

Optimizing Touchscreen Keyboards for Gesture Typing
Brian A. Smith1,2

* Xiaojun Bi2 Shumin Zhai2

1Columbia University
New York, NY, USA

brian@cs.columbia.edu

2Google Inc.
Mountain View, CA, USA
{xiaojunbi, zhai}@acm.org

ABSTRACT
Despite its growing popularity, gesture typing suffers from
a major problem not present in touch typing: gesture
ambiguity on the Qwerty keyboard. By applying rigorous
mathematical optimization methods, this paper
systematically investigates the optimization space related to
the accuracy, speed, and Qwerty similarity of a gesture
typing keyboard. Our investigation shows that optimizing
the layout for gesture clarity (a metric measuring how
unique word gestures are on a keyboard) drastically
improves the accuracy of gesture typing. Moreover, if we
also accommodate gesture speed, or both gesture speed and
Qwerty similarity, we can still reduce error rates by 52%
and 37% over Qwerty, respectively. In addition to
investigating the optimization space, this work contributes a
set of optimized layouts such as GK-D and GK-T that can
immediately benefit mobile device users.

Author Keywords
Gesture typing; touchscreen keyboard optimization; text
entry; word-gesture keyboard; shape writing

ACM Classification Keywords
H.5.2. [Information interfaces and presentation]: User
Interfaces—Input devices and strategies.

INTRODUCTION
Gesture typing has gained large-scale adoption on mobile

devices since its conception in the early 2000’s [24]. Today,
gesture typing can be found on all major mobile computing
platforms in products such as ShapeWriter, Swype,
SwiftKey, SlideIT, TouchPal, and Google Keyboard.
Compared to touch typing (tapping), gesture typing offers
several advantages. It supports a gradual and seamless
transition from visually guided tracing to recall-based
gesturing, allows users to approximate words with gestures
rather than tapping each key exactly, and mitigates one
major problem plaguing regular touchscreen typing: the
lack of tactile feedback.*

Despite these benefits, gesture typing suffers from an
inherent problem: highly ambiguous word gestures. Bi,
Azenkot, Partridge, and Zhai [2] showed that the error rate
for gesture typing is approximately 5–10% higher than for
touch typing. This problem occurs because when gesture
typing, the input finger must inevitably cross unintended
letters before reaching the intended one. The Qwerty layout
itself further exacerbates this problem. Because common
vowels such as ‘u,’ ‘i,’ and ‘o’ are arranged together on
Qwerty, many pairs of words (such as “or” and “our”) have
identical gestures, and many others (such as “but” and
“bit”) have very similar gestures. Figure 1(a) shows the
gestures for “or” and “our”—their superstrings “for” and
“four” also have identical gestures. In fact, our analysis
over a 40,000-word lexicon showed that 6.4% of words
have another word with an identical gesture on Qwerty.

Given Qwerty’s obvious problems, rearranging the keys to
make word gestures more distinct should reduce the error

* This work was done while Brian Smith was an intern at Google Inc.

(a) Qwerty (b) GK-D (c) GK-T

Figure 1. Keyboards optimized for gesture typing. The 'o' key is shaded to mark the beginning of the word gestures for "or"
(white) and "our" (black). (a) The Qwerty keyboard suffers from the problem of gesture ambiguity. Many pairs of words (such as

“or” and “our” shown here) share the same gesture on Qwerty. (b) The GK-D keyboard (“Gesture Keyboard—Double optimized”)
is the best compromise for gesture clarity and gesture speed. Here, the gestures for “or” and “our” are noticeably different. (c) The

GK-T keyboard (“Gesture Keyboard—Triple optimized”) is the best compromise for gesture clarity, gesture speed, and Qwerty
similarity. Again, the two gestures are noticeably different.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for third-party components of this work must be honored. For
all other uses, contact the owner/author(s). Copyright is held by the author/owner(s).
CHI 2015, April 18–23, 2015, Seoul, Republic of Korea.
ACM 978-1-4503-3145-6/15/04.
http://dx.doi.org/10.1145/2702123.2702357

Gesture Elicitation & Recognition CHI 2015, Crossings, Seoul, Korea

3365

rate when gesture typing. However, a layout optimized for
gesture clarity (distinctness) might increase the length of
each gesture (reducing typing speed) or may be difficult for
users to learn. Many questions arise when deciding whether
or not to introduce a new layout for gesture typing. For
example, if the layout is exclusively optimized for clarity,
to what degree will it improve in accuracy over Qwerty?
What is the relationship between gesture clarity and gesture
typing speed? Can we design an optimized layout similar to
Qwerty in order to ease the learning process?

In this paper, we explore the layout optimization space
related to gesture typing by applying a rigorous
mathematical optimization. Our research not only deepens
the understanding of the optimization space of gesture
typing, but also contributes a set of optimized layouts that
significantly outperform Qwerty (in terms of both gesture
clarity and speed) and can immediately benefit mobile
device users.

RELATED WORK

Stroke-Based Virtual Keyboards
Cirrin [14] and Quikwriting [17] are the first virtual
keyboards designed specifically for word-level unistroke
text entry. In both of those keyboards, users trace gestures
that alternate from the center of a radial layout to one or
more zones around the center (representing characters),
with one articulation per character. However, since these
gestures are completely determined by character layout
without statistical pattern recognition, the letter layout has
to be one-dimensional and most word-gestures defined on
these layouts are very complex.

SHARK [24] and SHARK2 [11] introduced gesture typing
(also known as shape writing and the word-gesture
keyboard paradigm) as we know it today. In these systems,
users gesture words by swiping from letter to letter on a
virtual Qwerty keyboard. The word gestures are much
simpler than they are on Cirrin and Quikwriting, but since
SHARK and SHARK2 have no central “dead zone” for
strokes to cross from character to character (and users must
stroke over other characters instead), they suffer from an
inherent ambiguity between word gestures (see Figure
1(a)). Even with sophisticated models for predicting users’
intended words, Bi et al. [2] found that the error rate from
gesture typing is 5–10% higher than that from touch typing.

