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ABSTRACT 
Despite its growing popularity, gesture typing suffers from 
a major problem not present in touch typing: gesture 
ambiguity on the Qwerty keyboard. By applying rigorous 
mathematical optimization methods, this paper 
systematically investigates the optimization space related to 
the accuracy, speed, and Qwerty similarity of a gesture 
typing keyboard. Our investigation shows that optimizing 
the layout for gesture clarity (a metric measuring how 
unique word gestures are on a keyboard) drastically 
improves the accuracy of gesture typing. Moreover, if we 
also accommodate gesture speed, or both gesture speed and 
Qwerty similarity, we can still reduce error rates by 52% 
and 37% over Qwerty, respectively. In addition to 
investigating the optimization space, this work contributes a 
set of optimized layouts such as GK-D and GK-T that can 
immediately benefit mobile device users. 
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Gesture typing; touchscreen keyboard optimization; text 
entry; word-gesture keyboard; shape writing 

ACM Classification Keywords 
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INTRODUCTION 
Gesture typing has gained large-scale adoption on mobile 

devices since its conception in the early 2000’s [24]. Today, 
gesture typing can be found on all major mobile computing 
platforms in products such as ShapeWriter, Swype, 
SwiftKey, SlideIT, TouchPal, and Google Keyboard. 
Compared to touch typing (tapping), gesture typing offers 
several advantages. It supports a gradual and seamless 
transition from visually guided tracing to recall-based 
gesturing, allows users to approximate words with gestures 
rather than tapping each key exactly, and mitigates one 
major problem plaguing regular touchscreen typing: the 
lack of tactile feedback.* 

Despite these benefits, gesture typing suffers from an 
inherent problem: highly ambiguous word gestures.  Bi, 
Azenkot, Partridge, and Zhai [2] showed that the error rate 
for gesture typing is approximately 5–10% higher than for 
touch typing.  This problem occurs because when gesture 
typing, the input finger must inevitably cross unintended 
letters before reaching the intended one. The Qwerty layout 
itself further exacerbates this problem. Because common 
vowels such as ‘u,’ ‘i,’ and ‘o’ are arranged together on 
Qwerty, many pairs of words (such as “or” and “our”) have 
identical gestures, and many others (such as “but” and 
“bit”) have very similar gestures. Figure 1(a) shows the 
gestures for “or” and “our”—their superstrings “for” and 
“four” also have identical gestures. In fact, our analysis 
over a 40,000-word lexicon showed that 6.4% of words 
have another word with an identical gesture on Qwerty. 

Given Qwerty’s obvious problems, rearranging the keys to 
make word gestures more distinct should reduce the error 
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(a) Qwerty (b) GK-D (c) GK-T 

Figure 1. Keyboards optimized for gesture typing. The 'o' key is shaded to mark the beginning of the word gestures for "or" 
(white) and "our" (black). (a) The Qwerty keyboard suffers from the problem of gesture ambiguity. Many pairs of words (such as 

“or” and “our” shown here) share the same gesture on Qwerty. (b) The GK-D keyboard (“Gesture Keyboard—Double optimized”) 
is the best compromise for gesture clarity and gesture speed. Here, the gestures for “or” and “our” are noticeably different. (c) The 

GK-T keyboard (“Gesture Keyboard—Triple optimized”) is the best compromise for gesture clarity, gesture speed, and Qwerty 
similarity. Again, the two gestures are noticeably different. 
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rate when gesture typing. However, a layout optimized for 
gesture clarity (distinctness) might increase the length of 
each gesture (reducing typing speed) or may be difficult for 
users to learn. Many questions arise when deciding whether 
or not to introduce a new layout for gesture typing. For 
example, if the layout is exclusively optimized for clarity, 
to what degree will it improve in accuracy over Qwerty? 
What is the relationship between gesture clarity and gesture 
typing speed? Can we design an optimized layout similar to 
Qwerty in order to ease the learning process? 

In this paper, we explore the layout optimization space 
related to gesture typing by applying a rigorous 
mathematical optimization. Our research not only deepens 
the understanding of the optimization space of gesture 
typing, but also contributes a set of optimized layouts that 
significantly outperform Qwerty (in terms of both gesture 
clarity and speed) and can immediately benefit mobile 
device users. 

RELATED WORK 

Stroke-Based Virtual Keyboards 
Cirrin [14] and Quikwriting [17] are the first virtual 
keyboards designed specifically for word-level unistroke 
text entry. In both of those keyboards, users trace gestures 
that alternate from the center of a radial layout to one or 
more zones around the center (representing characters), 
with one articulation per character. However, since these 
gestures are completely determined by character layout 
without statistical pattern recognition, the letter layout has 
to be one-dimensional and most word-gestures defined on 
these layouts are very complex. 

SHARK [24] and SHARK2 [11] introduced gesture typing 
(also known as shape writing and the word-gesture 
keyboard paradigm) as we know it today. In these systems, 
users gesture words by swiping from letter to letter on a 
virtual Qwerty keyboard. The word gestures are much 
simpler than they are on Cirrin and Quikwriting, but since 
SHARK and SHARK2 have no central “dead zone” for 
strokes to cross from character to character (and users must 
stroke over other characters instead), they suffer from an 
inherent ambiguity between word gestures (see Figure 
1(a)). Even with sophisticated models for predicting users’ 
intended words, Bi et al. [2] found that the error rate from 
gesture typing is 5–10% higher than that from touch typing. 

