
A Model-driven Safety Certification Method for
Process Compliance

Barbara Gallina
IDT, Mälardalen University, P.O. Box 883, SE-72123 Västerås, Sweden

barbara.gallina@mdh.se

Abstract—A safety case is a contextualized structured argu-
ment constituted of process and product-based sub-arguments
to show that a system is acceptably safe. The creation of a
safety case is an extremely time-consuming and costly activity
needed for certification purposes. To reduce time and cost, reuse
as well as automatic generation possibilities represent urgent
research directions. In this paper, we focus on safety processes
mandated by prescriptive standards and we identify process-
related structures from which process-based arguments (those
aimed at showing that a required development process has
been applied according to the standard) can be generated and
more easily reused. Then, we propose a model-driven safety
certification method to derive those arguments as goal structures
given in Goal Structuring Notation from process models given in
compliance with Software Process Engineering Meta-model 2.0.
The method is illustrated by generating process-based arguments
in the context of ISO 26262.

Keywords—Safety processes, safety cases, process-based argu-
ments, safety standards, model driven engineering, Software Process
Engineering Meta-model (SPEM) 2.0, Structured Assurance Case
Metamodel (SACM), Goal Structuring Notation (GSN)

I. INTRODUCTION

Safety standards (e.g. ISO 26262 [1], etc.) define processes
(also known as safety life-cycles) to be adopted during the
development of safety-critical systems.

According to these safety standards, safety-critical systems
are expected to be capable to mitigate the causes of accidents
(i.e. hazards). The top-level safety process activities consist of
the definition of the system to be developed, identification and
categorization of the hazards and risk assessment procedures.
Once hazards are identified, they are categorized by assigning
a domain-specific safety level. Within the automotive domain
(ISO 26262), for instance, a safety level is called ASIL-
Automotive Safety Integrity Level- and can assume one out of
five values, ranging from negligible QM and A to D, where D
represents a hazard that may lead to catastrophic consequences.
Once hazards are categorized, safety requirements aimed at
reducing risk are elicited as well as traced throughout the
traditional development steps (specification, design, implemen-
tation, etc.). In parallel, verification and validation activities are
carried out to check that the elicited safety requirements are
correctly specified, designed, implemented and deployed.

In general, the process definition within standards ex-
hibits different abstraction levels (i.e. domain-independent
vs. domain-dependent). Moreover, the process definition is
parametric (i.e. activities to be performed, guidelines to be
followed, etc. depend on the required safety level). The
prescriptive nature of these processes has to do with the

assumption (not always valid as discussed in [2]) that the
adoption of best practices during the systems development
is correlated to the achievement of good products. For this
reason, in some domains, compliance with those processes is
required for certification purposes. As discussed in [3], process
compliance is of particular value whenever confidence in
product-based arguments (supporting safety claims) is limited.

Concerning process compliance, in ISO 26262 we can read:

• “The organization shall institute, execute and maintain
organization-specific rules and processes to comply
with the requirements of ISO 26262” (Part 2, 5.4.2.2).

• Organization-specific rules and processes for func-
tional safety is a specific work-product that must be
provided (Part 2, 5.5.1).

• “A functional safety audit shall be carried out for
items, where the highest ASIL of the item’s safety
goals is ASIL (B), C, or D, in accordance with 6.4.7,
6.4.3.5 i) and 6.4.8.2.” (Part 2, 6.4.8.1), where a
functional safety audit is a work-product aimed at
evaluating the process implementation.

• “The organization may tailor the safety lifecycle” (Part
2, 5.4.5.1) and tailoring rules are then detailed.

Thus, for certification purposes, it is crucial to provide
work-products (process-based arguments) aimed at showing
that either ISO 26262-compliant process activities have been
performed or they have been tailored appropriately according
to the tailoring rules provided within ISO 26262. The provision
of such arguments is expensive and time-consuming since
”compiling” the evidence (significant amount of documents)
within a compelling argument requires attentive expertise but
also unnecessary repetitive work. Currently, no ready-to-use
approach exists to reduce time and cost related to the creation
of this kind of process-based arguments. Thus, we propose
to enable the creation as well as reuse of process-based
arguments, by introducing a model-driven safety certification
method, called MDSafeCer, that allows safety managers to
(semi) automatically generate process-based arguments from
process models and avoid unnecessary repetitive work.

