not make any significant changes on the
experiment results.

Table 4 summarizes the set of parameters and the baseline settings for the experi-
ments. Note that in the experiments, we did not aim at studying the performance for
a particular distributed real-time system. Instead, we wanted to illustrate the perfor-
mance characteristics and schedulability of our proposed methods in achieving the
performance goal of guaranteeing the temporal consistency of real-time data objects
under different system settings. Thus, a wide range of workloads was used to test
their performance by changing the number of update tasks as well as other important
parameters such as the worst-case execution time of an update task and the distribu-
tion of the jitters. Furthermore, the values for the parameters were chosen according
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Table 4 Experiment settings
Symbol Definition Default Value

System Parameters

N� Number of tasks [50, 300]

Vi (ms) Validity interval of τi [1000, 15000]

Ci (ms) Worst-case execution time of τi [5, 15]

Q∗
i

Mean QoS requirement 0.75

JB-ML Parameters

μi (ms) Mean value of jitter for all tasks 260

σi (ms) Standard deviation of jitter 80

SJB-ML Parameters

μ′
i

(ms) Mean value of jitters for τi 260

σ ′
i

(ms) Standard deviation of jitters for τi 80

θi Scale of the 	 distribution of τi 0.5

ki Shape of the 	 distribution of τi
E(δi,j )

0.5

User Transactions

Slack factor of the user transactions 8

No. of user transactions arrived per
second

4

No. of objects accessed by a user
transaction

[5, 15]

CPU Time for each data access 5

to the settings used in Xiong and Ramamritham (1999, 2004) so that our results could
be compared with the findings from them. The settings in Xiong and Ramamritham
(2004) were defined according to the study of an air traffic control system in Locke
(1997). As shown in Table 4, in the baseline setting, the number of real-time data
objects (as well as the number of update tasks) in the system was varied from 50
to 300 and their validity intervals were chosen to be uniformly distributed between
1,000 and 15,000 ms. The worst-case execution time of an update task was uniformly
distributed between 5 and 15 ms. In JB-ML, the worst-case jitter for the tasks was as-
sumed to follow the normal distribution N (1/μi, σi) such that the jitter values could
be distributed in a relatively wide range and easily varied by changing the variance of
the distribution. In SJB-ML, the jitter δi,j of a job from task τi followed the Gamma
distribution 	(ki, θi) following the findings in Li and Mason (2007), and the expected
value of the jitters E(δi,j ), for task τi equal to ki ∗ θi . We fixed θi at 0.5 for all the
tasks and E(δi,j ) followed the normal distribution N (1/μ′

i , σ
′
i ).

In the third set of experiments, we included user transactions in the system to
study the impacts of update tasks scheduling on the performance of the user trans-
actions. They accessed to real-time data objects to get new values generated from
update jobs. The number of data objects to be accessed by a user transaction was
uniformly distributed between 5 to 15, and each data access took 5 ms. The user
transactions were scheduled using the earliest deadline first (EDF) scheduling and
the update first method (Xiong and Ramamritham 2004) was used to co-schedule the
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user transactions and update jobs. The slack factor determined the slack time for a
user transaction before its deadline and was fixed at 8. The following equation was
used to determine the deadline of a user transaction τi :

Deadline(τi) = AT(τi) + (ET(τi) × SlackFactor) (9)

where AT (τi) and ET (τi) are the arrival time and total execution time of τi , re-
spectively. Note that in the simulation model, similar to Xiong and Ramamritham
(2004), we did not consider the concurrency control between update jobs and user
transactions as the conflicts were resolved by the application of the concept of data
similarity (Kuo and Mok 1993). It was also assumed that the synchronization delay
in accessing shared data object was small and could be ignored as all the data objects
were resided in the main memory and the problem of priority inversion was resolved
by the use of the priority inheritance method (Sha et al. 1990).

6.2 Experiment 1: Comparison between JB-ML and ML

In this set of experiments, we compared the performance of JB-ML with ML in terms
of the CPU utilization and schedulability under different update workloads by chang-
ing the number of update tasks in the system. In addition, we also evaluated the
impacts of different jitter distributions and worst-case execution times of an update
task on their performance.

