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“In preparing for battle I have always found that plans are useless, but
planning is indispensable.”

– Dwight D. Eisenhower





ABSTRACT

Computer games in general and Real-Time Strategy (RTS) games in particular provide a rich chal-
lenge for both human- and coimputer controlled players, often denoted as bots. The player or bot
controls a large number of units that have to navigate in partially unknown dynamic worlds to pur-
sue a goal. Navigation in such worlds can be complex and require much computational resources.
Typically it is solved by using some sort of path planning algorithm, and a lot of research has
been conducted to improve the performance of such algorithms in dynamic worlds. The main goal
of this thesis is to investigate an alternative approach for RTS bots based on Artificial Potential
Fields, an area originating from robotics. In robotics the technique has successfully been used
for navigation in dynamic environments, and we show that it is possible to use Artificial Potential
Fields for navigation in an RTS game setting without any need of path planning.

In the first three papers we define and demonstrate a methodology for creating multi-agent
potential field based bots for an RTS game scenario where two tank armies battle each other. The
fourth paper addresses incomplete information about the game world, referred to as the fog of war,
and show how Potential Field based bots can handle such environments. The final paper shows
how a Potential Field based bot can be evolved to handle a more complex full RTS scenario. It
addresses resource gathering, construction of bases, technological development and construction
of an army consisting of different types of units.

We show that Artificial Potential Fields is a viable option for several RTS game scenarios and
that the performance, both in terms of being able to win a game and computational resources used,
can match and even surpass those of traditional approaches based on path planning.
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PREFACE

This thesis is a compilation of five papers. The papers are listed below and will be
referenced to in the text by the associated Roman numerals. The previously published
papers have been reformatted to suit the thesis template.

I. J. Hagelbäck and S. J. Johansson (2008). Using Multi-agent Potential Fields in
Real-time Strategy Games. In L. Padgham and D. Parkes editors, Proceedings of
the Seventh International Conference on Autonomous Agents and Multi-agent
Systems (AAMAS).

II. J. Hagelbäck and S. J. Johansson (2008). Demonstration of Multi-agent Poten-
tial Fields in Real-time Strategy Games. Demo Paper on the Seventh Interna-
tional Conference on Autonomous Agents and Multi-agent Systems (AAMAS).

III. J. Hagelbäck and S. J. Johansson (2008). The Rise of Potential Fields in Real
Time Strategy Bots. In Proceedings of Artificial Intelligence and Interactive
Digital Entertainment (AIIDE).

IV. J. Hagelbäck and S. J. Johansson (2008). Dealing with Fog of War in a Real
Time Strategy Game Environment. In Proceedings of 2008 IEEE Symposium
on Computational Intelligence and Games (CIG).

V. J. Hagelbäck and S. J. Johansson. A Multi-agent Architecture for Real Time
Strategy Games. Submitted for publication.

The author of the thesis is the main contributor to all of these papers. In addition, the
following paper is related to the thesis:

VI. J. Hagelbäck and S. J. Johansson (2009), A Multiagent Potential Field-Based
Bot for Real-Time Strategy Games. International Journal of Computer Games
Technology, vol. 2009, Article ID 910819, 10 pages. doi:10.1155/2009/910819

Papers VI is a summary with some additions of the work presented in papers I, II, III
and IV thus it is not included in the thesis.
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CHAPTER

ONE

INTRODUCTION

A Real-Time Strategy (RTS) game is a game that lets players simulate resource gather-
ing, construction of bases, technological development and unit control in order to defeat
their opponent(s). The game is typically set in a war scenario in which the player con-
trols the construction and actions of an army. The game environment can range from
medieval (Age of Empires 2), fantasy (Warcraft II and III), World War II (Commandos I
and II), modern (Command & Conquer Generals) to science fiction (Starcraft and Dawn
of War). The game is running in real-time in contrast to turn-based board games such as
Risk and Diplomacy.