Keyboard Layout Optimization
As has been widely published [18, 19, 21], Qwerty was
designed to reduce jamming in mechanical typewriters by
placing common digraphs (consecutive letter pairs) on
opposite sides of the keyboard. Though this works well for
two-handed or two-finger typing, researchers have long
acknowledged that this is unsuitable for one-finger typing
[9, 12]. There have been many proposed optimized
keyboard layouts over the years for both bimanual [15] and
unimanual typing [5, 6, 8, 13, 18, 20, 21]. Most of these

layouts were optimized for touch typing, but the Square
OSK layout [18] was optimized for stroking.

We should emphasize, however, that existing optimized
layouts are predominantly optimized for typing speed
(essentially minimizing finger travel distance), and that
optimizing for word gesture clarity (as we optimize for
along with gesture typing speed and Qwerty similarity) is
an entirely different, and often conflicting, problem. As an
example, the Dvorak layout arranges common letters in the
home row to make bimanual typing faster [19], but this also
makes word gestures more similar (and less unique, hurting
gesture clarity) since many paths between keys become
straight lines on the home row.

As another example, the ATOMIK [21] and Square
ATOMIK [23] keyboards were optimized for speed with a
bias for having keys appear in alphabetical order. Although
these keyboards were tuned so that the gestures for 17
common words were short and memorable, they were not
specifically optimized for gesture clarity. In fact, these
keyboards predate gesture typing altogether. Other
examples include Quasi-Qwerty [6], which was optimized
for speed and familiarity, and the Sath keyboards [8], which
were optimized for those metrics plus tap interpretation
clarity for improved spell checking.

Few optimized layouts have gained widespread adoption.
This is likely due to both learnability and the complexity of
tapping input: users may type with one, two, or even ten
fingers, and a good layout must accommodate each.
However, the increasing popularity of gesture typing may
offer a better chance at introducing new layouts since most
users gesture words with one finger and our optimized
layouts significantly improve both accuracy and speed over
Qwerty.

OPTIMIZATION METRICS

Gesture Clarity
The gesture clarity metric is the most important metric in
our optimization. The purpose of this metric is to measure
how unique the word gestures on a keyboard layout are. We
based the metric on the location channel in SHARK2 [11]
and represent each word’s gesture as its ideal trace, the
polyline connecting the key centers of the word’s letters.
We define the nearest neighbor of a word 𝑤 to be the word
whose ideal trace is closest to 𝑤’s ideal trace. This is the
word that is most likely to be confused with 𝑤 when
gesture typing, independent from the language model. The
closer a word is to its nearest neighbor, the more likely its
gesture will be misrecognized. The gesture clarity metric
score for a given keyboard layout is simply the average
distance (weighted by words’ frequencies) between each
word and its nearest neighbor on that keyboard layout:

(2) Clarity = ∑ 𝑓𝑤

𝑤∈𝐿

𝑑𝑤 , (1)

Gesture Elicitation & Recognition CHI 2015, Crossings, Seoul, Korea

3366

where 𝑑𝑤 = min
𝑥∈𝐿−{𝑤}

𝑑(𝑤, 𝑥) and ∑ 𝑓𝑤

𝑤∈𝐿

= 1.

𝐿 is a 40,000-word lexicon, 𝑓𝑤 is the frequency of 𝑤, and
𝑑𝑤 is the distance between 𝑤 and its nearest neighbor. We
compute the distance between two ideal traces 𝑤 and 𝑥 via
proportional shape matching. Each gesture is sampled into
𝑁 equidistant points, and the distance is simply the average
of the distance between corresponding points:

(1)
𝑑(𝑤, 𝑥) =

1

𝑁
∑‖𝑤𝑖 − 𝑥𝑖‖2

𝑁

𝑖=1

 (2)

Time Complexity Refinements
Since the gesture clarity metric compares the gestures of
every pair of words to find each word’s nearest neighbor,
its time complexity is 𝛩(𝑁 ∙ |𝐿|2). Here, 𝐿 is the number of
words in the lexicon and 𝑁 is the number of sample points
in each word gesture. Its quadratic time complexity with
respect to 𝐿 stands in stark contrast to the time complexities
of earlier optimization metrics (which are exclusively linear
with respect to 𝐿), making optimization using it intractable.
For our 40,000-word lexicon, there are nearly 800 million
pairs of word gestures to compare for each keyboard layout
that we examine during the optimization process.

To make the metric more tractable, we made two key
algorithmic refinements. First, when searching for the
nearest neighbor for each word, we only considered
prospective neighbors that started and ended with
characters that were located within one key diagonal of the
word’s starting and ending character, respectively. This is
similar to the initial template-pruning step employed in
SHARK2 [11], where the distance threshold in this case is
the diagonal length of a key. Second, we used a small
number of gesture sample points 𝑁 to represent each word’s
gesture. If 𝑁 were too large, the computation would be very
expensive. If 𝑁 were too small, word gestures (especially
longer ones) might not be represented properly, leading to
incorrectly chosen nearest neighbors.

In order to see how small we could make 𝑁 without
affecting the integrity of our results, we performed a small
experiment. First, we found each word’s nearest neighbor
on Qwerty using very fine sampling (𝑁 = 100). Then, we
repeated this step for smaller values of 𝑁 down to 𝑁 = 20
and counted the number of nearest neighbors that were
identical to the 𝑁 = 100 case. Figure 2 shows the results.
When the number of sample points is reduced to 40, 96.9%
of the nearest neighbors are the same as they were before.
We used this value for 𝑁 in our algorithm.

