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ABSTRACT

We show that selection on an input of size N can be performed on a P -node

hypercube (P = N/(logN)) in time O(N/P ) with high probability, provided

each node can process all the incident edges in one unit of time (this model is

called the parallel model and has been assumed by previous researchers (e.g.,

[?])). This result is important in view of a lower bound of Plaxton that implies

selection takes Ω((N/P ) log logP +logP ) time on a P -node hypercube if each

node can process only one edge at a time (this model is referred to as the

sequential model).

1 Introduction

Given a set of N keys, and an integer k (1 ≤ k ≤ N), the problem of selection is to find

the kth smallest key in the set. This important comparison problem has an elegant linear

time sequential algorithm [?]. Optimal algorithms also exist for certain parallel models

like the CRCW PRAM, the comparison tree model etc.

We are interested in solving the selection problem on the hypercube interconnection

network. On any parallel model that uses P processors, one would like to know if there ex-

ists a selection algorithm that runs in time O(N/P ). Plaxton has proved a lowerbound of

Ω((N/P ) log logP + logP ) for the hypercube (under the assumption that each processor

can process at most one incident edge per time step). An interesting open question was:

‘Is there an O(N/P ) selection algorithm for the hypercube if each processor can handle

all its incident edges in a single time step?’ (The routing algorithm proposed originally

by Valiant and Brebner [?] runs on the parallel hypercube model).

We give a randomized selection algorithm in this paper that acheives this O(N/P )

time bound (for the worst case input with overwhelming probability).
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1.1 Model Definition

Any fixed connection network can be represented as a graph G(V,E) where the vertices

correspond to processing elements and the edges correspond to communication links.

Examples of fixed connection networks include the hypercube, the butterfly, the shuffle

exchange etc. Real computers have been built based on fixed connection models.

A hypercube of dimension n consists of N = 2n nodes (or vertices) and n2n edges.

Thus each node in the hypercube can be named with an n-bit binary number. If x is

any node in V , then there is a bidirectional link from x to a node y if and only if x and

y (considered as binary numbers) differ in one bit position (i.e., the hamming distance

between x and y is 1.) Therefore, there are exactly n edges going out of (and coming

into) any vertex.

If a hypercube processor can handle only one edge at any time step, this version of

the hypercube will be called the sequential model. Handling (or processing) an edge here

means either sending or receiving a key along that edge. A hypercube model where each

processor can process all its incoming and outgoing edges in a unit step is called the

parallel model [?].

In this paper we assume the parallel version of the hypercube.

1.2 Previous Results

Plaxton [?] has presented an algorithm that runs on the sequential hypercube in time

O((N/P ) log logP + (T1 + T2 logP ) log(N/P )) using P processors, where T1 is the time

needed for sorting N keys (located one per processor) on an N -processor hypercube, and

T2 is the time needed for broadcasting and summing on an N -node hypercube. He [?] has

also proved a lowerbound of Ω((N/P ) log logP + logP ) for selection. For N ≥ P log2 P

the lowerbound matches the upperbound (to within a multiplicative constant). The only

operations allowed on the keys are copying and comparison (for both the upperbound and

the lowerbound).

Several results are known regarding selection on PRAM models. Vishkin’s [?] algo-

rithm is optimal with a time bound of O(logn log logn). Cole [?] has given an N/ logN

processor, O(logN) time CREW PRAM algorithm. His algorithm also runs in time

O((N/P ) log logP + logP log∗ P ) on the EREW PRAM. It is optimal for

N = Ω(P logP log∗ P ).
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Selection has also been well studied on the parallel comparison tree model. Ajtai,

Kómlos, Steiger, and Szemeredi’s [?] n processor, O(log log n) time algorithm, Cole and

Yap’s [?] O((log log n)2) and n processor algorithm are some of the well known algorithms.

Randomization has been used to solve selection on a wide variety of parallel models.