Keyboard Layout Optimization 
As has been widely published [18, 19, 21], Qwerty was 
designed to reduce jamming in mechanical typewriters by 
placing common digraphs (consecutive letter pairs) on 
opposite sides of the keyboard. Though this works well for 
two-handed or two-finger typing, researchers have long 
acknowledged that this is unsuitable for one-finger typing 
[9, 12]. There have been many proposed optimized 
keyboard layouts over the years for both bimanual [15] and 
unimanual typing [5, 6, 8, 13, 18, 20, 21]. Most of these 

layouts were optimized for touch typing, but the Square 
OSK layout [18] was optimized for stroking. 

We should emphasize, however, that existing optimized 
layouts are predominantly optimized for typing speed 
(essentially minimizing finger travel distance), and that 
optimizing for word gesture clarity (as we optimize for 
along with gesture typing speed and Qwerty similarity) is 
an entirely different, and often conflicting, problem. As an 
example, the Dvorak layout arranges common letters in the 
home row to make bimanual typing faster [19], but this also 
makes word gestures more similar (and less unique, hurting 
gesture clarity) since many paths between keys become 
straight lines on the home row. 

As another example, the ATOMIK [21] and Square 
ATOMIK [23] keyboards were optimized for speed with a 
bias for having keys appear in alphabetical order. Although 
these keyboards were tuned so that the gestures for 17 
common words were short and memorable, they were not 
specifically optimized for gesture clarity. In fact, these 
keyboards predate gesture typing altogether. Other 
examples include Quasi-Qwerty [6], which was optimized 
for speed and familiarity, and the Sath keyboards [8], which 
were optimized for those metrics plus tap interpretation 
clarity for improved spell checking. 

Few optimized layouts have gained widespread adoption. 
This is likely due to both learnability and the complexity of 
tapping input: users may type with one, two, or even ten 
fingers, and a good layout must accommodate each. 
However, the increasing popularity of gesture typing may 
offer a better chance at introducing new layouts since most 
users gesture words with one finger and our optimized 
layouts significantly improve both accuracy and speed over 
Qwerty. 

OPTIMIZATION METRICS 

Gesture Clarity 
The gesture clarity metric is the most important metric in 
our optimization. The purpose of this metric is to measure 
how unique the word gestures on a keyboard layout are. We 
based the metric on the location channel in SHARK2 [11] 
and represent each word’s gesture as its ideal trace, the 
polyline connecting the key centers of the word’s letters.  
We define the nearest neighbor of a word 𝑤 to be the word 
whose ideal trace is closest to 𝑤’s ideal trace. This is the 
word that is most likely to be confused with 𝑤 when 
gesture typing, independent from the language model. The 
closer a word is to its nearest neighbor, the more likely its 
gesture will be misrecognized. The gesture clarity metric 
score for a given keyboard layout is simply the average 
distance (weighted by words’ frequencies) between each 
word and its nearest neighbor on that keyboard layout: 

(2) Clarity = ∑ 𝑓𝑤

𝑤∈𝐿

𝑑𝑤 , (1) 
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where 𝑑𝑤 = min
𝑥∈𝐿−{𝑤}

𝑑(𝑤, 𝑥)  and ∑ 𝑓𝑤

𝑤∈𝐿

= 1. 

𝐿 is a 40,000-word lexicon, 𝑓𝑤 is the frequency of 𝑤, and 
𝑑𝑤 is the distance between 𝑤 and its nearest neighbor. We 
compute the distance between two ideal traces 𝑤 and 𝑥 via 
proportional shape matching. Each gesture is sampled into 
𝑁 equidistant points, and the distance is simply the average 
of the distance between corresponding points: 

(1) 
𝑑(𝑤, 𝑥) =

1

𝑁
∑‖𝑤𝑖 − 𝑥𝑖‖2

𝑁

𝑖=1

 (2) 

Time Complexity Refinements 
Since the gesture clarity metric compares the gestures of 
every pair of words to find each word’s nearest neighbor, 
its time complexity is 𝛩(𝑁 ∙ |𝐿|2). Here, 𝐿 is the number of 
words in the lexicon and 𝑁 is the number of sample points 
in each word gesture. Its quadratic time complexity with 
respect to 𝐿 stands in stark contrast to the time complexities 
of earlier optimization metrics (which are exclusively linear 
with respect to 𝐿), making optimization using it intractable. 
For our 40,000-word lexicon, there are nearly 800 million 
pairs of word gestures to compare for each keyboard layout 
that we examine during the optimization process. 

To make the metric more tractable, we made two key 
algorithmic refinements. First, when searching for the 
nearest neighbor for each word, we only considered 
prospective neighbors that started and ended with 
characters that were located within one key diagonal of the 
word’s starting and ending character, respectively. This is 
similar to the initial template-pruning step employed in 
SHARK2 [11], where the distance threshold in this case is 
the diagonal length of a key. Second, we used a small 
number of gesture sample points 𝑁 to represent each word’s 
gesture. If 𝑁 were too large, the computation would be very 
expensive. If 𝑁 were too small, word gestures (especially 
longer ones) might not be represented properly, leading to 
incorrectly chosen nearest neighbors. 