The rest of the paper is organized as follows. In Section II,
we provide essential background information. In Section III
we present the proposed model-driven engineering method
aimed at generating process-based arguments from process
models. In Section IV, we apply the method. In Section V,
we discuss related work. Finally, in Section VI we present
some concluding remarks and future work.



II. BACKGROUND

In this section, we present the background information on
which we base our work. In particular, in Section II-A, we
recall what should be meant by process and we briefly present
SPEM 2.0, the process modeling language used to model safety
processes. In Section II-B we recall the basic principles of
model-driven engineering. Finally, in Section II-C, we briefly
present GSN and SACM, the graphical notation and its meta-
model used to model safety arguments.

A. Process and SPEM 2.0-based process modeling

A process identifies a structure that is imposed on the
development of a system. More precisely, a process can be
defined as a set of partially ordered tasks that have to be
executed to develop systems. The main process elements that
can be associated to a task are: work-products (e.g., artifacts,
deliverables, outcomes, etc.), roles, guidance (e.g., templates),
tools, etc. Tasks can be grouped to form an activity and
activities in turn can be grouped to form a phase. To model
a process various languages are at disposal. In this paper,
we select SPEM 2.0 (see [4], [5] for the motivation of this
choice). SPEM (Software Process Engineering Meta-model)
2.0 [6] is the OMG’s standard for systems and software
process modelling. SPEM 2.0 offers static as well as dynamic
modelling capabilities. In this paper, we mainly limit our
attention to the statics modeling. SPEM 2.0 offers support
for the definition of reusable process content (MethodContent
package). Process engineers are enabled to define reusable
work definition elements (e.g. phases, activities, tasks, etc.) as
well as elements representing: who is responsible for the work
(roles), how the work should be performed (guidance), what
should be expected as in/output (work-products) and which
tool should be used to perform the work.

In Table I, we recall a subset of SPEM 2.0 modelling
elements, which can be interrelated to model static process
structures (except for TaskUse that can be used to model
dynamic structures). More precisely, we only recall those
elements that we use in Section III.

TABLE I. ICONS DENOTING METHOD CONTENT (USE) ELEMENTS

Task TaskUse Role WorkProduct Tool Guidance

Despite their general-purpose nature, SPEM 2.0 modeling
elements implicitly permit process engineers to model safety
concerns. In [3], however, a SPEM 2.0 extension is proposed
to model safety concerns (e.g. integrity levels) explicitly.

B. Model-driven Engineering

Model-driven Engineering (MDE) [7] is a model-centric
software development methodology aimed at raising the level
of abstraction in software specification and increasing automa-
tion in software development. MDE indeed exploits models
to capture the software characteristics at different abstraction
levels. These models are usually specified by using (semi)
formal domain-specific languages. For automation purposes,

model transformations are used to refine models (model-to-
model transformations) and finally generate code (model-to-
code transformations). A model transformation (e.g. Model-
to-Model) transforms a source model (compliant with one
meta-model) into a target model compliant with the same
or a different meta-model. Besides vertical transformations
for software development, horizontal transformations can be
conceived for other purposes (e.g. verification, etc.). A stan-
dard transformation can be defined as a set of rules to map
source to the target. Each rule describes how to transform
source instances to the identical target. Many languages are
available to specify transformations. For instance, to specify
Model-to-Model (M2M) transformations, declarative as well
as operational languages can be used. Transformations are
executed by transformation engines.

C. GSN

As already summarized in [8], to document safety cases,
several approaches exist [9]. GSN [10] is one of them. GSN
is a graphical notation, which permits users to structure
their argumentation into flat or hierarchically nested graphs
(constituted of a set of nodes and a set of edges), called
goal structures. To make the paper self-contained, in Fig. 1,
we recall the concrete syntax of the core GSN modelling
elements used in Section IV. As Fig. 1 shows, all the nodes
are characterized by an identifier (ID) and a statement, which
is supposed to be written in natural language.

Fig. 1. Subset of GSN concrete syntax.

We recall that a Goal represents a claim about the system;
a Strategy represents a method that is used to decompose a
goal into sub goals; a Solution represents the evidence that
a particular goal has been achieved; a Context represents
the domain or scope in which a goal, evidence or strategy
is given; Supported by represents an inferential (inference
between goals) or evidential (link between a goal and the
evidence used to substantiate it) relationship. Finally, In context
of represents a contextual relationship.