Gesture Speed
The gesture speed metric estimates how quickly users can
gesture type on a keyboard layout. We based this metric on
the CLC model by Cao and Zhai [7]. The model (which
stands for “curves, line segments, and corners”) stems from

human motor control theory, and was designed to predict
the amount of time it takes for a person to make an arbitrary
pen stroke gesture. To do this, the model partitions the
gesture into segments, where each segment is a curve (with
a constant radius of curvature), a straight line, or a corner
(whose interior angle does not need to be 90°). The time
that it takes for a person to gesture each type of segment is
modeled with a different function. For line segments, the
time is modeled with a power function that echoes how
people tend to gesture faster with longer lines:

 𝑇(𝐴𝐵̅̅ ̅̅) = 𝑚 ∙ (‖𝐴𝐵̅̅ ̅̅ ‖2)𝑛. (3)

Here, 𝐴𝐵̅̅ ̅̅ is a line segment, the output 𝑇 is in milliseconds,
‖𝐴𝐵̅̅ ̅̅ ‖2 is the length of 𝐴𝐵̅̅ ̅̅ in millimeters, and both 𝑚 and 𝑛
are constants (found to be 68.8 and 0.469 respectively in
Cao and Zhai’s original formulation).

A polyline gesture is simply a collection of individual line
segments. The time to complete this type of gesture is
modeled as simply the sum of the individual line segments’
functions:

(1)
𝑇(𝑃) = ∑ 𝑇(𝐴𝐵̅̅ ̅̅)

𝐴𝐵̅̅ ̅̅ ∈𝑃

, (4)

where 𝑃 is the polyline and 𝐴𝐵̅̅ ̅̅ is a segment in the polyline.
Although Cao and Zhai found that the angles between
polyline segments (that is, of a polyline's corners) have an
effect on gesture entry time, the magnitude of the effect was
small: less than 40 ms per corner compared to 200–700 ms
per segment. Hence, the model uses corners to delineate
segments but omits their 40 ms contribution.

As with the gesture clarity metric, each word in the lexicon
is represented as its ideal trace. To help compute the metric,
we store a table of the weighted number of occurrences of
each bigram in our lexicon. The weighted number of
occurrences 𝑜(𝑖—𝑗) of a bigram 𝑖—𝑗 (for letters 𝑖 and 𝑗) is
calculated as follows:

Figure 2. Word gesture neighbor sensitivity. The nearest

neighbor that we find for a word depends on how finely the
word gestures are sampled. Here, we show the percentage of

nearest neighbors that are the same as when 100 sample points
are used. The red dot signifies 40 points, the amount we used.

0 10 20 30 40 50 60 70 80 90 100
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Number of Sample Points

N
ea

re
st

N
ei

gh
bo

r
A

cc
ur

ac
y

Gesture Elicitation & Recognition CHI 2015, Crossings, Seoul, Korea

3367

(
1
)

𝑜(𝑖—𝑗) = ∑ 𝑓𝑤 ∙ (# occurrences of 𝑖—𝑗 in 𝑤)
𝑤∈𝐿

 (5)

Here, 𝐿 is the lexicon, 𝑤 is a word in the lexicon, and 𝑓𝑤 is
the frequency of word 𝑤 in 𝐿. Each bigram is represented
by a different line segment in the CLC model. Hence, to
estimate 𝐺, the average time it takes to complete a word
gesture, we calculate the following:

(1)
𝐺 = ∑ 𝑜(𝑖—𝑗) ∙ 𝑇(𝐾𝑖𝐾𝑗

̅̅ ̅̅ ̅̅)
𝑖,𝑗∈𝛼

 (6)

Here, 𝑖 and 𝑗 are both letters in alphabet 𝛼, the set of
lowercase letters from ‘a’ to ‘z.’ 𝐾𝑖 and 𝐾𝑗 are the key
centers of the 𝑖 and 𝑗 keys, respectively, 𝐾𝑖𝐾𝑗

̅̅ ̅̅ ̅̅ is the line
segment connecting the key centers, and the function 𝑇 is
defined in Equation 3. Hence, 𝐺 is measured in
milliseconds.

The last step is to convert the gesture duration 𝐺 into words
per minute (WPM), a measure of typing speed. Doing so
gives us our gesture speed metric score:

(1)
Speed =

60,000

𝐺
 (7)

60,000 represents the number of milliseconds in one
minute. When calculating the gesture typing speed of a
keyboard layout, we do not consider the effects of the space
bar or capitalization (and the Shift key). One of the key
contributions of gesture typing is the fact that spaces are
automatically added between word gestures, eliminating the
need for 1 in approximately every 5.7 characters typed [24].
Moreover, most of today’s gesture-typing systems apply
capitalization and diacritics automatically.

We should also note that, because the CLC model omits the
cost of gesturing corners and the cost of traveling from the
end of one gesture to the beginning of the next, the
calculated speeds generally overestimate the speeds at
which users would actually type. Rick [18] proposed an
alternative to the CLC model that is also based on Fitts’s
law, and although we ultimately chose to use the CLC
model for our metric, we implemented Rick’s model
(without key taps for single-character words) to compare
the models’ behaviors. We found that Rick’s model
consistently output lower speed estimates than the CLC
model, but that they both followed the same overall trend.
More specifically, the mean (std. dev.) ratio between Rick's
model's predicted speeds and the CLC model's predicted
speeds for our final set of optimized layouts is 0.310
(0.004). After normalizing the metrics as described on the
next page, the mean (std. dev.) ratio becomes 0.995 (0.016).

Qwerty Similarity
As has been thoroughly studied [18, 19, 21], the key
obstacle to the widespread adoption of optimized layouts is

the arduous process of learning the new layouts. The
Qwerty similarity metric measures how similar a given
keyboard layout is to Qwerty. By making a new layout
more similar to Qwerty (and hence less alien to longtime
users of Qwerty), we hope to bridge the gap between the
short-term frustration of learning the new layout and the
long-term benefits that the layout provides.