In order to see how small we could make 𝑁 without 
affecting the integrity of our results, we performed a small 
experiment. First, we found each word’s nearest neighbor 
on Qwerty using very fine sampling (𝑁 = 100). Then, we 
repeated this step for smaller values of 𝑁 down to 𝑁 = 20 
and counted the number of nearest neighbors that were 
identical to the 𝑁 = 100 case. Figure 2 shows the results. 
When the number of sample points is reduced to 40, 96.9% 
of the nearest neighbors are the same as they were before. 
We used this value for 𝑁 in our algorithm. 

Gesture Speed 
The gesture speed metric estimates how quickly users can 
gesture type on a keyboard layout. We based this metric on 
the CLC model by Cao and Zhai [7]. The model (which 
stands for “curves, line segments, and corners”) stems from 

human motor control theory, and was designed to predict 
the amount of time it takes for a person to make an arbitrary 
pen stroke gesture. To do this, the model partitions the 
gesture into segments, where each segment is a curve (with 
a constant radius of curvature), a straight line, or a corner 
(whose interior angle does not need to be 90°). The time 
that it takes for a person to gesture each type of segment is 
modeled with a different function. For line segments, the 
time is modeled with a power function that echoes how 
people tend to gesture faster with longer lines: 

 𝑇(𝐴𝐵̅̅ ̅̅ ) = 𝑚 ∙ (‖𝐴𝐵̅̅ ̅̅ ‖2)𝑛.  (3) 

Here, 𝐴𝐵̅̅ ̅̅  is a line segment, the output 𝑇 is in milliseconds, 
‖𝐴𝐵̅̅ ̅̅ ‖2 is the length of 𝐴𝐵̅̅ ̅̅  in millimeters, and both 𝑚 and 𝑛 
are constants (found to be 68.8 and 0.469 respectively in 
Cao and Zhai’s original formulation). 

A polyline gesture is simply a collection of individual line 
segments. The time to complete this type of gesture is 
modeled as simply the sum of the individual line segments’ 
functions: 

(1) 
𝑇(𝑃) = ∑ 𝑇(𝐴𝐵̅̅ ̅̅ )

𝐴𝐵̅̅ ̅̅ ∈𝑃

, (4) 

where 𝑃 is the polyline and 𝐴𝐵̅̅ ̅̅  is a segment in the polyline. 
Although Cao and Zhai found that the angles between 
polyline segments (that is, of a polyline's corners) have an 
effect on gesture entry time, the magnitude of the effect was 
small: less than 40 ms per corner compared to 200–700 ms 
per segment. Hence, the model uses corners to delineate 
segments but omits their 40 ms contribution. 

As with the gesture clarity metric, each word in the lexicon 
is represented as its ideal trace. To help compute the metric, 
we store a table of the weighted number of occurrences of 
each bigram in our lexicon. The weighted number of 
occurrences 𝑜(𝑖—𝑗) of a bigram 𝑖—𝑗 (for letters 𝑖 and 𝑗) is 
calculated as follows: 

 
Figure 2. Word gesture neighbor sensitivity. The nearest 

neighbor that we find for a word depends on how finely the 
word gestures are sampled. Here, we show the percentage of 

nearest neighbors that are the same as when 100 sample points 
are used. The red dot signifies 40 points, the amount we used. 
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(
1
) 

𝑜(𝑖—𝑗) = ∑ 𝑓𝑤 ∙ (# occurrences of 𝑖—𝑗 in 𝑤)
𝑤∈𝐿

 (5) 

Here, 𝐿 is the lexicon, 𝑤 is a word in the lexicon, and 𝑓𝑤 is 
the frequency of word 𝑤 in 𝐿. Each bigram is represented 
by a different line segment in the CLC model. Hence, to 
estimate 𝐺, the average time it takes to complete a word 
gesture, we calculate the following: 

(1) 
𝐺 = ∑ 𝑜(𝑖—𝑗) ∙ 𝑇(𝐾𝑖𝐾𝑗

̅̅ ̅̅ ̅̅ )
𝑖,𝑗∈𝛼

 (6) 

Here, 𝑖 and 𝑗 are both letters in alphabet 𝛼, the set of 
lowercase letters from ‘a’ to ‘z.’ 𝐾𝑖 and 𝐾𝑗  are the key 
centers of the 𝑖 and 𝑗 keys, respectively, 𝐾𝑖𝐾𝑗

̅̅ ̅̅ ̅̅  is the line 
segment connecting the key centers, and the function 𝑇 is 
defined in Equation 3. Hence, 𝐺 is measured in 
milliseconds. 

The last step is to convert the gesture duration 𝐺 into words 
per minute (WPM), a measure of typing speed. Doing so 
gives us our gesture speed metric score: 

(1) 
Speed =

60,000

𝐺
 (7) 

60,000 represents the number of milliseconds in one 
minute. When calculating the gesture typing speed of a 
keyboard layout, we do not consider the effects of the space 
bar or capitalization (and the Shift key). One of the key 
contributions of gesture typing is the fact that spaces are 
automatically added between word gestures, eliminating the 
need for 1 in approximately every 5.7 characters typed [24]. 
Moreover, most of today’s gesture-typing systems apply 
capitalization and diacritics automatically. 