Figure 7(a) shows the CPU utilization of JB-ML and ML where the jitters of the
tasks follows the normal distribution N (260,80) and the worst-case execution time
of an update task Ci is uniformly distributed from 5 to 15. Consistent with our the-
oretical analysis shown in Sect. IV-C, as shown in Fig. 7(a), the CPU utilization of
JB-ML is consistently lower than that of ML, and the improvement is greater when
the number of tasks is larger. The difference in CPU utilization reaches 10% when
the number of tasks is more than 150. The lower CPU utilization of JB-ML is due to
longer update generation periods of the tasks. Consistent with the results shown in
Fig. 7(a), when the worst-case execution time of an update task is reduced to 2 to 8,
the CPU utilization of JB-ML is still consistent lower than that of ML as shown in
Fig. 7(b).

Figure 8 shows the comparison in CPU utilization between JB-ML and ML when
different jitter distributions and worst-case execution times are used. We use �U

(Eq. (10)) to denote the relative difference in the CPU utilization between ML and
JB-ML.

�U = Uml − Ujbml

Uml
(10)

Consistent with the results shown in Fig. 7, as shown in Fig. 8, the utilization of
JB-ML is always lower than that of ML for different distributions of jitters and worst-
case execution times of an update task. It can also be observed in Fig. 8 that if the
distribution of the jitters is more dispersive, the improvement on the CPU utilization
of JB-ML is more significant. For instance, �U is about 1% when the distribution is
N (260,10) while �U is about 10% when the jitter distribution is N (260,80). Note
that if σi is larger, the jitters of the jobs from the same task set is more dispersive.
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Fig. 7 CPU utilization vs. no. of update tasks

The results show that JB-ML can effectively reduce the total CPU utilization for pro-
cessing update jobs to provide a deterministic guarantee in the temporal consistency
of the real-time data objects.

To show the better schedulability of JB-ML, we randomly generated 600 task sets
for each task set of size from 50 to 300 tasks. As shown in Fig. 9, when the number of
tasks is less than 230, both JB-ML and ML can schedule all the randomly generated
600 task sets. However, when the number of tasks is more than 250, the performance
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Fig. 8 �U vs. no. of update tasks

of ML drops dramatically in particular if the jitter distribution is more dispersive. For
example, when the jitter distribution is N (260,80) and number of tasks equals to
300, ML can only schedule about 16% of the generated task sets while the percentage
of successfully scheduled task sets by JB-ML remains close to 75%. The results show
that JB-ML is less affected by the variation of the jitters compared with ML.
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Fig. 9 Schedulability vs. no. of update tasks

6.3 Experiment 2: Performance of SJB-ML

In this set of experiments, we evaluated the performance of SJB-ML. If the jitter of
a job is unbounded, it is very difficult to define a good schedule using ML and JB-
ML. Even if a schedule can be obtained, the performance will be very poor as the
maximum jitter of a task could be very large and consequently the update generation
periods have to be very short. Thus, in the experiments, we concentrated on studying
the effectiveness of SJB-ML using the Iterative Scheduler as compared with the Base
Scheduler in achieving the required QoS. The performance of the Base Scheduler was
used as a baseline to demonstrate the effectiveness of the admission control test (ACT)
in the Iterative Scheduler in improving the overall performance of the system by
admitting more late jobs and at the same time to complete them before their deadlines.