The metric is based on the constraint that Bi, Smith, and
Zhai [6] used when creating the Quasi-Qwerty layout. In
that optimization (which was for typing speed only), keys
were not allowed to move more than one slot away from
their Qwerty locations. Dunlop and Levine [8] later relaxed
this constraint in their multi-objective keyboard
optimization by using the total squared Euclidean distance
between keys’ positions and their Qwerty locations instead.
Since a keyboard layout is essentially a grid of keys, we use
the total Manhattan distance between keys’ positions and
their Qwerty locations to measure Qwerty similarity. Like
Dunlop and Levine’s metric, this allows more freedom than
the hard constraint used by Quasi-Qwerty. However, unlike
Dunlop and Levine’s metric, individual keys are not
punished so severely if they move far from their Qwerty
locations. This allows us to consider layouts in which a few
keys move very far from their Qwerty locations.

The Qwerty similarity metric for a given keyboard layout is
computed as follows:

(1)
Similarity = ∑ (|𝑘𝑖𝑥

− 𝑞𝑖𝑥
| + |𝑘𝑖𝑦

− 𝑞𝑖𝑦
|)

𝑖∈𝛼

 (8)

where 𝑖 is a letter in alphabet 𝛼, the set of lowercase letters
from ‘a’ to ‘z,’ and 𝑘𝑖𝑥

 and 𝑞𝑖𝑥
 are the x-indices of the 𝑖 key

on the given keyboard layout and Qwerty, respectively.
Unlike 𝐾𝑖 and 𝐾𝑗 in Equation 6, which are points with units
of millimeters, 𝑘𝑖 and 𝑞𝑖 are unit-less ordered pairs of
integers that represent the 2D index of key 𝑖’s slot in the
keyboard grid. In most of today’s touchscreen keyboard
layouts, the second and third rows are offset from the first
row by half of a key width. Hence, in order to properly
calculate the Manhattan distance for this metric, we treat
the second and third rows as if they are shifted to the left by
another half of a key width so that the second row is left-
aligned with the first row. The resulting representation of
keyboard layouts is actually identical to the one used for
creating Quasi-Qwerty [6]. The Qwerty similarity metric is
the only one that uses this modified keyboard
representation.

OPTIMIZATION PROCEDURE
We frame the problem of designing a touchscreen keyboard
for gesture typing as a multi-objective optimization, where
the three objectives are improving (1) gesture clarity, (2)
gesture speed, and (3) Qwerty similarity. There are multiple
ways of judging how well a layout meets these objectives.
One way is to create a simple objective function that
somehow combines the objectives’ associated metric scores

Gesture Elicitation & Recognition CHI 2015, Crossings, Seoul, Korea

3368

(for example, by summing the scores in a linear
combination). However, such an approach would force us
to decide how much each metric should count for in
deriving a single optimal layout, when in fact we are more
interested in understanding the behavior of each of the
metrics and the inherent tradeoffs between them.

As a result, although we still employ a simple objective
function as part of our optimization’s second phase, we use
another approach called Pareto optimization for the
optimization at large. Pareto optimization has recently been
used to optimize both keyboard layouts [5] and keyboard
algorithms [4]. In this approach, we calculate an optimal set
of layouts called a Pareto optimal set or a Pareto front.
Each layout in the set is Pareto optimal, which means that
none of its metric scores can be improved without hurting
the other scores. If a layout is not Pareto optimal, then it is
dominated, which means that there exists a Pareto optimal
layout that is better than it with respect to at least one
metric and no worse than it with respect to the others. By
calculating the Pareto optimal set of keyboard layouts rather
than a single keyboard layout, we can analyze the tradeoffs
inherent in choosing a keyboard layout and give researchers
the freedom to choose one that best meets their constraints.

Our optimization procedure is composed of three phases,
described in detail in the subsections below.

Phase 1: Metric Normalization
In the first phase, we perform a series of optimizations for
each metric individually to estimate the minimum and
maximum possible raw values for each metric. We then
normalize each of the metric’s scores in a linear fashion so
that the worst possible score is mapped to 0.0 and the best
possible score is mapped to 1.0. Normalizing the scores
allows us to weight the metrics appropriately in Phase 2.

We use local neighborhood search to perform the
optimizations. In order to more reliably find the global
extrema instead of local extrema, we incorporate a
simulated annealing process similar to the Metropolis
random walk algorithm [10, 20]). Each optimization starts
with a random keyboard layout using the same footprint as
Qwerty and runs for 2,000 iterations. At each iteration, we
swap the locations of two randomly chosen keys in the
current layout to create a new candidate layout. If the new
layout is better than the current layout, we keep the new
layout with 100% probability. Otherwise, we only keep the
new layout with a probability specified by a user-controlled
“temperature.” Higher temperatures increase this
probability, and allow us to escape from local extrema.

In total, we performed 10–30 optimizations for each metric.
We found that the range for the raw gesture typing clarity
metric scores was [0.256 key widths, 0.533 key widths],
that the range for the raw gesture typing speed metric scores
was [50.601 WPM, 77.929 WPM], and that the range for
the raw Qwerty similarity metric scores was [0, 148].

Qwerty’s raw scores for the three metrics are 2.390 mm,
62.652 WPM, and 0, respectively.

Phase 2: Pareto Front Initialization
In this phase, we generate an initial Pareto front of
keyboard layouts by performing even more local
neighborhood searches. The searches are identical to the
ones we perform in Phase 1, except this time we seek to
maximize the score from linear combinations of all three
metric scores. We use 22 different weightings for the linear
combinations and perform roughly 15 full 2000-iteration
local neighborhood searches for each weighting. The
purpose is to ensure that the Pareto front includes a broad
range of Pareto optimal keyboard layouts.

The Pareto front starts out empty at the very beginning of
this phase, but we update it with each new candidate
keyboard layout that we encounter during the searches (at
each iteration of each search). To update the front, we
compare the candidate layout with the layouts already on
the front. Then, we add the candidate layout to the front if it
is Pareto optimal (possibly displacing layouts already on the
front that are now dominated by the candidate layout). The
candidate layout is added whether it is ultimately kept in the
particular local neighborhood search or not. This approach
is similar to the one that Bi et al. [4] used to optimize
keyboard correction and completion algorithms.