We should also note that, because the CLC model omits the 
cost of gesturing corners and the cost of traveling from the 
end of one gesture to the beginning of the next, the 
calculated speeds generally overestimate the speeds at 
which users would actually type. Rick [18] proposed an 
alternative to the CLC model that is also based on Fitts’s 
law, and although we ultimately chose to use the CLC 
model for our metric, we implemented Rick’s model 
(without key taps for single-character words) to compare 
the models’ behaviors. We found that Rick’s model 
consistently output lower speed estimates than the CLC 
model, but that they both followed the same overall trend. 
More specifically, the mean (std. dev.) ratio between Rick's 
model's predicted speeds and the CLC model's predicted 
speeds for our final set of optimized layouts is 0.310 
(0.004). After normalizing the metrics as described on the 
next page, the mean (std. dev.) ratio becomes 0.995 (0.016). 

Qwerty Similarity  
As has been thoroughly studied [18, 19, 21], the key 
obstacle to the widespread adoption of optimized layouts is 

the arduous process of learning the new layouts. The 
Qwerty similarity metric measures how similar a given 
keyboard layout is to Qwerty. By making a new layout 
more similar to Qwerty (and hence less alien to longtime 
users of Qwerty), we hope to bridge the gap between the 
short-term frustration of learning the new layout and the 
long-term benefits that the layout provides. 

The metric is based on the constraint that Bi, Smith, and 
Zhai [6] used when creating the Quasi-Qwerty layout. In 
that optimization (which was for typing speed only), keys 
were not allowed to move more than one slot away from 
their Qwerty locations. Dunlop and Levine [8] later relaxed 
this constraint in their multi-objective keyboard 
optimization by using the total squared Euclidean distance 
between keys’ positions and their Qwerty locations instead. 
Since a keyboard layout is essentially a grid of keys, we use 
the total Manhattan distance between keys’ positions and 
their Qwerty locations to measure Qwerty similarity. Like 
Dunlop and Levine’s metric, this allows more freedom than 
the hard constraint used by Quasi-Qwerty. However, unlike 
Dunlop and Levine’s metric, individual keys are not 
punished so severely if they move far from their Qwerty 
locations. This allows us to consider layouts in which a few 
keys move very far from their Qwerty locations. 

The Qwerty similarity metric for a given keyboard layout is 
computed as follows: 

(1) 
Similarity = ∑ (|𝑘𝑖𝑥

− 𝑞𝑖𝑥
| + |𝑘𝑖𝑦

− 𝑞𝑖𝑦
|)

𝑖∈𝛼

 (8) 

where 𝑖 is a letter in alphabet 𝛼, the set of lowercase letters 
from ‘a’ to ‘z,’ and 𝑘𝑖𝑥

 and 𝑞𝑖𝑥
 are the x-indices of the 𝑖 key 

on the given keyboard layout and Qwerty, respectively. 
Unlike 𝐾𝑖 and 𝐾𝑗  in Equation 6, which are points with units 
of millimeters, 𝑘𝑖 and 𝑞𝑖 are unit-less ordered pairs of 
integers that represent the 2D index of key 𝑖’s slot in the 
keyboard grid. In most of today’s touchscreen keyboard 
layouts, the second and third rows are offset from the first 
row by half of a key width. Hence, in order to properly 
calculate the Manhattan distance for this metric, we treat 
the second and third rows as if they are shifted to the left by 
another half of a key width so that the second row is left-
aligned with the first row. The resulting representation of 
keyboard layouts is actually identical to the one used for 
creating Quasi-Qwerty [6]. The Qwerty similarity metric is 
the only one that uses this modified keyboard 
representation. 

OPTIMIZATION PROCEDURE 
We frame the problem of designing a touchscreen keyboard 
for gesture typing as a multi-objective optimization, where 
the three objectives are improving (1) gesture clarity, (2) 
gesture speed, and (3) Qwerty similarity. There are multiple 
ways of judging how well a layout meets these objectives. 
One way is to create a simple objective function that 
somehow combines the objectives’ associated metric scores 
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(for example, by summing the scores in a linear 
combination). However, such an approach would force us 
to decide how much each metric should count for in 
deriving a single optimal layout, when in fact we are more 
interested in understanding the behavior of each of the 
metrics and the inherent tradeoffs between them. 

As a result, although we still employ a simple objective 
function as part of our optimization’s second phase, we use 
another approach called Pareto optimization for the 
optimization at large. Pareto optimization has recently been 
used to optimize both keyboard layouts [5] and keyboard 
algorithms [4]. In this approach, we calculate an optimal set 
of layouts called a Pareto optimal set or a Pareto front. 
Each layout in the set is Pareto optimal, which means that 
none of its metric scores can be improved without hurting 
the other scores. If a layout is not Pareto optimal, then it is 
dominated, which means that there exists a Pareto optimal 
layout that is better than it with respect to at least one 
metric and no worse than it with respect to the others. By 
calculating the Pareto optimal set of keyboard layouts rather 
than a single keyboard layout, we can analyze the tradeoffs 
inherent in choosing a keyboard layout and give researchers 
the freedom to choose one that best meets their constraints. 

Our optimization procedure is composed of three phases, 
described in detail in the subsections below. 

Phase 1: Metric Normalization 
In the first phase, we perform a series of optimizations for 
each metric individually to estimate the minimum and 
maximum possible raw values for each metric. We then 
normalize each of the metric’s scores in a linear fashion so 
that the worst possible score is mapped to 0.0 and the best 
possible score is mapped to 1.0. Normalizing the scores 
allows us to weight the metrics appropriately in Phase 2. 