Meggido’s [?] algorithm does maximal and median selection in constant time using a linear

number of processors on the comparison tree model. Reischuk’s [?] selection algorithm

runs in O(1) time using N comparison tree processors. Floyd and Rivest’s [?] sequential

algorithm takes N+min(k,N−k)+o(N) time. Rajasekaran and Sen [?] give an O(logN)
time N/ logN processor maximal selection algorithm for the CRCW PRAM model. All

these results hold for the worst case input with high probability. The underlying idea

behind all these algorithms is to sample o(N) keys at random, and to eliminate keys

(from future consideration) in stages.

For an extensive survey of randomized selection algorithms, see [?]. In this paper

we present a randomized algorithm for selection (on an input of N keys) on the parallel

hypercube model that uses N/ logN processors (with logN keys initially residing at each

processor) and runs in O(logN) time on the worst case input with high probability. We

also assume that the only operations allowed on the keys are copying and comparison.

2 Preliminary Facts

Definitions. Let B(n, p) stand for a binomial random variable with parameters n and p.

By high probability we mean a probability ≥ (1−N−α) for any α ≥ 1 (N being the input

size). We let ‘w.h.p.’ stand for ‘with high probability’. We say a randomized algorithm

has a resource (like time, space etc.) bound of Õ(f(n)) if there exists a constant c such

that the amount of resource used is no more than cαf(n) with probability ≥ (1 − n−α)

on any input of size n. A random variable X is said to upper bound another random

variable Y if for any x, Prob.[Y ≥ x] ≤ Prob.[X ≥ x].
The following results related to packet routing and sorting on the hypercube will be

used in our algorithm.

The problem of routing is this: Given a network and a set of packets of information, a

packet being an <origin,destination> pair. To start with the packets are placed in their

origins. Only one packet can be sent along any edge at any time. The problem is to

send all the packets to their correct destinations as quickly as possible. The restriction of
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this problem where exactly one packet originates from any node and exactly one packet

is destined for any node is called permutation routing. A routing algorithm is given by

specifying a path that each packet should take, together with a queueing discpline, i.e., a

rule for resolving contentions for the same edge. The run time of a routing algorithm is

the time needed for the last packet to reach its destination, and the queue size is defined

to be the maximum number of packets that any node will have to store during the entire

algorithm.

Valiant and Brebner [?] gave a randomized permutation routing algorithm for the

parallel hypercube that runs in O(logN) time on an N -node network, the queue size

being O(logN). Their algorithm also works for partial permutations, i.e., routing with at

the most one packet originating at any node and at the most one packet destined for any

node.

Upfal [?] calls a routing problem to be a q-bounded communication request if intially

at most q packets are located at any node, and no more than q packets will have to be

sent to any node.

The following theorem is due to Ranade [?]

Theorem 2.1 There exists a randomized algorithm for routing partial permutations on

an N-node butterfly that runs in time O(logN) and needs only O(1) sized queues.

As a consequence of the above theorem, we can prove the following

Lemma 2.1 Any O(logN)-bounded communication request can be routed on an N-node

parallel hypercube in O(logN) time, with a queue size of O(logN).

Proof. We can trivially embed an N logN -node butterfly on an N -node parallel hyper-

cube [?]. Each node in the hypercube will correspond to logN butterfly nodes.

Also, Ranade’s algorithm runs in the same time bound even for an O(1)-bounded

communication request. These two facts imply the lemma. ✷

This proof assumes that the O(logN) packets that are destined for any hypercube

node are distinct, i.e., they have addresses of the corresponding butterfly nodes (O(1)

packets destined for each butterfly node). This assumption can be eliminated for the

following special case.

Lemma 2.2 If no more than O(logN) packets originate from any node and no more

than O(1) packets are destined for any node, routing can be done in O(logN) time on an

N-node hypercube. The queue size will not exceed O(logN) at any node.
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Consider the following problem. In a hypercube with N/ logN nodes there are at the

most logN packets per node to start with. Each packet is chosen to be in a sample with

probability N−ε (where ε is a constant < 1), independently of the other packets. (This

means that the number of packets in the sample is Õ(N1−ε)). We want to concentrate

the packets in the sample in a subcube of size N δ where (1− ε+ 1
6
) < δ < 1. This task of

concentration is performed as follows. Each packet in the sample chooses a random node

in the subcube and goes there along the shortest path. How long does it take to perform

this routing step on the sequential hypercube? The next theorem answers this question:

Theorem 2.2 The above routing step can be completed in Õ(logN) time.