Phase 3: Pareto Front Expansion
In the last phase, we perform roughly 200 passes over the
Pareto front to help “fill out” the front by finding Pareto
optimal layouts that are similar to those already on the
front. In each pass, we swap two keys in each layout on the
front to generate a set of candidate layouts, then update the
front with any candidate layouts that are Pareto optimal.
This phase is similar to the optimization used by Dunlop
and Levine [8]. However, by including Phase 2, we can
ensure that all possible solutions are reachable without the
need to swap more than two keys at a time.

Optimization Parameters
We based our optimization’s keyboard representation on
dimensions of the Nexus 5 [16] Android keyboard. Since
most of today’s touchscreen keyboards have very similar
profiles, our results should be applicable to any touchscreen
keyboard. Each key is represented by its entire touch-
sensitive area (with boundaries placed between the center
points of neighboring keys) and is 109 × 165 px (6.22 ×
9.42 mm) in size.

Our lexicon consists of 40,000 words. Before starting the
optimization, we converted words with diacritics to their
Anglicized forms (“naïve” to “naive,” for example),
removed all punctuation marks from words (such as
“can’t”), and made all words completely lowercase. Since
gesture typing systems automatically handle diacritics,
capitalization, and punctuation marks within words, this
should not hurt the integrity of our optimization.

Gesture Elicitation & Recognition CHI 2015, Crossings, Seoul, Korea

3369

Optimization Runtime
Due to the complexity and scope of our work, it took four
machines (with 32 threads apiece) running continuously
over the course of nearly three weeks to obtain the results
presented below.

OPTIMIZED KEYBOARD LAYOUTS
Figure 3 shows the final Pareto front of keyboard layouts
optimized for gesture typing. Overall, the front is composed
of 1,725 keyboard layouts chosen from the 900,000+
candidate layouts that we examined in all. No single layout
on the front is better than all of the others—each layout is
better than the others in some way, and the tradeoffs that
are inherent in choosing a suitable layout from the front are
reflected in the front's convex shape.

More specifically, the front can be viewed as a three-
dimensional design space of performance goals that one can
choose from for different usage scenarios. Layouts with
high gesture clarity scores, gesture speed scores, and
Qwerty similarity scores are more apt to exhibit lower error
rates, expert-level gesture entry times, and initial gesture
entry times (respectively) than those with low scores.
However, since each layout on the front represents a
compromise between these three goals, the choice of layout
for a particular user or usage scenario depends on the
relative importance of each goal. For example, a fast but
less accurate user may prefer a layout biased towards
clarity, while a user who gesture types very accurately may
prefer a layout biased toward speed. Nevertheless, if we
know nothing about users' preferences or wish to choose a
layout that can best accommodate a wide variety of
preferences, it is reasonable to use one that is in the middle
of the convex surface (serving each goal on a roughly equal
basis) as Dunlop and Levine did [8].

We will now highlight layouts optimized for each of the
three metrics as well as layouts that serve roughly equal
combinations of metrics. These layouts may serve as useful
references to researchers and designers, and will later (in
the user study) help us test the effectiveness of our
optimization and its associated metrics.

Single-Optimized Keyboard Layouts
Figure 4(a) shows GK-C (“Gesture Keyboard—Clarity”),
the layout optimized exclusively for gesture typing clarity.
Figure 4(b) shows GK-S, which was optimized exclusively
for speed. The layout optimized for Qwerty similarity is
simply Qwerty itself, and is shown in Figure 1(a).

Double-Optimized Keyboard Layout
Figure 1(b) shows GK-D (where the ‘D’ stands for “double-
optimized”). This keyboard offers a roughly equal
compromise between gesture typing clarity and gesture
typing speed without regard to learnability (Qwerty
similarity). To find this layout, we projected the three-
dimensional Pareto front onto the clarity–speed plane to
derive a 2D Pareto front between clarity and speed, then
chose the layout on the 2D front that was closest to the 45°
line. Figure 5 shows the 2D Pareto front and GK-D.

Triple-Optimized Keyboard Layout
Figure 1(c) shows GK-T, where the ‘T’ stands for “triple
optimized.” This keyboard offers a roughly equal
compromise between all three metrics: gesture typing
clarity, gesture typing speed, and Qwerty similarity. It is the
one on the three-dimensional Pareto front that is closest to
the 45° line through the space. As Figure 5 illustrates, it is
possible to accommodate the extra dimension of Qwerty
similarity without a big sacrifice to clarity and speed.

Figure 3. 3D Pareto front. The keyboard layouts with

lighter colors are farther from the origin.

(a) GK-C

(b) GK-S

Figure 4. Single-optimized keyboard layouts. (a) Our GK-C
keyboard (“Gesture Keyboard—Clarity”) is optimized for

gesture typing clarity only. (b) Our GK-S keyboard (“Gesture
Keyboard—Speed”) is optimized for gesture typing speed only.

Gesture Elicitation & Recognition CHI 2015, Crossings, Seoul, Korea

3370

Discussion
Table 1 shows the metric scores for our optimized layouts
as well as previous optimized layouts. Together, these
optimized layouts give us a good understanding of what is
possible in the optimization space for gesture typing.

First, we can improve gesture clarity by 38.8% by
optimizing for clarity alone: GK-C’s raw metric score is
0.543 key widths while Qwerty’s is 0.391 key widths.
Likewise, we also see that we can improve gesture speed by
24.4% by optimizing for speed alone (resulting in GK-S).

Second, the 2D Pareto front for gesture clarity and gesture
speed (Figure 5) shows that these two metrics conflict with
each other. It forms a roughly -45º line, indicating that
optimizing for one leads to the decrease in the other. As
GK-C and GK-S illustrate, the clarity metric tends to
arrange common letters far apart in a radial fashion while
the speed metric clusters common letters close together.

However, despite the conflict, it is possible to arrange
common letters close together while keeping word gestures
relatively distinct, achieving large improvements in both

clarity and speed. In GK-D (our double-optimized
keyboard), letters in common n-grams such as “the,” “and,”
and “ing” are arranged together while the n-grams
themselves are spaced apart. This arrangement offers a
17.9% improvement in gesture clarity and a 13.0%
improvement in gesture speed over Qwerty.