We use local neighborhood search to perform the 
optimizations. In order to more reliably find the global 
extrema instead of local extrema, we incorporate a 
simulated annealing process similar to the Metropolis 
random walk algorithm [10, 20]). Each optimization starts 
with a random keyboard layout using the same footprint as 
Qwerty and runs for 2,000 iterations. At each iteration, we 
swap the locations of two randomly chosen keys in the 
current layout to create a new candidate layout. If the new 
layout is better than the current layout, we keep the new 
layout with 100% probability. Otherwise, we only keep the 
new layout with a probability specified by a user-controlled 
“temperature.” Higher temperatures increase this 
probability, and allow us to escape from local extrema. 

In total, we performed 10–30 optimizations for each metric. 
We found that the range for the raw gesture typing clarity 
metric scores was [0.256 key widths, 0.533 key widths], 
that the range for the raw gesture typing speed metric scores 
was [50.601 WPM, 77.929 WPM], and that the range for 
the raw Qwerty similarity metric scores was [0, 148]. 

Qwerty’s raw scores for the three metrics are 2.390 mm, 
62.652 WPM, and 0, respectively. 

Phase 2: Pareto Front Initialization 
In this phase, we generate an initial Pareto front of 
keyboard layouts by performing even more local 
neighborhood searches. The searches are identical to the 
ones we perform in Phase 1, except this time we seek to 
maximize the score from linear combinations of all three 
metric scores. We use 22 different weightings for the linear 
combinations and perform roughly 15 full 2000-iteration 
local neighborhood searches for each weighting. The 
purpose is to ensure that the Pareto front includes a broad 
range of Pareto optimal keyboard layouts. 

The Pareto front starts out empty at the very beginning of 
this phase, but we update it with each new candidate 
keyboard layout that we encounter during the searches (at 
each iteration of each search). To update the front, we 
compare the candidate layout with the layouts already on 
the front. Then, we add the candidate layout to the front if it 
is Pareto optimal (possibly displacing layouts already on the 
front that are now dominated by the candidate layout). The 
candidate layout is added whether it is ultimately kept in the 
particular local neighborhood search or not. This approach 
is similar to the one that Bi et al. [4] used to optimize 
keyboard correction and completion algorithms. 

Phase 3: Pareto Front Expansion 
In the last phase, we perform roughly 200 passes over the 
Pareto front to help “fill out” the front by finding Pareto 
optimal layouts that are similar to those already on the 
front. In each pass, we swap two keys in each layout on the 
front to generate a set of candidate layouts, then update the 
front with any candidate layouts that are Pareto optimal. 
This phase is similar to the optimization used by Dunlop 
and Levine [8]. However, by including Phase 2, we can 
ensure that all possible solutions are reachable without the 
need to swap more than two keys at a time. 

Optimization Parameters 
We based our optimization’s keyboard representation on 
dimensions of the Nexus 5 [16] Android keyboard. Since 
most of today’s touchscreen keyboards have very similar 
profiles, our results should be applicable to any touchscreen 
keyboard. Each key is represented by its entire touch-
sensitive area (with boundaries placed between the center 
points of neighboring keys) and is 109 × 165 px (6.22 × 
9.42 mm) in size. 

Our lexicon consists of 40,000 words. Before starting the 
optimization, we converted words with diacritics to their 
Anglicized forms (“naïve” to “naive,” for example), 
removed all punctuation marks from words (such as 
“can’t”), and made all words completely lowercase. Since 
gesture typing systems automatically handle diacritics, 
capitalization, and punctuation marks within words, this 
should not hurt the integrity of our optimization. 
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Optimization Runtime 
Due to the complexity and scope of our work, it took four 
machines (with 32 threads apiece) running continuously 
over the course of nearly three weeks to obtain the results 
presented below. 

OPTIMIZED KEYBOARD LAYOUTS 
Figure 3 shows the final Pareto front of keyboard layouts 
optimized for gesture typing. Overall, the front is composed 
of 1,725 keyboard layouts chosen from the 900,000+ 
candidate layouts that we examined in all. No single layout 
on the front is better than all of the others—each layout is 
better than the others in some way, and the tradeoffs that 
are inherent in choosing a suitable layout from the front are 
reflected in the front's convex shape. 

More specifically, the front can be viewed as a three-
dimensional design space of performance goals that one can 
choose from for different usage scenarios. Layouts with 
high gesture clarity scores, gesture speed scores, and 
Qwerty similarity scores are more apt to exhibit lower error 
rates, expert-level gesture entry times, and initial gesture 
entry times (respectively) than those with low scores. 
However, since each layout on the front represents a 
compromise between these three goals, the choice of layout 
for a particular user or usage scenario depends on the 
relative importance of each goal. For example, a fast but 
less accurate user may prefer a layout biased towards 
clarity, while a user who gesture types very accurately may 
prefer a layout biased toward speed. Nevertheless, if we 
know nothing about users' preferences or wish to choose a 
layout that can best accommodate a wide variety of 
preferences, it is reasonable to use one that is in the middle 
of the convex surface (serving each goal on a roughly equal 
basis) as Dunlop and Levine did [8]. 

