
Managing Technical Debt in Database Schemas of
Critical Software

Jens H. Weber
Department of Computer Science

University of Victoria

Victoria, BC, Canada

e-mail: jens@uvic.ca

Anthony Cleve, Loup Meurice
Faculty of Informatics

University of Namur

Namur, Belgium

e-mail: [anthony.cleve|loup.meurice]@unamur.be

Francisco Javier Bermudez Ruiz
Department of Informatics and Systems

University of Murcia

Murcia, Spain

e-mail: fjavier@um.es

Abstract—The metaphor of technical debt (TD) has been used
to characterize and quantify issues arising from software evolu-
tion and maintenance actions taken to modify the functionality
or behaviour of a system while compromising on certain “under
the hood” quality attributes in order to save cost and effort. The
majority of research in this area has concentrated on software
program code and architecture. Fewer research considers TD in
the context of database applications, particularly TD related to
database schemas, which is the focus of this paper. Managing TD
in database schemas provides considerable and unique challenges,
in particular for applications of safety and security critical nature.
We discuss these challenges, point out potential solutions and
present an industrial case study in this area.

I. INTRODUCTION

The metaphor of technical debt (TD) has been used to char-
acterize and quantify issues arising from software evolution
and maintenance actions taken to modify the functionality or
behaviour of a system while compromising on certain “under
the hood” quality attributes in order to save cost and effort [1].
The majority of research in this area has concentrated on soft-
ware program code and architecture. Fewer research considers
TD in the context of database applications, particularly TD
related to database schemas, which is the focus of this position
paper.

We point out that the accumulation, measurement and
“down payment” of TD related to database schemas is sig-
nificantly different from TD in program code or architecture
design. A primary reason for that difference lies in the fact that
database schemas are intimately coupled with the actual data
instances maintained in the application installations and the
fact that these data instances are typically not under centralized
control and often not even accessible to the software developer.

Analogously to program code and software architecture,
there are many different forms of TD to consider in database
schemas, including but not limited to data redundancy (similar
but not equal to code duplication), weak typing, and missing
constraints. In this paper, we focus on referential integrity
constraints (RICs) in relational database applications, i.e.,
constraints that ensure referential integrity between differ-
ent database tables. RICs can be implemented in relational
schemas by declaring so-called foreign keys (FK) from one
database table to another database table’s primary key. Virtu-
ally all modern database management systems (DBMS) have
the capability of monitoring and enforcing different kinds
of integrity constraints, including the validity of FKs. These

integrity mechanisms play an important role in preserving and
guaranteeing data quality and validity in relational systems.

Notably, the database layer is not the only option for
monitoring and enforcing RICs. Other places for ensuring
RICs in a typical three-tier architecture include the presentation
tier (e.g., implemented in form of JavaScript validation tests
run at the user’s Web browser) and the business application
tier. However, pushing enforcement down to the persistence
tier is often seen as the most reliable option (with potentially
additional checks at the other tiers), as there can be many
concurrent “channels” where data may enter the system and
inconsistencies may arise. Moreover, databases provide support
for complex transactions, which can be used to recover from
integrity violations and restore a consistent state.

As a result of the above discussion, we suggest that the
absence of FKs that implement “logical” RICs between data
items that have been mapped to relational tables should be
considered a form of TD. In this paper, we discuss possible
reasons for such TD to arise, we suggest ways to measure
such TD, and we lay out a process to reduce such TD. We
also present large-scale, industrial case study in the context of
this research.

The rest of this paper is structured as follows. In the next
section, we discuss the question of how TD with respect to
missing FKs may arise in a system. This discussion is based
on our experiences with empirical studies of existing industrial
systems. We will then focus on the question of how to measure
FK-related TD in Section III. Section IV presents a process
for reducing FK-related TD. We then close the paper with
conclusions and a brief discussion of related work.

II. HOW DOES FK TD ARISE?

Before discussing FK-related TD, let us recall the precise
definition of a FK in the relational model. Considering a table
S with key KS on the one hand, and a set FR of columns of
table R on the other hand, FR is a foreign key of R to S if,
at any time, for each row r in R, such that r.FR is not null,
a row s exists in table S such that r.FR = s.KS. In other
words, the set of values of FR that appears in table R must
be a part of the set of values of KS of table S. The foreign
key FR acts as a reference to the rows of S.