Third, accommodating Qwerty similarity (as GK-T does)
does little harm to gesture clarity or gesture speed. GK-T's
gesture clarity is only 0.01 key widths lower than GK-D's,
and GK-T's predicted speed is only 1 WPM lower than GK-
D's. Meanwhile, GK-T's Manhattan distance from Qwerty
is just 42 key slots, while GK-D's is 102 key slots.

Comparison with Previous Optimized Layouts
The key difference between our proposed keyboard layouts
and previous optimized layouts is that our layouts are
optimized for multiple gesture typing factors while previous
layouts are predominantly optimized for tapping speed. As
Table 1 shows, previous layouts such as Sath Trapezoidal
[8], Square ATOMIK [23], and Square OSK [18] have high
gesture speed scores but low gesture clarity scores.

USER STUDY
Since the main focus of this work is to computationally
discover the optimization space for gesture typing, the
conclusions that we have made so far are based on
theoretical metrics. Of the three metrics that we established,
only one (gesture speed) is based on a model that directly
predicts its respective performance goal (in this case, words
per minute). The others, gesture clarity and Qwerty
similarity, do not directly measure their performance goals
(error rate and learnability, respectively). Hence, we
performed an empirical study to give us a sense of how the
metric scores correspond to real performance and whether
the optimization itself is effective.

Experimental Setup
In the study, participants gesture typed a set of 22 words
with each keyboard layout using a Nexus 5 [16] smartphone
in portrait mode. As in Bi et al. [5], participants had to
gesture each word seven times in succession. We instructed

Layout
Gesture Typing Clarity Gesture Typing Speed Qwerty Similarity

Normalized Raw (key widths) Normalized Raw (WPM) Normalized Raw (key slots)

Qwerty 0.489 0.391 0.441 62.653 1.000 0
Sath Trapezoidal [8] 0.568 0.413 0.704 69.843 0.730 40

GK-C 1.038 0.543 0.317 59.256 0.554 66
GK-S 0.283 0.334 1.000 77.940 0.311 102
GK-D 0.743 0.462 0.739 70.793 0.324 100

GK-T 0.709 0.452 0.704 69.830 0.716 42
Square ATOMIK [21] 0.362 0.356 0.878 74.591 N/A N/A

Square OSK [18] 0.381 0.361 0.979 77.358 N/A N/A

Table 1. Keyboard metric score comparison. Shaded rows signify previous layouts.

Figure 5. 2D Pareto front for gesture typing clarity and
gesture typing speed. GK-D, our double-optimized layout, is
the point on the front nearest the 45° line. Note that Qwerty
is far worse in both dimensions than GK-D, and that GK-T

(which accommodates yet another dimension) is only
slightly worse on these two dimensions than GK-D.

GK-C

GK-S

GK-D

GK-T

Qwerty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
es

tu
re

 T
yp

in
g

Sp
ee

d

Gesture Typing Clarity

Gesture Elicitation & Recognition CHI 2015, Crossings, Seoul, Korea

3371

the participants to gesture as quickly as possible and ignore
any errors, which, for us, achieved two goals. First, it
allowed us to stress test the keyboard's gesture decoder by
providing it very sloppy gestures (the resulting data is also
more differentiable in evaluating accuracy). Second, it
simulated a type of expert input behavior: entering words
first and coming back to fix mistakes later.

Our study was a within-subject design that tested three
keyboard layouts: Qwerty (our baseline), GK-D (the
roughly equal compromise for clarity and speed only), and
GK-T (the roughly equal compromise for clarity, speed, and
Qwerty similarity). To conduct the experiment, we created
Android implementations of GK-D and GK-T based on the
Android [1] keyboard, and developed an Android
application (Figure 6) to collect users’ gesture typing data.

All participants started with Qwerty but used the other two
layouts in alternating order. The first three words served as
a warm-up phase to familiarize participants with the task
(we did not collect their data), and the other 19 words are
from the list proposed by Zhai and Kristensson [22]: “the
and you that is in of know not they get have were are bit
quick fox jumps lazy.” These words cover all letters of the
English alphabet and approximate both letter frequencies
and digraph frequencies in English. They were divided into
groups of four or five with short breaks in between.

To measure gesture typing accuracy, we compare each
committed word with the respective requested word using a
strict binary string equality comparison. The committed
word is the word that appears after the participant lifts his
or her finger from the screen and the keyboard algorithm
applies any word corrections that it sees fit. To measure
gesture entry times, we recorded either (1) the length of
time from when a word was presented on the screen to
when the word was committed (for the first repetition of a
word), or (2) the length of time between when the last word
was committed to when the current word is committed (for
subsequent repetitions of a word).

The entry times for the first repetitions of words offer a
rough (but by no means perfect) perspective of our
keyboards' learnability, while the entry times for latter
repetitions of the word are a rough estimate of expert-level
entry times. The rationale for the latter is that by repeating
the same word in a row, users will reach a stage where the

input behavior is mostly governed by motor control ability,
which reflects expert input behavior. However, this is only
a limited proxy for the study of the complex learning
process and expert-level typing performance at scale, which
may require a longitudinal logging study of real keyboard
use, notwithstanding privacy and other challenges
associated with such methods.

A total of 14 volunteers (9 female, 5 male) participated in
the experiment. 3 were age 18–25, 9 were 26–35, and 2
were 36–45. 8 of them primarily use Android smartphones
and the rest iPhones. 13 were at least somewhat familiar
with gesture typing, and 5 were at least somewhat familiar
with alternative keyboard layouts. All of them were right-
handed. Each experiment lasted less than an hour.