ARgument Metamodel (ARM) [11] represented an effort
to unify and standardize the graphical notations (namely GSN
and CAE [12]) broadly used for documenting safety cases.
By providing a meta-model that defines the abstract syntax
of a unified argumentation language, ARM thus constitutes a
step towards the formalization of these notations. The OMG
specification provides tables that show the mapping between
ARM concepts and GSN/CAE concepts. Columns 2-3 in
Table II recall the mapping between ARM and GSN (focus on
core elements). More recently, another OMG standard, called
SACM, superseded ARM. SACM (Structured Assurance Case
Metamodel) [13] combines ARM and Software Assurance
Evidence Metamodel (SAEM) and preserves the mapping
shown in Table II.



III. GENERATION AND REUSE OF PROCESS-BASED
ARGUMENTS

In the context of safety certification, it is required to collect
and structure the evidence that a system is acceptably safe.
Generally, this requires the provision of process as well as
product-based arguments. A safety case should be constituted
of two branches (one devoted to process-based argumentation
and the other to product-based argumentation). These branches
could be developed in parallel and be inter-related. In some
safety standards, these branches can be provided separately.
As recalled in the introduction, within ISO 26262, the process-
based argumentation is provided separately to be evaluated
and documented within the Safety Functional Audit work-
product. In this section, we focus on the process-based branch
and we present a method to generate and reuse process-
based arguments. In particular, in Section III-A we give an
overview of our model-driven safety certification method. In
Section III-A, we provide the conceptual mapping between
SPEM 2.0 and ARM/SACM. Then, in Section III-C, we sketch
in natural language the meaningful steps of the algorithm that
should be executed to automatically generate process-based
arguments from process models.

A. Model-driven Safety Certification

To generate certification artifacts, we propose to use MDE
principles and apply them in the context of certification.
The idea is to pioneer a Model-Driven Safety Certification
(MDSafeCer) method enabling automatic generation of argu-
mentation models from process models. The goal is not the
creation of novel goal structures, but the generation of goal
structure that have successful stories and a proven compelling
power. Thus, reuse of experience is crucial to provide adequate
transformation rules allowing for the generation of easy-to-
maintain and easy-to-review arguments.

Fig. 2. MDSafeCer overview specified in SPEM 2.0.

Fig. 3. Safety process modeling.

As Fig. 2 shows, MDSafeCer is constituted of three chained
iterative tasks. The first task, called “Safety process modeling”
is detailed in Fig. 3. This first task shows that a process
engineer is responsible of modeling a safety process according
to the best practices in process modeling as well as according
to the standard(s). To model a process, a modeling tool is used.

As shown in Fig. 4, once the model is available the process
engineer generates a process-based argument by using a model

transformation implemented within a transformation engine.
As shown in Fig. 5, this argument, which can be considered
a “raw” or better defeasible [14] argument, is then checked
and eventually corrected (if fallacies are detected) and/or
completed by a safety argumentation expert. Checking and
completion is an iterative task, which takes in input also the
feedback provided by external assessors. If the transformation
engine or the safety argumentation expert detect problems re-
lated to the process-based argument due to e.g. missing/wrong
information in the process model, new iterations of the first
task are required.

Fig. 4. Process-based argument generation.

Fig. 5. Process-based argument Check&Completion.

To perform the generation of the process-based argument
via model transformation, no constraint on the source and
target meta-models exists. However, by considering the current
state of the art in terms of standardization, tool-support and
active research community, we choose SPEM 2.0 for the source
space and ARM/SACM for the target space. Fig. 6 shows the
M2M intended transformation. In case of more appropriate
future alternatives, our general approach remains valid. As
recalled in Section II, both SPEM 2.0 and ARM/SACM are two
domain-specific meta-models and in the context of this paper
they represent a possibility towards the realization of our MD-
SafeCer method, allowing for the generation of ARM/SACM-
compliant argumentation models from SPEM 2.0-compliant
process models.

Fig. 6. M2M tranformation.

As we discussed in [15] and as it was mentioned in [16],
the goal of automation is not to replace human reasoning, but
to focus it on areas where they are best used. Similarly, in
this work we are not aiming at eliminating human reasoning



from the process of safety reasoning and argumentation, but
to support it by providing automation of more clerical tasks.
The human expertise on safety argumentation is still required
to check and complete the argument obtained via model
transformation and thus ensure that the final argument will
be compelling, comprehensible and valid [17].