From a general perspective, an RTS game consists of the components listed below
(Buro & Furtak, 2004; Co, 2007).

• Workers. Workers are used to gather resources which must be spent wisely on
creating new workers, combat units such as tanks and marines, construction of
buildings and technological development. Typically the worker has to move to
an area containing resources (for example a mine), spend some time gathering as
much resources as it can carry, and return to a base to drop them off. In many
games workers have to gather several types of resources, for example both lumber
and gold in Warcraft III. Workers are also often needed to construct new buildings.

• Control centers. A player often has one, sometimes more, bases to control. The
control center is the core of a base. A base is built around the control center
and no other buildings can be constructed without it. New workers are typically
constructed in a control center, and the control center is often also the place where
workers drop off gathered resources. A game is often won when all the control
centers of the opponent(s) are destroyed.
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• Combat units. Combat units such as marines and tanks are used to explore the
game world, defend own bases and attack and defeat enemy forces. A game often
has a wide range of units with different strengths and weaknesses. Tanks can be
very strong attacking units, siege tanks can have devastating long ranged firepower
but has to be stationary to be able to fire, and marines are mobile but weak and can
carry grenades which are effective against other marines. When designing units
for a game it is important to avoid the "tank race" problem. This means that there
is a single over-powered unit that is the key to success, and the first player able to
mass construct that unit is quite certain to win the game. This was for example the
case in Command & Conquer Generals, where the chinese had access to a large
tank with strong cannons effective against vehicles and buildings and mounted
machine guns effective against foot soldiers. If the players control different races
or factions, for example orcs and humans in Warcraft II, it is important to avoid
unbalance between them so no player is favored due to choosing a race or faction
which has benefits over the others and are more likely to win a game.

• Barracks and factories. Barracks are buildings used to train marines, and facto-
ries are buildings used to construct vehicles such as tanks and artillery. The cost of
constructing units usually differs based on the relative strength of the units. Usu-
ally a player has to construct a barrack before gaining access to factories which in
turn can produce stronger units.

• Additional structures. Barracks and factories are, with some variants, present in
the majority of RTS games. To give the player(s) more possibilities and enrichen
the gameplay additional structures are often available. Some examples are walls
to defend the bases, stationary defensive towers with ranged weapons, radars that
increase the visibility range of the own bases, silos that increase the rate in which
resources are gathered, and much more.

In addition, RTS games often have Technology trees. The more powerful units and struc-
tures are often not immediately available to a player when the game begins. For example,
the player has to construct a barrack before he/she is able to construct a factory. If a fac-
tory and a radar building has been constructed, an airfield can be built to gain access to
fighter and helicopter units. The player has to decide whether to construct cheap but less
powerful units such as marines, or to spend resources on buildings in order to unlock
more powerful units such as tanks. This allows for some different tactics, such as sol-
dier rush, to overwhelm the enemy early on in a game by a large number of marines,
or to play defensively until a powerful force based on tanks and support units has been
produced.

The endless possibilities, the richness and complexity of the game world makes the
design and development of computer players, often denoted as bots, for RTS games
challenging. The bot has to control an often very large number of units that have to
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navigate in the game world, it has to make complex tactical decisions and the real-time
aspect makes it even more challenging. It is important that the bot is robust, that the
controlled units make reasonably realistic actions, and that it is fast enough to avoid
getting in the situation where units stand idle because the bot is thinking.

A typical RTS game has scenarios with different goals and setups. Two possible
scenarios are:

• Tankbattle. Tankbattle is a two player game where each player starts with one or
more bases and a number of combat units spread out in the game world. The first
player that manage to destroy the base of the opponent wins the game. Players are
not able to produce more combat units or bases during the game.

• Full RTS. Full RTS is a more complex scenario where each player starts with a
control center, a number of workers and maybe some combat unit. A player must
use the workers to gather resources and to construct new control centers, barracks
and factories. In addition resources must be spent on constructing mobile combat
units, which in turn are used to attack the enemy and defend own bases. The first
player to destroy all buildings of the opponent wins the game.