Technical debt with respect to undeclared FKs may arise
as a result of one of two occurrences in the application

2014 6th IEEE International Workshop on Managing Technical Debt

978-1-4799-6791-9/14 $31.00 © 2014 IEEE

DOI 10.1109/MTD.2014.17

43

development lifecycle: (1) they may arise as a result of
incremental modifications of the database application’s data
model, or (2) they may result from an architectural change,
such as a platform migration.

Instances of the first case occur when developers evolve the
application’s data model without pushing the enforcement of
RICs down to the persistence tier. In many cases, developers
do not purposefully intend to “cut corners” by omitting to
implement the FKs in the database schema. Rather, the omis-
sion of declaring FK constraints in the database is often more
a reflection of a particular world view, development culture,
or philosophy. For example, today’s application programmers
often see the program code as “the ultimate truth” and the
database (schema) as a “necessary evil” that gets generated and
used by their code. Such developers may annotate RICs in their
application code (e.g., using tags in persistency frameworks
such as the Java Persistence Architecture - JPA, Hibernate or
other object-relational middleware). However, such developers
may not work at the database level directly. In contrast,
database engineers have a very different world view; they see
the database schema as the “heart” of the system where all
data model changes originate from, while programs play the
role of peripheral functions.

The second case (architectural change) may occur when
an application is migrated from one data persistence model to
another, e.g., from file-based or key-value based persistence
model to a relational database backend, or when a legacy
application is migrated to a new version of a relational DB
engine that supports FK monitoring and enforcements. Clearly,
depending on the size of the application’s data model, such
platform changes may result in a large amount of TD. Of
course, it can be debated whether the migration to a new
platform that supports FK monitoring actually creates TD -
or whether that TD has existed before. This highlights the
question of whether to define TD as relative to the choice of
technical tools (architecture) employed in a software product
(or product line) or whether TD is defined in relation to all
possible architectures. We believe the first (relative) definition
to be more workable in practice, even if it may allow somewhat
non-sensical “solutions” to the problem of reducing TD, e.g.,
the migration an application back to an architecture that does
not support mechanisms for enforcing FKs.

A. Case Study Example

As a real world case study, we consider the OSCAR
Electronic Medical Record (EMR) system, a software in
production use in hundreds of primary health care clinics in
Canada [2]. OSCAR has a relational database backend with
a large schema containing over 450 tables, with some tables
comprising more than a thousand attributes each. In earlier
work we have studied the evolution history of the OSCAR
system and noticed the relative absence of FK declarations,
even though the underlying DBMS supports FK constraints [3].
In other words, the OSCAR database schema seems to consist
(at first sight) of many unrelated tables.

Our investigation showed that one reason for this TD was
due to a recent migration from one storage engine to another
(MySQL’s MyISAM to InnoDB). InnoDB supports FK con-
straints while MyISAM does not. Moreover, while some of the

newer OSCAR developments have resulted in FK declarations
in the schema, conversations with the lead developers have
indicated a predominantly program code-centric world-view,
i.e., developers annotate and monitor RICs and the program
code level but do not necessarily see reason for declaring them
at the database schema level. Indeed, we were able to detect
hundreds of RICs doing program code analysis, RICs that are
not reflected in the corresponding database schema [4].

Finally, there is a prevailing culture of caution with respect
to “legacy data”. Some OSCAR clinics have been collecting
data for over a decade. RICs that are enforced at the presen-
tation tier or the application tier will prevent new referential
inconsistencies to occur - but they will not cause exceptions
with respect to integrity violations in legacy data. This is not
the case for RICs that are declared as FK constraints at the
database level. The OSCAR community generally tries to avoid
updates that may “break” the client’s system depending on the
quality of the existing legacy data. (For medico-legal reasons
such data cannot be simply modified with a “repair” script
without manual investigation and approval of a physician.)

III. HOW TO MEASURE FK TD?

Measuring TD with respect to missing FKs is not trivial.
A naive approach may be based on FK-detection algorithms
developed in the database reverse engineering domain. Indeed
many such detection algorithms have been developed, with
different types of input artifacts (program code, documentation,
schema, data, etc.) and different levels of accuracy. It often
requires a combination of several such algorithms to achieve
reasonable detection accuracy [4]. However, the result of such
a measurement would merely be a crude measure for FK-
related TD, as the integrity goals implemented in FKs may
have different levels of importance. Complex data models in
at-scale applications often have different regions of criticality.