B. Mapping SPEM 2.0 and ARM/SACM Concepts

As recalled in Section II, crucial process elements can be
associated to a process task ta, namely a set of roles R, a set of
work-products W , a set of guidances G, and a set of tools T . In
the context of process compliance certification, the execution
of a process task constitutes a process-based sub-argument.
Based on this statement, we can easily develop a mapping
between a subset of SPEM 2.0 concepts and ARM/SACM con-
cepts. From the presence of a task ta in a process model, the
goal (sub-goal) “the task ta has been executed in compliance
with the required standard” should be generated. The process
elements associated to the task constitute the evidence (solu-
tion in GSN terms) within a process-based sub-argument that
the task has been executed. Thus, from the presence of these
associated process elements, appropriate solutions (information
elements) should be generated and linked to the sub-goal by
using supportedBy (an instance of the AssertedEvidence) links
that relate solutions (information elements) with the sub-goal
(claim). Table II summarizes this concepts mapping.

TABLE II. CONCEPTS MAPPING

SPEM2.0 GSN ARM/SACM
Task ta Goal Claim
Role ro Solution InformationElement

Work product wp Solution InformationElement
Tool to Solution InformationElement

Guidance gu Solution InformationElement
Relationship between ta and ro/to/wp/gu supportedby AssertedEvidence

Moreover, if the process elements associated to ta are
of different types (roles, work-products, etc.), then a strategy
(ArgumentReasoning in ARM/SACM) should be included to
argue over each single element within each set R, W , G,
T . Finally, a relationship inContextOf (AssertedContext in
ARM/SACM) should relate the sub-goal related to the task
with a piece of contextual information related to the standard
to be considered.

C. Process-based sub-arguments generation

The main goal of process-based argumentation is to show
compliance with the mandated safety process(es). We propose
a possible argumentation pattern constituted of a top level
claim stating that “the process adopted is in compliance with
the required standard(s)”. This claim can be decomposed by
showing that all the process activities have been executed
and that in turn for each activity all the tasks (belonging
to the set TASKS) have been executed and so on until an
atomic process-related work-definition unit is reached. This
method supports compositional argumentation and reuse. In
the case a task represents a commonality [4], its corresponding
argumentation can be reused as it is and composed with other
argumentation fragments.

In what follows, we sketch the rules conceived to generate
in output the task-related sub-goal-structure. In input, the

algorithm takes: a process structure (more specifically, a task
structure like the one shown in Fig. 7), the in-progress goal
structure (ARM/SACM-compliant sub-graph), the connection
points. The rules are given by following the same approach
followed in [15]. We create a process-based argument-fragment
for a process task ta by using the following rules:

1. Create the top-level goal ID:G1 and statement: “The task
ta has been carried out”. Create the context to be associated
to G1. Context ID:C1 and statement: “Standard {x}”, where x
is a variable. Create an inContextOf link to relate G1 and C1.

Develop the goal G1 further by creating four strategies and
for each strategy a set of sub-goals.

(a) S1: “Argument over roles R”.

(b) S2: “Argument over work products W ”.

(c) S3: “Argument over tools T ”.

(d) S4: “Argument over guidance G”.

2. Further develop strategy S1 and for every role ro in
R: create a goal G1.ro “ro is certified” and develop this
goal further by creating the corresponding solution E.ro “ro’s
certifications” and the supportedBy links necessary to link S1
with G1.ro and G1.ro with E.ro.

3. Further develop strategy S2 and for every work product
wp in W : create a goal G1.wp “wp is available” and develop
this goal further by creating the corresponding solution E.wp
“{wp-related name}” and the supportedBy links necessary to
link S2 with G1.wp and G1.wp with E.wp.

4. Further develop strategy S3 and for every tool to in
T : create a goal G1.to “to is qualified” and develop this
goal further by creating the corresponding solution E.to “to’s
qualifications” and the supportedBy links necessary to link S3
with G1.to and G1.to with E.to.

5. Further develop strategy S4 and for every guidance gu
in G: create a goal G1.gu “Guidance gu has been followed”
and develop this goal further by creating the corresponding
solution E.gu “{gu where and how}”and the supportedBy links
necessary to link S4 with G1.gu and G1.gu with E.gu.