In this thesis we will investigate an alternative approach for navigation and path planning
in an RTS game. The approach, based on Artificial Potential Fields, will be evaluated in
the two scenarios Tankbattle and Full RTS.

1.1 Background and Related Work
A bot for a real-time strategy game is often constructed using a structured hierarchy of
layers with more and more specific responsibilities. Reynolds (2002) proposed a layered
architecture with four commanders: Soldier, Sergeant, Captain and Commander. Each
level has different responsibilities, with lower levels being subordinate to higher levels.
The Commander is responsible for the overall strategical decisions and issues orders to
the Captains. Each Captain in turn has control over a number of squads and resources
which he can distribute to execute the orders from the Commander. The Sergeant is typi-
cally the leader of a squad, a group of combat units, which he uses in order to execute the
orders from the Captain. Finally, there is the Soldier who is responsible for controlling
and navigating a single unit in the game world, report on the status of activities to the
Sergeant, and report on changes in the game world (e.g. a newly discovered threat).

Navigating a unit in the game world is a complex task. The unit has to find a path
to its destination through the terrain, avoid colliding with obstacles and re-plan if the
current path becomes obsolete due to changes in the often highly dynamic game world.
Combat units must also engage the enemy in a coordinated manner since spread out units
are easy preys for the enemy. The path planning system must be effective enough to al-
low a large number of units to move concurrently and collisions must be detected and
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solved without causing deadlocks. Navigation is typically solved using a pathfinding al-
gorithm, of which A* is the most common. Extensive work has been made in optimizing
A* to improve the performance of the pathfinding in video games. In Higgins (2002)
some tricks that were used to optimize the pathfinding engine in the RTS game Empire
Earth are mentioned. Demyen and Buro (2008) address the problem of abstracting only
the information from the gameworld that is useful for the pathfinder engine by using
triangulation techniques. In Koenig and Likhachev (2006) an approach for improving
the performance of A* in adaptive game worlds by updating heuristics in nodes based
on previous searches is described. Additional work on adaptive A* can be found in Sun,
Koenig, and Yeoh (2008) where the authors propose a Generalized Adaptive A* method
that improve perfomance in game worlds where the action cost for moving from one
node to another can increase or decrease over time.

In RTS games bots often have complete visibility of the game world in contrast to the
limited view a human player has, i.e. the bots "cheat". The purpose is to have as much
information as possible available to the AI to reason about how to approach the enemy,
find tactically good positions such as choke points, and not spending time exploring
the game world to locate resources. Cheating is, according to Nareyek (2004), "very
annoying for the player if discovered" and he predicts the game AIs to get a larger share
of the processing power in the future which in turn may open up for the possibility to
use more sophisticated game AIs. Human players usually only have complete visibility
of areas around own units and bases, rest of the game world is unknown. This is usually
referred to as Fog of War or FoW.

1.2 Artificial Potential Fields
Artificial Potential Fields is a concept originating from robotics. It was first introduced
by Khatib (1986) for real-time obstacle avoidance for manipulators and mobile robots.
The technique works by placing manipulators in a field of forces. The position to be
reached by the robot is an attracting manipulator, while obstacles are repelling manip-
ulators. Many studies concerning potential fields are related to spatial navigation and
obstacle avoidance, for example the work by Borenstein and Koren (1991) and Massari,
Giardini, and Bernelli-Zazzera (2004). Potential fields has also been used for obstacle
avoidance in several video games. Alexander (2006) describes the use of flow fields,
which has similarities with potential fields, for obstacle avoidance in the games Blood
Wake and NHL Rivals. Johnson (2006) described obstacle avoidance using repulsion
vectors in the game The Thing.