Experimental Results
Error Rate
Figure 7 shows participants’ overall error rates with each
layout and how those error rates changed as participants
made successive repetitions of each word. The mean (std.
dev.) error rate for Qwerty, GK-D, and GK-T were 26.4%
(7.2%), 12.6% (6.6%), and 16.6% (6.2%), respectively.
This means that the error rates for GK-D and GK-T were
52% and 37% less than Qwerty, respectively. The keyboard
layout has a significant main effect on the overall error rate
(F2,26 = 35.46, 𝑝 < 0.001). Pairwise mean comparison over
all repetitions showed that the differences were significant
(𝑝 < 0.01) for every pair of keyboards except GK-D vs.
GK-T. For Repetitions 2–6, however, the difference is
significant (𝑝 < 0.01) for every pair of keyboards.

Initial Gesture Entry Time
Figure 8 shows how long, on average, it took participants to
gesture words per repetition × layout. We noticed that
participants often planned out their gestures in the first
repetition, but resorted to motor memory in later repetitions.
The mean (std. dev.) initial entry time was 2,655 ms (502
ms), 5,870 ms (1,190 ms), and 5,468 ms (1,140 ms) for
Qwerty, GK-D, and GK-T, respectively. The keyboard

Figure 6. User study application. The layout shown is GK-T.

Figure 7. Error rates across 14 participants for Qwerty, GK-
D, and GK-T. GK-D’s and GK-T’s average error rate is 52%

and 31% less than Qwerty’s, respectively. Error bars
indicate standard errors.

1 2 3 4 5 6 7
0%

5%

10%

15%

20%

25%

30%

35%

Repetition #

Er
ro

r R
at

e

Qwerty GK-D GK-T

Gesture Elicitation & Recognition CHI 2015, Crossings, Seoul, Korea

3372

layout has a significant main effect on the initial entry time
(F2,26 = 75.26, 𝑝 < 0.001). Pairwise mean comparison
showed that the differences were significant (𝑝 < 0.01) for
each pair of keyboards except GK-D vs. GK-T.

Expert-Level Gesture Entry Time
Figure 8(b) shows the expert-level entry time (Repetitions
3–7) in detail. The mean (std. dev.) entry time in this case is
1,315 ms (300 ms) for Qwerty, 1,150 ms (333 ms) for GK-
D, and 1,237 ms (310 ms) for GK-T. The keyboard layout
has a significant main effect on the expert-level entry time
(F2,26 = 12.46, 𝑝 < 0.001). The expert-level entry time for
GK-D and GK-T is 12.5% and 6.0% faster than that for
Qwerty. Pairwise mean comparison showed the differences
were significant (𝑝 < 0.01) for each pair of keyboards
except GK-D vs. GK-T.

Discussion
The results from the user study lead to several findings,
although we stress (as described earlier) that they are
limited by the fact that our experiment was conducted in a
single session. First, keyboards optimized for gesture clarity
are more accurate than those without. The error rates for
GK-D and GK-T are 52% and 37% less than Qwerty,
respectively. Second, including both gesture typing clarity

and gesture typing speed in the optimization process results
in layouts that outperform Qwerty in terms of both accuracy
and expert typing speed. Both GK-D and GK-T
significantly outperform Qwerty in both of these metrics.
Third, considering the Qwerty similarity metric has only
minor effects on accuracy and speed. The differences we
observed between the expert-level entry times for GK-D
and GK-T were not statistically significant. Finally, the
Qwerty similarity metric is not very effective in improving
learnability. Though the mean initial entry time for GK-T
was lower than that of GK-D, we did not observe a
statistically significant difference between the two. This is
likely due to the relative leniency of the Qwerty similarity
metric compared to Quasi-Qwerty's hard constraint [6] and
Dunlop and Levine's squared distance metric [8].

The findings also give us a better sense of how a layout's
gesture clarity and Qwerty similarity scores correspond to
real performance (recall that the gesture speed scores are
based on an empirically derived model). For example, the
gesture clarity score increase from 0.489 in Qwerty to 0.743
in GK-D (an increase by 0.254—see Table 1) corresponds
to a decrease in the mean error rate from 26.4% to 12.6%.
Yet, the Qwerty similarity score increase from 0.324 to
0.716 does not improve learnability as we have defined it,
while the increase from 0.716 to 1.000 drastically does.

Still, we do not know the exact relationship between these
two metrics' scores and the corresponding real-world
performance measures. Conversely, the problem of finding
metrics that empirically model gesture typing error rate and
keyboard learnability remains to be solved. In the case of
learnability, Quasi-Qwerty's constraint improves it [6] but
cannot be used as a continuous model, and squared distance
has not yet been shown to model it in its various degrees.
Determining those relationships requires empirically testing
many more layouts (using a variety of values for each
metric score), and remains promising future work.

CONCLUSION
The present work, for the first time, defines a
multidimensional optimization space for gesture typing
(comprising gesture clarity, gesture speed, and Qwerty
similarity) and systematically explores that space. In the
process, we contribute a set of optimized layouts such as
GK-D (optimized for both gesture clarity and gesture
speed) and GK-T (optimized for gesture clarity, gesture
speed, and Qwerty similarity) that can immediately benefit
users. Though limited, our empirical study of these layouts
led to the following findings.

First, optimizing the layouts for gesture clarity drastically
improves gesture typing accuracy. By incorporating gesture
clarity as an optimization dimension, GK-D and GK-T
reduced error rates by 52% and 37% over Qwerty,
respectively. Second, gesture clarity and gesture speed
conflict with each other, but despite the conflict,
incorporating both in the optimization process leads to

(a)

(b)

Figure 8. Gesture entry times across 14 participants for
Qwerty, GK-D, and GK-T. Error bars indicate standard

errors. (a) The initial entry time (Repetition 1) using GK-D
and GK-T is over twice as long as it is using Qwerty. (b) For
Repetitions 3–7 (approximating expert usage), the average
entry time for GK-D and GK-T are 12.5% and 6.0% faster

(respectively) than they are for Qwerty.