The rules are presented using GSN terminology to allow
the reader to quickly see the generation of the GSN goal
structure presented in Section IV. Other users might prefer
using CAE instead of GSN. However, as discussed in the
previous subsection, the mapping between GSN, CAE and
ARM/SACM is clearly defined and our approach is based on
ARM/SACM. As discussed in [9], non-graphically inclined
modelers might prefer a textual concrete syntax instead of
GSN. In such a case, ARM/SACM can be easily mapped to
a textual representation of argumentation concepts, e.g., by
paraphrasing GSN goal-structures. Beside personal preferences
(image/word inclined) of MDSafeCer users, a documenting
style may result more talkative when interacting with assessors.
So, ideally, once the in-progress meta-models will be stable, a
powerful MDSafeCer could support various transformations.

IV. APPLYING MDSAFECER

In this section, we apply MDSafeCer. First of all we act as
process engineers and we model in SPEM 2.0 a process task



in compliance with ISO 26262. In particular, we consider the
task Hazard identification, part of the Hazard analysis and risk
assessment clause. Then, we apply the generation rules given
in Section III and we obtain the corresponding process-based
argumentation in GSN. The rules are performed manually but
this task is expected to be tool-supported. Then, we play the
role of the safety manager and we evaluate the quality of the
generation.

A. Process Task Modelling

Fig. 7 shows how the task Hazards identification can be
modeled in SPEM 2.0.

Fig. 7. Hazards identification in SPEM 2.0.

To the task “Hazard identification” (also names ta1) the
following process elements are associated: a role (the responsi-
ble for hazards identification also named ro1), a work-product
(Filled-in FMEA template also named wp1), a guidance (work-
sheet and guidelines for Failure Mode and Effects Analysis,
known as FMEA template, also named gu1), and a tool (FMEA
software packages, also named to1).

B. Process-based Sub-argument Provision

Fig. 8. Hazards identification in GSN.

On the basis of the information contained in the model
(shown in Fig. 7) related to the task “Hazards identification”,
by applying the rules given in Section III-C, the sub-goal-
structure presented in Fig. 8 can be obtained. This task is
required for all ASIL and also in other standards. As discussed
in [4], prescriptive processes are mandated by various stan-
dards and the “Hazards identification” task can be considered
a cross-domain commonality. The potential reusability of the
process-based arguments is supported by a recent work [18],

which shows by modeling an automotive process line that in
automotive standards common process elements are present.
Thus, reuse in terms of process elements and process-based
certification artefacts is a concrete possibility.

C. Process-based Sub-argument Evaluation and Completion

A safety argumentation expert at a first glance may be
disappointed in front of this initial result. The fragment ob-
tained via transformation rules, however, represents an in-
teresting starting point. The rules permit the generation of
fragments which contain the essential elements for process
compliance. For sake of simplicity and space reasons, the rules
are not particularly detailed and do not handle exceptions yet
(e.g. missing information in the process model from which
default GSN elements could be proposed). Thus, a safety
argumentation expert could propose to introduce additional
GSN modeling elements to: 1) denote parts that should be
developed (e.g., by adding Undeveloped goals [10]) and 2)
strengthen the confidence of the argument (e.g., by adding
Justification [10], Assumption [10]).

Moreover, from a structuring point of view, the expert
could suggest to improve the generation towards contract-
based and modular structuring methods. Assuming for instance
that tasks can be performed by different teams working in
different departments, a contract-based approach would make
sense since it would emphasize the contractual nature of the
application of the development process. Contracts [10] could
be added to join and organize the different process-based
argumentation fragments generated by different teams. Further-
more, the evidence concerning the certification/qualification of
the tool could be represented via a different modeling element
(i.e., an AwaySolution [10]) to state that this evidence is
provided elsewhere as a result of the tool qualification process
(ISO 26262, Part 8.11). To ensure flexibility, various structures
could be provided and offered as alternatives to satisfy different
argumentation styles.