We will now highlight layouts optimized for each of the 
three metrics as well as layouts that serve roughly equal 
combinations of metrics. These layouts may serve as useful 
references to researchers and designers, and will later (in 
the user study) help us test the effectiveness of our 
optimization and its associated metrics. 

Single-Optimized Keyboard Layouts 
Figure 4(a) shows GK-C (“Gesture Keyboard—Clarity”), 
the layout optimized exclusively for gesture typing clarity. 
Figure 4(b) shows GK-S, which was optimized exclusively 
for speed. The layout optimized for Qwerty similarity is 
simply Qwerty itself, and is shown in Figure 1(a). 

Double-Optimized Keyboard Layout 
Figure 1(b) shows GK-D (where the ‘D’ stands for “double-
optimized”). This keyboard offers a roughly equal 
compromise between gesture typing clarity and gesture 
typing speed without regard to learnability (Qwerty 
similarity). To find this layout, we projected the three-
dimensional Pareto front onto the clarity–speed plane to 
derive a 2D Pareto front between clarity and speed, then 
chose the layout on the 2D front that was closest to the 45° 
line. Figure 5 shows the 2D Pareto front and GK-D. 

Triple-Optimized Keyboard Layout 
Figure 1(c) shows GK-T, where the ‘T’ stands for “triple 
optimized.” This keyboard offers a roughly equal 
compromise between all three metrics: gesture typing 
clarity, gesture typing speed, and Qwerty similarity. It is the 
one on the three-dimensional Pareto front that is closest to 
the 45° line through the space. As Figure 5 illustrates, it is 
possible to accommodate the extra dimension of Qwerty 
similarity without a big sacrifice to clarity and speed. 

 
Figure 3. 3D Pareto front. The keyboard layouts with 

lighter colors are farther from the origin.  

 
(a) GK-C 

 
(b) GK-S 

Figure 4. Single-optimized keyboard layouts. (a) Our GK-C 
keyboard (“Gesture Keyboard—Clarity”) is optimized for 

gesture typing clarity only. (b) Our GK-S keyboard (“Gesture 
Keyboard—Speed”) is optimized for gesture typing speed only. 
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Discussion 
Table 1 shows the metric scores for our optimized layouts 
as well as previous optimized layouts. Together, these 
optimized layouts give us a good understanding of what is 
possible in the optimization space for gesture typing. 

First, we can improve gesture clarity by 38.8% by 
optimizing for clarity alone: GK-C’s raw metric score is 
0.543 key widths while Qwerty’s is 0.391 key widths. 
Likewise, we also see that we can improve gesture speed by 
24.4% by optimizing for speed alone (resulting in GK-S). 

Second, the 2D Pareto front for gesture clarity and gesture 
speed (Figure 5) shows that these two metrics conflict with 
each other. It forms a roughly -45º line, indicating that 
optimizing for one leads to the decrease in the other. As 
GK-C and GK-S illustrate, the clarity metric tends to 
arrange common letters far apart in a radial fashion while 
the speed metric clusters common letters close together. 

However, despite the conflict, it is possible to arrange 
common letters close together while keeping word gestures 
relatively distinct, achieving large improvements in both 

clarity and speed. In GK-D (our double-optimized 
keyboard), letters in common n-grams such as “the,” “and,” 
and “ing” are arranged together while the n-grams 
themselves are spaced apart. This arrangement offers a 
17.9% improvement in gesture clarity and a 13.0% 
improvement in gesture speed over Qwerty.    

Third, accommodating Qwerty similarity (as GK-T does) 
does little harm to gesture clarity or gesture speed. GK-T's 
gesture clarity is only 0.01 key widths lower than GK-D's, 
and GK-T's predicted speed is only 1 WPM lower than GK-
D's. Meanwhile, GK-T's Manhattan distance from Qwerty 
is just 42 key slots, while GK-D's is 102 key slots. 

Comparison with Previous Optimized Layouts 
The key difference between our proposed keyboard layouts 
and previous optimized layouts is that our layouts are 
optimized for multiple gesture typing factors while previous 
layouts are predominantly optimized for tapping speed. As 
Table 1 shows, previous layouts such as Sath Trapezoidal 
[8], Square ATOMIK [23], and Square OSK [18] have high 
gesture speed scores but low gesture clarity scores. 

USER STUDY 
Since the main focus of this work is to computationally 
discover the optimization space for gesture typing, the 
conclusions that we have made so far are based on 
theoretical metrics. Of the three metrics that we established, 
only one (gesture speed) is based on a model that directly 
predicts its respective performance goal (in this case, words 
per minute). The others, gesture clarity and Qwerty 
similarity, do not directly measure their performance goals 
(error rate and learnability, respectively). Hence, we 
performed an empirical study to give us a sense of how the 
metric scores correspond to real performance and whether 
the optimization itself is effective.  