Proof. Let v1, v2, . . . , vm be the sequence of nodes in the path taken by an arbitrary

packet π in the sample. Then, m is at the most logN . In order to compute the time

taken by this packet to reach its destination on the sequential model, it suffices to count

how many other packets will ever visit any of the nodes in π’s path. We show that w.h.p.

no more than O(1) packets will ever visit any node. This will immediately imply that the

time taken by any packet to reach its destination is O(logN) with high probability. Let

X ′ stand for the number of packets that will ever visit a given node v.
Now look at a slightly different routing problem. Every node in an N/ logN−node

hypercube has ≤ logN packets to start with. Each packet is chosen to be in a sample

with probability N−ε+(1−δ)(= N−γ ,say). Every packet in the sample is sent to a random

node in the whole cube along the shortest path. Let X be the number of packets that

will ever visit the node v in this routing.

It is easy to see that X ′ is upperbounded by X. Thus to prove the lemma it is enough

to show that X is O(1) with high probability for any node v.

Realize that γ satisfies the condition 1
6
< γ < ε. To prove an upper bound on X we

make use of the fact that a hypercube with N = 2n nodes can be laid out as a butterfly

with (n+ 1)2n nodes (see e.g., [?]). The butterfly nodes are arranged in n+ 1 ‘levels’ (or

‘ranks’) with 2n nodes in each rank. Each node in the butterfly is labelled with a tuple

< rank, address >, where rank is the level in which the node is located and address is an

n-bit binary number. Each node in rank i(0 ≤ i ≤ n) is connected to exactly two nodes
in rank i− 1 (if this rank exists) and exactly two nodes in rank i+1 (if this rank exists).
For any node < i, a >, its two neighbors in rank i+ 1 are < i+ 1, a > and < i+ 1, a′ >,
where a and a′ (treated as n-bit binary numbers) differ only in the ith most significant
bit.
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For any n-bit binary number a, let ‘column a’ stand for all the (n + 1) nodes with

address a. If each column of an (n + 1)2n-node butterfly is collapsed into a single node,

we get a hypercube with N = 2n nodes. Our routing problem can be analyzed assuming

that packets originate from rank 0 and have destinations in rank n of the butterfly. The

following analysis of the routing algorithm on the butterfly is similar to the one given in

[?] (which has been employed in [?] also).

Let l be any column in the butterfly. Let Ci be the number of packets that meet

column l for the first time in rank i (i.e., at node < i, l >). Then
∑n

i=0Ci will be the

number of packets that will ever meet column l (and hence the corresponding hypercube

node).

Next we compute the distribution of Ci (i.e., we compute Prob.[Ci = d] for each d).

There are at the most
(

2i−1n
d

)
ways to choose the origins for the d packets (in rank 0).

Probability that the d packets in the chosen origins belong to the sample is ≤ N− 1
6
d. Also,

probability that each one of these packets goes through node < i, l > is 2−id. Therefore,

Prob.[Ci = d] ≤
(
2i−1n

d

)
2−idN−d/6 ≤ (n/2)dN−d/6

d!
.

The probability generating function for (an upper bound of) Ci is given by Gi(z) =∑
d z

dProb.[Ci = d] = enN−1/6z/2. Hence, the generating function for (an upper bound

of)
∑n

i=1Ci is given by, G(z) = Π
n
i=1Gi(z) = en

2N−1/6z/2.

Therefore,

Prob.[X = d] ≤
(
n2

2N1/6

)d
1

d!
.

This implies

Prob.[X ≥ 7α] ≤ 2

(
n2

2N1/6

)7α
1

(7α)!
≤ N−α

for any α.