V. RELATED WORK

To ensure compliance as well as reduce time and cost, dif-
ferent solutions (compliance checking, reuse, automatic gener-
ation, etc.) are being investigated under different perspectives,
mainly product-based perspectives. Exceptions to this product-
based focus are the contributions presented in [19]. In [19],
authors propose a workflow-based approach to provide: 1)
reference models for the safety processes mandated by the
standards and 2) automatic compliance checking capabilities
of user-defined processes against reference models. As we
discussed in [15], generating safety case arguments to increase
efficiency of safety certification is becoming a hot research
topic. A method for generating such arguments based on an au-
tomatic extraction of information from existing work-products
is presented in [20]. The generated arguments consist of
summaries of different work products created within a project.
Similarly, a method for safety case assembly from process
artefacts is presented in [21]. None of these methods, however,
introduces a clear model-driven method. Meta-modeling in the
context of safety cases is a rather recent research topic and thus
the development of model-driven methods has beed delayed
due to the absence of standardized, stable and fully formalized
meta-models. More recently, in [22], [23], we provided an



intuition on how families of safety cases could be generated
from models related to process lines/families. This work differs
from these ones since it focuses on sets of processes.

VI. CONCLUSION AND FUTURE WORK

To reduce cost and time during the certification process, in
this paper, we have presented a novel model-driven method,
called MDSafeCer, which permits users to generate process-
based arguments from process models. In essence, MDSafe-
Cer maps (ideally reusable) process structures onto (ideally
reusable) argumentation structures (patterns). The method has
been shown in the context of ISO 26262. However, what has
been presented is valid also in the context of other standards.
The method is also applicable for assurance cases and more
generally trust cases, whenever process-based arguments play
a significant role in the certification process. Concluding, our
work offers a novel solution allowing for reusable, and (semi)-
automatic derivable process-based arguments.

In a short-term future, in cooperation with industry, safety
assessors and based on the state of the art (e.g., [24]), we plan
to fully define a pattern for arguing about process compliance.
Then, we plan to tune our rules to generate process-based
arguments in compliance with our pattern. In a medium/long-
term future, we plan to provide a prototype of tool-support.
The idea is to exploit currently available open-source tools
and provide a tool-chain. In particular, we intend to transform
process models developed in EPF-Composer [25] into process-
based sub-arguments to be given in input to GSN-compliant
tools such as D-Case Editor [26]. The main goal of the pro-
totype is to provide evidence with respect to the effectiveness
of the approach in terms of time and cost reduction (manual
vs. semi-automatic work). Once the evidence is achieved, the
intention is to cooperate with industry to provide an industry-
friendly tool support.

Acknowledgments: This work has been partially supported
by the European Project ARTEMIS SafeCer [27] and by the
Swedish SSF SYNOPSIS project [28]. We thank Henrik Thane
(Safety Integrity AB) for fruitful discussions concerning the
role of assessors in safety certification.

REFERENCES

[1] ISO26262, “Road vehicles Functional safety. International Standard,
November,” 2011.

[2] D. Jackson, M. Thomas, and L. I. Limmet, Software for Depend-
able Systems: Sufficient Evidence? Washington DC, USA: National
Academy Press, 2007.

[3] B. Gallina, K. R. Pitchai, and K. Lundqvist, “S-TunExSPEM: Towards
an Extension of SPEM 2.0 to Model and Exchange Tunable Safety-
oriented Processes,” in Proceedings of the 11th International Confer-
ence on Software Engineering Research, Management and Applications
(SERA), Prague, Czech Republic, August 7-9, 2013. Springer SCI,
2014.

[4] B. Gallina, I. Sljivo, and O. Jaradat, “Towards a safety-oriented process
line for enabling reuse in safety critical systems development and
certification.” in Post-proceedings of the 35th Software Engineering
Workshop (SEW-35),12-13 October 2012. IEEE, October 2012.

[5] S. Kashiyarandi, “Reusing Process Elements in the Context of Safety
Critical Systems Development and Certification,” Master’s thesis,
Mälardalen University, School of Innovation, Design and Engineering,
Sweden, to appear.

[6] Object Management Group, Software & Systems Process Engineering
Meta-Model (SPEM), v2.0. Full Specification formal/08-04-01, 2008.

[7] M. Biehl, “Literature study on model transformations.” Embedded
Control Systems. Royal Institute of Technology, Stockholm, Sweden,
Tech. Rep. ISRN/KTH/MMK/R-10/07-SE, 2010.

[8] R. Dardar, B. Gallina, A. Johnsen, K. Lundqvist, and M. Nyberg,
“Industrial experiences of building a safety case in compliance with iso
26262,” in IEEE 23rd International Symposium on Software Reliability
Engineering Workshops (ISSREW), 2012, pp. 349–354.