For example, the data model of a medical information
system like OSCAR has regions that may severely impact pa-
tient safety (e.g., diagnosis, medications, allergies, lab results)
as well as parts that are less critical (e.g., patient address
info, appointment calendar, billing records). Therefore, we
argue that a TD measure associated with missing FKs should
take into considerations different levels of criticality. Many
critical system domains (e.g., medical, avionics, automotive,
energy, etc.) have promulgated standards for risk analysis
and management that can be used for roughly partitioning
the database schema into different criticality regions. For
example, we may utilize guidance in ISO 14971 (Medical
devices - Application of risk management to medical devices)
for partitioning OSCAR’s database schema roughly in three
regions of criticality with respect to a safety quality goal.

A third factor that should be accounted for when measuring
TD with respect to missing FKs is the actual data maintained
in a given database. For any given RIC, a system that contains
many data instances violating that RIC imposes a higher TD
than a system that has no or only very few violations of that
RIC. As a consequence of this definition, we observe that
the TD for missing FKs tends to increase over time even if
the software remains unchanged, because of the possibility of
adding data instances that violate the corresponding RIC at the
database level.

44

Equation 1 summarizes the above discussion and defines
a measurement for FK-related TD. In this equation, FK is
a set of missing FKs, as detected by FK reverse engineering
algorithms such as the ones presented in [4]. cl : FK → [0, 1]
is a function that assigns a criticality valuation to each FK.
For a given fk ∈ FK and a given database db, #totdb(fk)
denotes the total number of FK instances of fk in db and
#violdb(fk) denotes to number of instances that violate (the
missing) FK fk.

?TDdb =
∑

fk∈FK

(
cl(fk) ∗ 1 + #viodb(fk)

#totdb(fk)

)
(1)

?

It is worthwhile to note that Equation 1 is a systems
measure rather than a software measure. In other words, the
fact that we consider actual data instances means that the TD
measurement may be different from one implementation of
the software product to another. Indeed our experience with
OSCAR shows that clinics that have been using OSCAR for
over a long time have accumulated much higher TD with
respect to RICs when compared to new installations of the
product. Of course, a software measure can be defined based
on the systems measure by averaging over all installations.

However, such an approach is often not practically feasible,
as there are often barriers to accessing production data of sensi-
tive informations systems. It is often more practical to provide
strictly controlled access to limited, selected installation sites
that are used in TD measurement and management. In case
of OSCAR, we have access to such a site, which provided us
with a hash-encrypted copy of the database instances (approx.
10,000 patients, four physicians). We used this data for FK
detection in earlier work [4] and our current work is on
computing TD measures for confirmed missing FKs.

IV. HOW TO REDUCE FK TD?

Reducing TD with respect to missing FKs may require
complex changes to not only the database schema, but also the
stored data, application programs and even resources that are
used for quality assurance (e.g., test code). The process that
can be applied for managing these changes during software
maintenance releases is simpler for information systems that
have only one major deployment (i.e., where there is only
a single database to consider). In contrast, if the software
is deployed at many customer sites (each having their own
database), it is often not realistic to expect that all clients
implement FKs “in lock step”. Rather, the maintenance process
must allow client sites a certain amount of freedom to decide
which FKs to implement when. As discussed earlier, the cost
of implementing a given FK may be quite different from one
customer site to another (e.g., different amounts of TD with
respect to “legacy data”). Moreover, since implementing FKs
requires cost (effort), different clients may be able to afford
this cost at various times.

In the case of our case study, OSCAR is deployed in
many hundreds of clinics throughout Canada. Major new
product releases are issued only approximately every 2-2.5
years. Maintenance releases are issued much more frequently

to fix defects, improve quality and minor system functions.
In this paper, we consider a process for reducing FK-related
TD within the more frequent maintenance releases. Fig. 1
summarizes this process.

Deployment sites

Select missing
FK for

implementation

Create schema
declaration

Modify application
programs

Modify test code

Create instance
repair script

Package
“implementable FKs”

in maintenance
release

Compute TD
for next

implementable FK

Review / adapt
instance repair

script

Perform instance
repair

Add schema
declaration

Implement
FK?

no
(not now)

yes

Development site

Fig. 1. Process for reducing FK TD

The left-hand side of the figure shows activities carried out
at the software development site, which include the following
steps:

1) Selection of a missing FK to implement (after prior
detection and prioritization). This may involve the
computation of associated TD using privileged access
to a client deployment site.

2) Creation of a schema modification directive (DDL)
for declaring the FK constraint.