The parameter settings for Experiment 2 were similar to those used in Experi-
ment 1, except that the jitter values of the update jobs from each task τi were varied
following the Gamma distribution 	i(k, θ). The default required QoS Q∗

i for each
data object was set to be 0.75, and two more QoS, 0.85 and 0.95, were used for com-
parison. The main metrics used in the experiments were the accept ratio (Eq. (11)),
the consistency ratio (Eq. (12)) and the largest number of continuous rejected jobs,
which was a measure of the distribution of the temporal consistency of the data ob-
jects. Note that if the temporal inconsistency of two data objects are similar, a smaller
value of the largest number of continuous rejected jobs in general indicates that the
temporal consistency of the data object is distributed relatively more even. In the
experiments, we used N−

i and N+
i to denote the number of rejected late jobs and

the number of accepted jobs of τi , respectively. We used ti to denote the total time
duration that the temporal consistency of data object Xi was maintained. T was the
length of the simulation time. Other performance measures were the CPU utilization
and number of schedulability tests performed.
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Fig. 10 Accept ratio vs. no. of update tasks

accept ratio = 1

m

m∑

i=1

N+
i

N−
i + N+

i

(11)

consistency ratio = 1

m

m∑

i=1

ti

T
(12)

Figures 10, 11 and 12 show the accept ratios, the consistency ratios and the CPU
utilization for the Iterative Scheduler and the Base Scheduler, respectively, where the
required QoS is 0.75. In Fig. 10, it can be observed that the Iterative Scheduler always
gives a higher accept ratio than that of the Base Scheduler. Similar results on the
consistency ratio are shown in Fig. 11. The higher accept ratio and consistency ratio
of the Iterative Scheduler indicate that the admission control test (ACT) is effective
in admitting more late jobs to provide a higher degree in temporal consistency of the
data objects. An interesting observation from Figs. 10 and 11 is that the consistency
ratio is slightly higher than the corresponding accept ratio especially for the Base
Scheduler. This is because although we use the WCRT of a task to determine the
periods for generating update jobs, in most cases, a job can be completed well before
its WCRT. Therefore, if a job misses its deadline and the corresponding data object
becomes invalid, the invalid period of the data object in most cases will be shorter
than the WCRT of the job. Another interesting observation from Fig. 11 is that the
consistency ratio of the Base Scheduler increases with number of tasks. It is because
the consistency ratio of the Base Scheduler increases with decreasing task priority
as shown in Fig. 13. For example, as shown in Fig. 13, when the number of tasks
is 300, the consistency ratios of the higher priority tasks (i.e., those tasks with ID
< 50) are around 0.82 while that of the lower priority tasks (ie task ID > 250) are
around 0.87. The higher consistency ratios of the lower priority tasks are due to the
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Fig. 11 Consistency ratio vs. no. of update tasks

Fig. 12 CPU utilization vs. no. of update tasks

reservation of more slack times for them in the calculation using the WCRT. The
higher consistency ratios of the lower priority tasks make the consistency ratio of the
whole system increase gradually with the number of tasks. As a result of accepting
more jobs for processing, the Iterative Scheduler has a higher CPU utilization than
the Base Scheduler as shown in Fig. 12, and it can achieve a higher degree in temporal
consistency of the data objects.
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Fig. 13 Consistency ratio vs. task ID

Although the Iterative Scheduler gives a better performance compared with the
Base Scheduler, it is important to examine the amount of overhead for accepting
more jobs. We used the number of schedulability tests performed as a measure of the
overhead. In Table 5, we summarize the number of schedulability tests per released
job, the number of schedulability tests per late job and the number of schedulability
tests per accepted late job for different number of tasks and required QoS. As shown
in the table, their values increase with number of tasks and decrease with required
QoS. The number of tests per late job has a slightly lower value compared with the
number of tests per accepted late job as most of the late jobs are accepted for process-
ing in the schedulability tests. When the number of tasks is 50 and the required QoS
is 0.95, both the number of tests per late job and the number of tests per accepted late
job are smaller than 1.5. Although the values raise to around 6 when the number of
tasks is 300 and the required QoS is 0.75, the improvement in temporal consistency
of the data objects are significant making them close to 100% as shown in Fig. 11.
Since the number of tests per job (including early, normal and late jobs) is smaller
than 0.5 for most cases, the admission control test in the Iterative Scheduler can ef-
fectively accept more late jobs to achieve a higher degree in temporal consistency of
the data objects without incurring a heavy testing cost.