1 2 3 4 5 6 7
0

1000

2000

3000

4000

5000

6000

Repetition #

G
es

tu
re

 E
nt

ry
 T

im
e

(m
s)

Qwerty GK-D GK-T

3 4 5 6 7
1000

1150

1300

1450

Repetition #

G
es

tu
re

 E
nt

ry
 T

im
e

(m
s)

Qwerty GK-D GK-T

Gesture Elicitation & Recognition CHI 2015, Crossings, Seoul, Korea

3373

superior performance over Qwerty with respect to both
metrics. GK-D and GK-T, for example, improved expert-
level entry times by 12.5% and 6.0% over Qwerty,
respectively. Third, Qwerty similarity as we have defined it
has only a minor conflict with gesture clarity and gesture
speed, but is not effective in improving learnability.

FUTURE WORK
Although the nature, size, and complexity of this work have
surpassed its precedents in the literature [6, 8, 12, 18], many
questions beyond the scope of this work require further
research. These include further, larger, and longitudinal
empirical studies of the multiple optimality dimensions.
Further empirical investigation may redefine some or all of
the optimality dimensions identified in this work in order to
advance the gesture typing paradigm toward new shorthand
writing systems that tolerate user errors, require minimal
visual attention and motor effort, and remain easy to learn.

ACKNOWLEDGEMENTS
We would like to thank Kurt Partridge, other colleagues at
Google, and the CHI reviewers for their valuable insights
and contributions to this work.

REFERENCES
1. Android Developers. https://source.android.com.
2. Bi, X., Azenkot, S., Partridge, K., and Zhai, S. Octopus:

evaluating touchscreen keyboard correction and
recognition algorithms via “remulation.” In Proc. CHI
2013, ACM Press (2013), 543–552.

3. Bi, X., Chelba, C., Ouyang, T., Partridge, K., and Zhai,
S. Bimanual gesture keyboard. In Proc. UIST 2012,
ACM Press (2012), 137–146.

4. Bi, X., Ouyang, T., and Zhai, S. Both complete and
correct? Multiobjective optimization of a touchscreen
keyboard. In Proc. CHI 2014, ACM Press (2014),
2297–2306.

5. Bi, X., Smith, B.A., and Zhai, S. Multilingual
touchscreen keyboard design and optimization. Human–
Computer Interaction 27, 4 (2012), 352–382.

6. Bi, X., Smith, B.A., and Zhai, S. Quasi-Qwerty soft
keyboard optimization. In Proc. CHI 2010, ACM Press
(2010), 283–286.

7. Cao, X. and Zhai, S. Modeling human performance of
pen stroke gestures. In Proc. CHI 2007, ACM Press
(2007), 1495–1504.

8. Dunlop, M.D. and Levine, J. Multidimensional Pareto
optimization of touchscreen keyboards for speed,
familiarity, and improved spell checking. In Proc. CHI
2012, ACM Press (2012), 2669–2678.

9. Getschow, C.O., Rosen, M.J., and Goodenough-
Trepagnier, C. A systematic approach to design a
minimum distance alphabetical keyboard. In Proc.
RESNA 1986, RESNA (1986), 396–398.

10. Hastings, W.K. Monte Carlo sampling methods using
Markov chains and their applications. In Biometrika 57,
1 (1970), 97–109.

11. Kristensson, P.O. and Zhai, S. SHARK2: a large
vocabulary shorthand writing system for pen-based
computers. In Proc. UIST 2004, ACM Press (2004), 43–
52.

12. Lewis, J.R., Kennedy, P.J., and LaLomia, M.J.
Development of a digram-based typing key layout for
single finger/stylus input. In Proc. Hum. Fact. Ergon.
Soc. 1999, Sage Publications (1999), 415–419.

13. MacKensie, I.S. and Zhang, S. The design and
evaluation of a high-performance soft keyboard. In
Proc. CHI 1999, ACM Press (1999), 25–31.

14. Mankoff, J. and Abowd, G.D. Cirrin: a word-level
unistroke keyboard for pen input. In Proc. UIST 1998,
ACM Press (1998), 213–214.

15. Oulasvirta, A., Reichel, A., Li, W., Zhang, Y.,
Bachnynskyi, M., Vertanen, K., and Kristensson, P.O.
Improving two-thumb text entry on touchscreen devices.
In Proc. CHI 2013, ACM Press (2013), 2765–2774.

16. Nexus 5 – Google. http://www.google.com/nexus/5/
17. Perlin, K. Quikwriting: continuous stylus-based text

entry. In Proc. UIST 1998, ACM Press (1998), 215–216.
18. Rick, J. Performance optimizations of virtual keyboards

for stroke-based text entry on a touch-based tabletop. In
Proc. UIST 2010, ACM Press (2010), 77–86.

19. Yamada, H. A historical study of typewriters and typing
methods: from the position of planning Japanese
parallels. Information Processing 2, 4 (1980), 175–202.

20. Zhai, S., Hunter, M., and Smith, B.A. The Metropolis
keyboard—an exploration of quantitative techniques for
virtual keyboard design. In Proc. UIST 2000, ACM
Press (2000), 119–128.

21. Zhai, S., Hunter, M., and Smith, B.A. Performance
optimization of virtual keyboards. Human–Computer
Interaction 17, 2 (2002), 229–269.

22. Zhai, S. and Kristensson, P.O. Interlaced QWERTY –
accommodating ease of visual search and input
flexibility in shape writing. In Proc. CHI 2008, ACM
Press (2008), 593–596.

23. Zhai, S. and Kristensson, P.O. Introduction to shape
writing. Text Entry Systems: Mobility, Accessibility,
Universality. Morgan Kaufmann, 2010. 139–158.

24. Zhai, S. and Kristensson, P.O. Shorthand writing on
stylus keyboard. In Proc. CHI 2003, ACM Press (2003),
97–104.

25. Zhai, S. and Kristensson, P.O. The word-gesture
keyboard: reimagining keyboard interaction.
Communications of the ACM 55, 9 (2012), 91–101.

Gesture Elicitation & Recognition CHI 2015, Crossings, Seoul, Korea

3374