3) Creation of a data instance “repair” script for making
existing data conform to the new FK constraint. There
are multiple principle options of “repairing” data
records that violate the missing FK, including the
deletion (or archiving) of the offending data record,
the creation of a new target record (potentially with
default data), the removal of the entries in the FK
column of the offending record (if the FK values
are optional), etc. The actual choice of these options
depends on the nature of the FK and may also
depend on the actual data instances to be repaired.
The development site prepares a repair script for a
proposed FK implementation, which will later on be
reviewed, customized and executed at the deployment
sites.

4) Application programs may have to be modified as
a result of the newly implemented FK. For exam-
ple, application programs may need to be able to
handle new exceptions that may now be raised by
the database as a result of integrity violations. An
important restriction when adapting the application
programs is that the modified programs should still
behave properly even if a client site chooses not to
implement the FK at this time.

5) Test programs may also need modification as a result
of the newly implemented FK. For example, existing

45

tests that generate test data may no longer run because
the test data now violates FK constraints. More-
over, there may be performance penalties associated
with database constraint monitoring and enforcement,
which may require tests of additional quality at-
tributes.

The development site may package a set of FK schema
declarations, repair scripts, and associated application code
changes into the next maintenance release of the product. We
refer to these changes as “implementable FKs” in Fig. 1.

As the right-hand side of that figure shows, client deploy-
ment sites can review the “implementable FKs” and should
have a means of computing the TD measure with respect to
their particular database. They can also review the provided
“repair script” and estimate cost involved in implementing the
FKs. They can select which FKs they choose to implement
and may customize and execute the associated data instance
repair scripts. This may require manual intervention or a semi-
automatic process. Finally, once the data is conform to the FK,
the schema declaration can be added.

V. CONCLUSION

Referential integrity constraints (RICs) play an important
role in assuring data quality in information systems. The most
effective way of monitoring and ensuring data integrity is
at the database persistence level. In the world of relational
DBMS, RICs are implemented by means of foreign key
(FK) constraints. Legacy information systems often miss FK
constraints, because of various reasons. Mature research exists
in the database reengineering community on how to detect
missing FKs. However, the actual process on how to manage
the implementation of detected, missing FKs is less explored -
and often causes significant problems in practice. This position
paper provides a first attempt of utilizing the technical debt
(TD) analogy for developing processes related to missing
FK implementation. We discussed the detection of missing
FKs, the proposed a measurement for the TD associated with
missing FKs, and outlined a process for reducing FK-related
TD. We also illustrated our concepts with a real world case
study in this area, which we are currently using to gain
empirical results confirming the feasibility of our proposed
approach.

VI. RELATED WORK

The analogy of technical debt (TD) has received significant
attention and spurred different lines of investigation in the
software engineering community [1]. Our focus is on database
applications and, specifically, on TD related to referential
integrity constraints (RIC) in database schemas. Our work is
therefore closely related to works carried out in the database
reengineering community [5]. While foreign key (FK) detec-
tion and semantic interpretation has been well studied in that
community (e.g., [6], [4]), fewer research extends to processes
for managing the implementation of missing FKs. However,
our experience with complex, real world database applications
such as OSCAR indicates that such a process is a critical factor
for positive change.

The work in this paper is also related to earlier research
of the evolution history of the OSCAR EMR system, that

provided us with answers about the provenance of the current
schema constructs and the reasons for made observations, such
as missing FKs [3].

REFERENCES

[1] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18–21, 2012.

[2] J. Ruttan, The Architecture of Open Source Applications, Volume II.
Lulu.com, 2012, ch. OSCAR.

[3] A. Cleve, M. Gobert, L. Meurice, J. Maes, and J. Weber,
“Understanding database schema evolution: A case study,” Science
of Computer Programming, no. 0, pp. –, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167642313003092

[4] L. Meurice, F. J. B. Ruiz, J. Weber, and A. Cleve, “Establishing
referential integrity in legacy information systems - reality bites!” in
Proc. of ICSME2014-ERA Track (submitted), 2014.

[5] J.-L. Hainaut, J. Henrard, V. Englebert, D. Roland, and J.-M. Hick,
“Database reverse engineering,” in Encyclopedia of Database Systems,
L. Liu and M. T. Özsu, Eds. Springer US, 2009, pp. 723–728.

[6] C. Marinescu, “Discovering the objectual meaning of foreign key con-
straints in enterprise applications,” in Proceedings of the 14th Working
Conference on Reverse Engineering (WCRE’07). IEEE Computer
Society, 2007, pp. 100–109.

46