Experimental Setup 
In the study, participants gesture typed a set of 22 words 
with each keyboard layout using a Nexus 5 [16] smartphone 
in portrait mode. As in Bi et al. [5], participants had to 
gesture each word seven times in succession. We instructed 

Layout 
Gesture Typing Clarity Gesture Typing Speed Qwerty Similarity 

Normalized Raw (key widths) Normalized Raw (WPM) Normalized Raw (key slots) 

Qwerty 0.489 0.391 0.441 62.653 1.000 0 
Sath Trapezoidal [8] 0.568 0.413 0.704 69.843 0.730 40 

GK-C 1.038 0.543 0.317 59.256 0.554 66 
GK-S 0.283 0.334 1.000 77.940 0.311 102 
GK-D 0.743 0.462 0.739 70.793 0.324 100 

GK-T 0.709 0.452 0.704 69.830 0.716 42 
Square ATOMIK [21] 0.362 0.356 0.878 74.591 N/A N/A 

Square OSK [18] 0.381 0.361 0.979 77.358 N/A N/A 

Table 1. Keyboard metric score comparison. Shaded rows signify previous layouts. 

 

Figure 5. 2D Pareto front for gesture typing clarity and 
gesture typing speed. GK-D, our double-optimized layout, is 
the point on the front nearest the 45° line. Note that Qwerty 
is far worse in both dimensions than GK-D, and that GK-T 

(which accommodates yet another dimension) is only 
slightly worse on these two dimensions than GK-D. 
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the participants to gesture as quickly as possible and ignore 
any errors, which, for us, achieved two goals. First, it 
allowed us to stress test the keyboard's gesture decoder by 
providing it very sloppy gestures (the resulting data is also 
more differentiable in evaluating accuracy). Second, it 
simulated a type of expert input behavior: entering words 
first and coming back to fix mistakes later. 

Our study was a within-subject design that tested three 
keyboard layouts: Qwerty (our baseline), GK-D (the 
roughly equal compromise for clarity and speed only), and 
GK-T (the roughly equal compromise for clarity, speed, and 
Qwerty similarity). To conduct the experiment, we created 
Android implementations of GK-D and GK-T based on the 
Android [1] keyboard, and developed an Android 
application (Figure 6) to collect users’ gesture typing data. 

All participants started with Qwerty but used the other two 
layouts in alternating order. The first three words served as 
a warm-up phase to familiarize participants with the task 
(we did not collect their data), and the other 19 words are 
from the list proposed by Zhai and Kristensson [22]: “the 
and you that is in of know not they get have were are bit 
quick fox jumps lazy.” These words cover all letters of the 
English alphabet and approximate both letter frequencies 
and digraph frequencies in English. They were divided into 
groups of four or five with short breaks in between. 

To measure gesture typing accuracy, we compare each 
committed word with the respective requested word using a 
strict binary string equality comparison. The committed 
word is the word that appears after the participant lifts his 
or her finger from the screen and the keyboard algorithm 
applies any word corrections that it sees fit. To measure 
gesture entry times, we recorded either (1) the length of 
time from when a word was presented on the screen to 
when the word was committed (for the first repetition of a 
word), or (2) the length of time between when the last word 
was committed to when the current word is committed (for 
subsequent repetitions of a word). 

The entry times for the first repetitions of words offer a 
rough (but by no means perfect) perspective of our 
keyboards' learnability, while the entry times for latter 
repetitions of the word are a rough estimate of expert-level 
entry times. The rationale for the latter is that by repeating 
the same word in a row, users will reach a stage where the 

input behavior is mostly governed by motor control ability, 
which reflects expert input behavior. However, this is only 
a limited proxy for the study of the complex learning 
process and expert-level typing performance at scale, which 
may require a longitudinal logging study of real keyboard 
use, notwithstanding privacy and other challenges 
associated with such methods. 

A total of 14 volunteers (9 female, 5 male) participated in 
the experiment. 3 were age 18–25, 9 were 26–35, and 2 
were 36–45. 8 of them primarily use Android smartphones 
and the rest iPhones. 13 were at least somewhat familiar 
with gesture typing, and 5 were at least somewhat familiar 
with alternative keyboard layouts. All of them were right-
handed. Each experiment lasted less than an hour. 

Experimental Results 
Error Rate 
Figure 7 shows participants’ overall error rates with each 
layout and how those error rates changed as participants 
made successive repetitions of each word. The mean (std. 
dev.) error rate for Qwerty, GK-D, and GK-T were 26.4% 
(7.2%), 12.6% (6.6%), and 16.6% (6.2%), respectively. 
This means that the error rates for GK-D and GK-T were 
52% and 37% less than Qwerty, respectively. The keyboard 
layout has a significant main effect on the overall error rate 
(F2,26 = 35.46, 𝑝 < 0.001). Pairwise mean comparison over 
all repetitions showed that the differences were significant 
(𝑝 < 0.01) for every pair of keyboards except GK-D vs. 
GK-T. For Repetitions 2–6, however, the difference is 
significant (𝑝 < 0.01) for every pair of keyboards. 

Initial Gesture Entry Time 
Figure 8 shows how long, on average, it took participants to 
gesture words per repetition × layout. We noticed that 
participants often planned out their gestures in the first 
repetition, but resorted to motor memory in later repetitions. 
The mean (std. dev.) initial entry time was 2,655 ms (502 
ms), 5,870 ms (1,190 ms), and 5,468 ms (1,140 ms) for 
Qwerty, GK-D, and GK-T, respectively. The keyboard 

 
Figure 6. User study application. The layout shown is GK-T. 