[9] C. Holloway, “Safety case notations: Alternatives for the non-
graphically inclined?” in Proceedings of the 3rd IET International
Conference onSystem Safety. IET Press, 2008, pp. 1–6.

[10] GSN, “Community Standard Version 1,” 2011.
[11] ARM, “http://www.omg.org/spec/arm/.”
[12] L. Emmet and G. Cleland, “Graphical notations, narratives and persua-

sion: A pliant systems approach to hypertext tool design,” in Proceed-
ings of the Thirteenth ACM Conference on Hypertext and Hypermedia,
ser. HYPERTEXT ’02. New York, NY, USA: ACM, 2002, pp. 55–64.

[13] SACM, “http://www.omg.org/spec/sacm/1.0.”
[14] J. Rushby, “Mechanized support for assurance case argumentation,”

in Proceedings of the 1st International Workshop on Argument for
Agreement and Assurance (AAA), ser. LNCS. Springer-Verlag, 2013.

[15] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson, “Generation of
safety case argument-fragments from safety contracts,” in The 33rd
International Conference on Computer Safety, Reliability and Security,
ser. LNCS, vol. 8666. Springer-Verlag, 2014, pp. 170–185.

[16] J. Rushby, “Logic and epistemology in safety cases,” in Proceedings of
the 32nd International Conference on Computer Safety, Reliability, and
Security, ser. LNCS, vol. 8153. Springer-Verlag, 2013, pp. 1–7.

[17] I. Habli and T. Kelly, “Safety case depictions vs. safety cases - would the
real safety case please stand up?” in System Safety, 2007 2nd Institution
of Engineering and Technology International Conference on, 2007, pp.
245–248.

[18] B. Gallina, S. Kashiyarandi, H. Martin, and R. Bramberger, “Modeling
a safety- and automotive-oriented process line to enable reuse and flex-
ible process derivation,” in 8th IEEE International Workshop Quality-
Oriented Reuse of Software, July 2014.

[19] P. W. H. Chung, L. Y. C. Cheung, and C. H. C. Machin, “Compliance
flow - managing the compliance of dynamic and complex processes,”
Know.-Based Syst., vol. 21, no. 4, pp. 332–354, May 2008.

[20] E. Armengaud, “Automated safety case compilation for product-based
argumentation,” in ERTS 2014: Embedded Real Time Software and
Systems, February 2014.

[21] E. Denney and G. Pai, “A lightweight methodology for safety case
assembly,” in Proceedings of the 31st International Conference on Com-
puter Safety, Reliability and Security, ser. LNCS, vol. 7612. Springer-
Verlag, 2012, pp. 1–12.

[22] B. Gallina, S. Kashiyarandi, K. Zugsbrati, and A. Geven, “Enabling
cross-domain reuse of tool qualification certification artefacts,” in 1st
International Workshop on DEvelopment, Verification and VAlidation
of cRiTical Systems, SAFECOMP Workshop, ser. LNCS, vol. 8696.
Springer-Verlag, 2014, pp. 255–266.

[23] B. Gallina, K. Lundqvist, and K. Forsberg, “THRUST: A Method
for Speeding Up the Creation of Process-related Deliverables,” in
Proceedings of the 33rd IEEE Digital Avionics Systems Conference,
ser. DASC, 2014.

[24] J. Birch, R. Rivett, I. Habli, B. Bradshaw, J. Botham, D. Higham,
P. Jesty, H. Monkhouse, and R. Palin, “Safety cases and their role in iso
26262 functional safety assessment,” in Computer Safety, Reliability,
and Security, ser. Lecture Notes in Computer Science, F. Bitsch,
J. Guiochet, and M. Kaniche, Eds. Springer Berlin Heidelberg, 2013,
vol. 8153, pp. 154–165.

[25] Eclipse Process Framework, “http://www.eclipse.org/epf/.”
[26] Y. Matsuno, “D-Case Editor: A Typed Assurance Case Editor,” in

Proceedings of the 13th Real Time Linux Workshop, Prague, Czech
Republic, October 20-22, 2011.

[27] ARTEMIS-JU-269265, “SafeCer-Safety Certification of Software-
Intensive Systems with Reusable Components,” 2013.

[28] SYNOPSIS-SSF-RIT10-0070, “Safety Analysis for Predictable Soft-
ware Intensive Systems. Swedish Foundation for Strategic Research.”