This completes the proof that X is Õ(1) and the proof of theorem 2.2.✷

Corollary 2.1 Say we choose the sample in the above problem in the following way. The

number of packets in the sample is specified to be r (where r is θ(N1−ε)). Each possible

distribution of these r packets among the N/ logN hypercube nodes is equally likely. Even

if the sample is chosen this way, the above routing problem can be completed in O(logN)

time w.h.p.
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Proof. is very similar to that of theorem 2.2 and hence is omitted.

We also use the following sorting algorithms on the hypercube.

Theorem 2.3 (Nassimi and Sahni [?]) [Sparse Enumeration Sort] Sorting of n keys can

be performed in q logn time on a hypercube using n1+1/q processors. (Initially the keys

are located in a subcube of size n, one key per processor).

Broadcasting is the operation of a single processor sending some information to all the

other processors. The summing problem is this: Each processor in a hypercube has an

integer. We need to obtain the sum of all these integers at some designated processor (say

00 . . . 0). Given two sorted sequences, the problem of merging is to obtain a sorted list of

elements from both the lists.

Lemma 2.3 Both broadcasting and summing can be completed in O(logP ) steps on a

P -node hypercube. Also, two sorted sequences of length P each can be merged in O(logP )

time, given P hypercube processors.

3 The Selection Algorithm

3.1 Summary

The algorithm we present can be thought of as an extension of existing randomized

selection algorithms (in particular Floyd and Rivest’s [?]) to the hypercube. Given a

set X of N keys and an integer k, 1 ≤ k ≤ N . Assume the keys are distinct (without loss
of generality). We need to identify the kth smallest key. Like in the previous randomized

selection algorithms we sample a set S of o(N) keys at random. Sort the set S. Let l be

the key in S with rank m = �k(|S|/N)�. We will expect the rank of l in X to be roughly

k. We identify two keys l1 and l2 in S whose ranks in S are m− δ and m+ δ respectively,
δ being a ‘small’ integer, such that the rank of l1 in X is < k, and the rank of l2 in X is

> k, with high probability.

Next we eliminate all the keys in X which are either < l1 or > l2. The remaining keys

are sorted and the key that we are looking for will be one such with high probability. We

do a trivial selection on the remaining keys to identify the right key.
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3.2 Detailed Algorithm

Assume that the hypercube has P = N/ logN processors. At the beginning each processor

has logN keys. There is a queue associated with each edge incident on every node. There

are 8 simple steps in the algorithm:

step1

Each processor flips an N1/3-sided coin (for each of its logN keys) to

decide if the key is in the ‘random sample, S’ with probability N−1/3.

This step takes logN time and with high probability O(N2/3) keys

(from among all the processors) will be selected to be in the random

sample. Also no more than O(1) packets will be selected from any

node.

step2

P processors perform a prefix operation to compute the number of

keys that succeeded in step 1. Let q be this number.

step3

Concentrate the keys that survived in step 2 in a subcube (call it

C) of size N3/4. This is done as follows. Each surviving key chooses

a random node in the subcube. No more than O(1) keys will choose

any node of C w.h.p. Packets are routed to these destinations using

Ranade’s algorithm (see lemma 2.2).
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step4

Sort the subcube C using sparse enumeration sort. Pick keys l1 and

l2 from S with ranks
⌈

kq
N

⌉
−

√
N2/3 logN and

⌈
kq
N

⌉
+
√
N2/3 logN

respectively.

step5

Broadcast l1 and l2 to all the processors in the hypercube.

step6

All the keys with a value < l1 or > l2 in the input drop out. The

kth smallest key of the original input will be located in the range

[l1, l2] w.h.p. Count the number of surviving keys and call it r. Also

count the number of keys in X with a value < l1. Let this count be

s.

step7

Concentrate the surviving keys in a subcube (say C ′) of size N3/4

(similar to step 3).

step8

Sort C ′ using sparse enumeration sort. Find the key in C ′ with rank
k − s and output.