 
Figure 7. Error rates across 14 participants for Qwerty, GK-
D, and GK-T. GK-D’s and GK-T’s average error rate is 52% 

and 31% less than Qwerty’s, respectively. Error bars 
indicate standard errors. 
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layout has a significant main effect on the initial entry time 
(F2,26 = 75.26, 𝑝 < 0.001). Pairwise mean comparison 
showed that the differences were significant (𝑝 < 0.01) for 
each pair of keyboards except GK-D vs. GK-T. 

Expert-Level Gesture Entry Time 
Figure 8(b) shows the expert-level entry time (Repetitions 
3–7) in detail. The mean (std. dev.) entry time in this case is 
1,315 ms (300 ms) for Qwerty, 1,150 ms (333 ms) for GK-
D, and 1,237 ms (310 ms) for GK-T. The keyboard layout 
has a significant main effect on the expert-level entry time 
(F2,26 = 12.46, 𝑝 < 0.001). The expert-level entry time for 
GK-D and GK-T is 12.5% and 6.0% faster than that for 
Qwerty. Pairwise mean comparison showed the differences 
were significant (𝑝 < 0.01) for each pair of keyboards 
except GK-D vs. GK-T. 

Discussion 
The results from the user study lead to several findings, 
although we stress (as described earlier) that they are 
limited by the fact that our experiment was conducted in a 
single session. First, keyboards optimized for gesture clarity 
are more accurate than those without. The error rates for 
GK-D and GK-T are 52% and 37% less than Qwerty, 
respectively. Second, including both gesture typing clarity 

and gesture typing speed in the optimization process results 
in layouts that outperform Qwerty in terms of both accuracy 
and expert typing speed. Both GK-D and GK-T 
significantly outperform Qwerty in both of these metrics. 
Third, considering the Qwerty similarity metric has only 
minor effects on accuracy and speed. The differences we 
observed between the expert-level entry times for GK-D 
and GK-T were not statistically significant. Finally, the 
Qwerty similarity metric is not very effective in improving 
learnability. Though the mean initial entry time for GK-T 
was lower than that of GK-D, we did not observe a 
statistically significant difference between the two. This is 
likely due to the relative leniency of the Qwerty similarity 
metric compared to Quasi-Qwerty's hard constraint [6] and 
Dunlop and Levine's squared distance metric [8]. 

The findings also give us a better sense of how a layout's 
gesture clarity and Qwerty similarity scores correspond to 
real performance (recall that the gesture speed scores are 
based on an empirically derived model). For example, the 
gesture clarity score increase from 0.489 in Qwerty to 0.743 
in GK-D (an increase by 0.254—see Table 1) corresponds 
to a decrease in the mean error rate from 26.4% to 12.6%. 
Yet, the Qwerty similarity score increase from 0.324 to 
0.716 does not improve learnability as we have defined it, 
while the increase from 0.716 to 1.000 drastically does. 

Still, we do not know the exact relationship between these 
two metrics' scores and the corresponding real-world 
performance measures. Conversely, the problem of finding 
metrics that empirically model gesture typing error rate and 
keyboard learnability remains to be solved. In the case of 
learnability, Quasi-Qwerty's constraint improves it [6] but 
cannot be used as a continuous model, and squared distance 
has not yet been shown to model it in its various degrees. 
Determining those relationships requires empirically testing 
many more layouts (using a variety of values for each 
metric score), and remains promising future work. 

CONCLUSION 
The present work, for the first time, defines a 
multidimensional optimization space for gesture typing 
(comprising gesture clarity, gesture speed, and Qwerty 
similarity) and systematically explores that space. In the 
process, we contribute a set of optimized layouts such as 
GK-D (optimized for both gesture clarity and gesture 
speed) and GK-T (optimized for gesture clarity, gesture 
speed, and Qwerty similarity) that can immediately benefit 
users. Though limited, our empirical study of these layouts 
led to the following findings. 

First, optimizing the layouts for gesture clarity drastically 
improves gesture typing accuracy. By incorporating gesture 
clarity as an optimization dimension, GK-D and GK-T 
reduced error rates by 52% and 37% over Qwerty, 
respectively. Second, gesture clarity and gesture speed 
conflict with each other, but despite the conflict, 
incorporating both in the optimization process leads to 

 
(a)  

 
(b) 

Figure 8. Gesture entry times across 14 participants for 
Qwerty, GK-D, and GK-T.  Error bars indicate standard 

errors. (a) The initial entry time (Repetition 1) using GK-D 
and GK-T is over twice as long as it is using Qwerty. (b) For 
Repetitions 3–7 (approximating expert usage), the average 
entry time for GK-D and GK-T are 12.5% and 6.0% faster 

(respectively) than they are for Qwerty. 
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superior performance over Qwerty with respect to both 
metrics. GK-D and GK-T, for example, improved expert-
level entry times by 12.5% and 6.0% over Qwerty, 
respectively. Third, Qwerty similarity as we have defined it 
has only a minor conflict with gesture clarity and gesture 
speed, but is not effective in improving learnability. 

FUTURE WORK 
Although the nature, size, and complexity of this work have 
surpassed its precedents in the literature [6, 8, 12, 18], many 
questions beyond the scope of this work require further 
research. These include further, larger, and longitudinal 
empirical studies of the multiple optimality dimensions. 
Further empirical investigation may redefine some or all of 
the optimality dimensions identified in this work in order to 
advance the gesture typing paradigm toward new shorthand 
writing systems that tolerate user errors, require minimal 
visual attention and motor effort, and remain easy to learn. 
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