Figure 14 shows the average number of schedulability tests performed for a late
job of each task. It is interesting to see that the average number of tests decreases
with task priority. For example, as shown in Fig. 14, when the required QoS is 0.75,
the numbers of schedulability tests of the higher priority tasks (i.e., those tasks with
ID < 50) are between 1 to 2 while that of the lower priority tasks (i.e. task ID >

250) are between 4 to 6.5. The average number of tests for each task decreases with
required QoS. For example, when the required QoS is 0.95, the average number of
tests for different tasks are mostly lower than 1.5 even for the higher priority tasks. It
is because if the required QoS is higher, the number of late jobs will be smaller.
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Table 5 No. of schedulability tests

QoS 0.75 0.85 0.95

No. of update tasks 50 150 300 50 150 300 50 150 300

No. of tests per job 0.43 0.8 1.21 0.198 0.414 0.83 0.06 0.132 0.19

No. of tests per late job 1.43 3.24 5.85 1.32 2.76 4.54 1.21 2.35 3.6

No. of tests per acc. late job 1.69 3.63 6.33 1.56 3.10 4.94 1.35 2.55 3.83

Fig. 14 No. of schedulability tests vs. task ID

Figure 15 shows the comparison of the largest number of continuous rejected jobs
between the Base Scheduler and the Iterative Scheduler. It can be observed that in
the Iterative Scheduler, except τ1, the largest numbers of continuous rejected jobs for
all the tasks are equal to or close to zero. However, in the Base Scheduler, the largest
numbers of continuous rejected jobs vary from 4.5 for the higher priority tasks to
about 3 for the lower priority tasks. For τ1, the largest number of continuous rejected
jobs is the same in both Base Scheduler and Iterative Scheduler. It is because all late
jobs of τ1 are rejected as the amount of slack times allocation to them are zero in
calculating their WCRT. The results show that with the Iterative Scheduler even if
the temporal consistency cannot be achieved, the degree of temporal inconsistency
will be more evenly distributed over the time.

Figures 16 and 17 show the consistency ratios and the CPU utilization of the Iter-
ative Scheduler with different QoS requirements when the number of tasks is varied.
Consistent with the results shown in Fig. 11, the consistency ratios are always main-
tained to a value close to 1 for different required QoS even when the number of tasks
is large. Similarly, the CPU utilization is about the same for different QoS as the
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Fig. 15 Largest no. of continuous rejected jobs vs. task ID

Fig. 16 CPU utilization vs. no. of update tasks

number of accepted jobs and achieved temporal consistency of the data objects are
similar for different required QoS.

As a summary, SJB-ML can effectively handle the situations that the jitters of
update jobs are varied in run-time. The experiment results presented in this section
support the believe that SJB-ML can provide a statistical guarantee in temporal con-
sistency of real-time data objects based on given QoS requirements. The Iterative
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Fig. 17 Consistency ratio vs. no. of update tasks (iterative scheduler)

Scheduler can effectiveness accept more jobs to achieve a better temporal consistency
of the real-time data objects compared with the Base Scheduler and the overhead for
the schedulability tests depending on the number of tasks and required QoS.

6.4 Experiment 3: Co-scheduling with user transactions

In this set of experiments, we studied the impacts of ML, JB-ML and SJB-ML on
the performance of user transactions for a system using the update first method
to co-schedule update jobs and user transactions. The user transactions were as-
sociated with deadline constraints on their completion times. Meeting the dead-
lines and providing temporally consistent data objects for their executions were
two important requirements in supporting effective real-time applications. Thus,
in this set of experiments, we measured the miss ratio of the user transactions
as an indicator of the impacts of ML, JB-ML and SJB-ML, on the performance
of the user transactions. It was defined as the total number of user transactions
whose deadlines were missed over the total number of user transactions pro-
cessed.