Analysis.

step1. Number of keys succeeding in step 1 is B(N,N−1/3). Using Chernoff bounds, this

number is ≤ cαN2/3 with probability ≥ (1−N−α), for some constant c. Also, since there

are logN keys per node at the beginning, the number of keys suceeding at any node is

B(logN,N−1/3). Using Chernoff bounds again, this number is O(1) w.h.p.

step2. This step takes O(logN) time since each node has O(1) packets w.h.p.

step3. Given that the number of keys succeeding in step 1, q, is O(N2/3), probability

that more than e keys will choose the same node in C is O
(

N2/3

N3/4

)e ≤ N−α for any α ≥ 1
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and some appropriate constant e. The routing step takes O(logN) steps according to

lemma 2.2. This routing step is an O(1)−communication request w.h.p.

step4. Sparse enumeration sort takes O(logN) steps (since there are O(1) packets per

node w.h.p.) This can be done in O(1) stages each taking O(logN) steps. In each stage

pick one key per node and sort the whole subcube. Finally, merge these O(1) sorted lists.

(Nodes which do not have any key generate a dummy key with value ∞).
Once the sorting is done, l1 and l2 can be picked in O(1) time.

step5. Broadcasting takes O(logN) steps (see lemma 2.3).

step6. If l1 and l2 are chosen as in step 4, the kth smallest key will be in the range

[l1, l2] and also the value of r will be O(N
2/3

√
logN) w.h.p. This can be proved using the

sampling lemma given in [?].

step7. This step can also be performed in O(logN) time (using lemma 2.2). In this

routing step, there can be as many as logN packets originating from some of the nodes,

but only O(1) packets will be destined for any node w.h.p.

step8. Sorting C ′ and the final selection can also be completed in O(logN) steps (similar

to step 4).

Thus we have the following

Theorem 3.1 Selection on an input of size N can be performed on a P = N/(logN)-

node parallel hypercube network in time O(N/P ).

4 Expected Behavior on the Sequential Model

In this section we show that the above algorithm has an expected run time of O(logN)

using N/ logN processors even on the sequential model of the hypercube (under the

assumption that each possible permutation is equally likely to be the input). Notice that

Plaxton’s lower bound proof rules out a worst case O(logN) time deterministic algorithm

with N/ logN processors.

In the algorithm given in section 3, at the end of step 6, some nodes of the hypercube

can still have as many as logN keys each. This is the reason why we need the parallel

model to perform routing (in step 7). Also, step 7 is the only step in the entire algorithm
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where the stronger model is needed. In every other step, a sequential model will do.

In particular, step 3 can be completed on the sequential model in O(logN) steps (see

theorem 2.2).

Under the assumption that each possible permutation is equally likely to be the input,

and given that only O(N2/3
√
logN) keys survive after step 6 w.h.p. (see the analysis of

step 6), step 7 also can be completed in O(logN) steps w.h.p. (making use of corollary

2.1). This time the ‘high probability’ not only involves the space of outcomes for coin flips

but also the input space. Another way of stating this result is: Step 7 can be completed

quickly on a large fraction of all possible inputs, and on each such input the algorithm

terminates in O(logN) steps w.h.p. (this probability being over the space of outcomes

for coin flips).

This means that the algorithm of section 3 runs for a large fraction (≥ 1−N−β, β ≥ 1)

of all possible inputs, and on each such input the algorithm terminates in O(logN) steps

w.h.p. (this probability being over the space of outcomes for coin flips).
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APPENDIX A: Chernoff Bounds

Lemma A.1 If X is binomial with parameters (n, p), and m > np is an integer, then

Probability(X ≥ m) ≤
(
np

m

)m

em−np. (1)

Also,

Probability(X ≤ 	(1− ε)pn
) ≤ exp(−ε2np/2) (2)

and

Probability(X ≥ �(1 + ε)np�) ≤ exp(−ε2np/3) (3)

for all 0 < ε < 1.
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