As shown in Fig. 18(a), consistent with our expectation, the miss ratios of
both ML and JB-ML increase with the number of update tasks. It is because in-
creasing the number of update tasks increases the update workload, as shown in
Fig. 19(a). Since the update jobs are executed at higher priorities compared with
the user transactions, the probability of missing their deadlines becomes higher
when the update workload is heavier. Comparing Figs. 18(b) with (a), we can
see that if the worst-case execution time Ci is larger, the update workload will
be heavier. Therefore, the miss ratio of user transactions will be higher. An-
other important observation from Fig. 18 is that the miss ratio of ML is always
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Fig. 18 Miss ratio vs. no. of update tasks

higher than that of JB-ML. For example, as shown in Fig. 18(a), when the num-
ber of update tasks is 300, 40 percents of user transactions miss the deadlines
in ML while the miss ratio of user transactions is around 20 percents in JB-ML.
It is because the CPU utilization resulted from ML is higher than that from JB-
ML.

Figures 20(a) and (b) show the miss ratios of the Base Scheduler and the Itera-
tive Scheduler when Ci is uniformly distributed in [5, 15] and [2, 8], respectively.
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Fig. 19 CPU utilization vs. no. of update tasks

As can be observed in Fig. 20, the miss ratios of both Base Scheduler and Iterative
Scheduler remain zero when the number of update tasks is not large, e.g., smaller
than 150 in Fig. 20(a). However, when the number of update tasks is large (e.g.,
more than 250), some user transactions miss their deadlines due to heavy update
workload, as shown in Figs. 21(a) and (b). As shown in Fig. 20(b), the total CPU
utilization of all the update jobs is more than 70 percents for the Iterative Sched-
uler when the number of update tasks is 500. It is important to note in the figure
that the miss ratios of the Base Scheduler are lower than that of the Iterative Sched-
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Fig. 20 Miss ratio vs. no. of update tasks

uler when the update task workload is very heavy. It is because the Iterative Sched-
uler accepts more update jobs in particular the late jobs to maximize the temporal
consistency of the real-time data objects. The tradeoff of higher temporal consis-
tency from the Iterative Scheduler is that the total update workload becomes higher
and the impacts to user transactions is more significant. As shown in Fig. 22, the
achieved QoS (consistency ratio) from the Iterative Scheduler is significantly much
higher than that from the Base Scheduler. It is close to 100 percents for differ-
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Fig. 21 CPU utilization vs no. of update tasks

ent number of update tasks while that from the Base Scheduler is around 80 per-
cents.

7 Conclusions and future works

This paper studies the problem of how to maintain temporal consistency of real-time
data in distributed real-time systems where transmission delays cannot be simply ig-



Real-Time Syst (2012) 48:387–429 425

Fig. 22 CPU utilization vs. no. of update tasks

nored. The variation in jitter values can seriously affect the schedulability of the sys-
tems and the total cost for installing the update jobs. However, the previous works,
such as More-Less, did not provide a thorough study on this problem and only used an
oversimplified assumption to handle the jitter problem. In this paper, based on More-
Less (ML), we propose two extensions to deal with the jitter problems, called Jitter-
based More-Less (JB-ML) and Statistical Jitter-based More-Less (SJB-ML). JB-ML
assumes that different tasks may have different jitters, and it provides a deterministic
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guarantee in temporal consistency of the real-time data. SJB-ML further assumes that
the jitters may vary among different jobs from the same task, and provides a statis-
tical guarantee based on given QoS requirements of the real-time data objects. It is
shown through our theoretical analysis and extensive experiments that both JB-ML
and SJB-ML can significantly outperform the More-Less scheme in terms of improv-
ing the schedulability while still maintaining the required real-time data temporal
consistency.

Most of the previous works on this topic concentrate on the scheduling of update
jobs by assuming the use of the update first method for co-scheduling with user trans-
actions such that the scheduling of update jobs will not be affected by the scheduling
of user transactions. However, the update first method may not be very effective in
maximizing the performance of user transactions. Thus, an important future work
is to study efficient co-scheduling algorithms such that the temporal consistency of
real-time data objects can be maintained and at the same time the response time con-
straints of user transactions can be satisfied.
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