With the exception of obstacle avoidance combined with pathfinding, potential fields
has had limited success in games. Thurau, Bauckhage, and Sagerer (2004b) have devel-
oped a bot for the first-person shooter game Quake II based on potential fields. The bot
learns reactive behaviors by observing human players and, based on its observations,
it adapts weights of potential fields to learn tactically good positions and paths in the
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game world. Wirth and Gallagher (2008) used potential fields in the game Ms.Pacman.
Potential fields has also been used in robot soccer (Johansson & Saffiotti, 2002; Röfer et
al., 2004).

To give a brief introduction to how potential fields can be used in RTS games a simple
resource gathering scenario will be described. This is a one-player scenario where the
player has one base and a number of worker units. The aim is to move workers to a
mine, gather as much resources as each worker can carry, then return to the base to drop
them off. The workers must also avoid colliding with terrain, dynamic objects such as
other own workers, and the own base.

Each worker has two states; Mine and DropOff. In the Mine state the driving force
for the workers is to move to nearby mines, and therefore an attracting charge is placed
at the position of each mine. These charges are spread in the game world and gradually
fades to zero. Terrain, own worker units and the base all generates small repelling fields
used for obstacle avoidance. Figure 1.1 illustrates a miner (white circle) moving from
the base to a nearby mine. An attractive charge that generates a large field is placed at
the center of the mine. Lighter areas in the field are more attracting than darker areas.
The figure also shows the small repelling fields (slightly darker grey) around the worker,
terrain and the base.

Figure 1.2 illustrates a worker in the DropOff state. The worker now carries as much
resources as it can, and must move to the base to drop them off. The attractive charge is
now placed in the center of the base, and the mine instead of the base generates a small
repelling field for obstacle avoidance.
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Figure 1.1: A worker unit (white circle) moving towards a mine to gather resources. The mine
generates an attractive field used by the worker for navigation. Mountains (black) generate small
repelling fields for obstacle avoidance. Light grey areas are more attracting than darker grey
areas.

The use of potential fields in games has been limited. There are a number of more or
less good arguments for that:

• Agents navigating using PFs may get stuck in local optima. This can for example
happen when the path to the destination is blocked by a large mountain.

• PF based solutions are believed to require more memory and CPU resources than
traditional A* based solutions.

• PF based solutions are believed to be hard to implement, tune and difficult to
debug.

• PFs are considered to be less controllable than traditional solutions.

In this thesis we show that these issues can be more or less solved and that potential
fields can be used for navigating units in a RTS scenario.
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Figure 1.2: A worker unit (white circle) moving towards a base to drop of gathered resources.
Now the base generates an attractive field used by the worker for navigation.

1.3 Research Questions
The main goal of this thesis is to evaluate if multi-agent potential fields (MAPF) is a
viable option for controlling armies in different real-time strategy game scenarios. It
involves performance in terms of being able to defeat its opponents, performance in
terms of computational resources used, ability to adapt to different scenarios and ability
to handle incomplete information about the game world. The three following research
questions are addressed:

RQ1. How does a MAPF based solution perform compared to traditional solu-
tions?

This question is answered by studying performance in terms of playing specific RTS
scenarios against other opponents. It involves both performance in terms of playing
the game well and defeat the opponents, and performance in terms of computational
resources used.

RQ2. To what degree is MAPF an approach that is modifiable with respect to
variations in the game scenario?
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RTS games can be very complex and can be varied endlessly, for example different ter-
rain, different types and combination of units, different scenarios, different conditions
for winning a game and much more. This question is answered by studying how mod-
ifiable a MAPF based approach is regarding changes in a scenario and its ability to be
adapted for different scenarios and goals.

RQ3. To what degree is a MAPF based solution able to handle incomplete infor-
mation about the game world?

Computer players in RTS games often cheat in the sense that they have complete visi-
bility and perfect information about the whole game world, while human players only
have complete visibility of areas surrounding own units and buildings. We study if a
MAPF based approach is viable in a scenario with incomplete information, i.e. fog of
war, and we measure its performance against bots with complete information about the
game world.

1.4 Research Methods

The research questions have been answered using a quantitative approach. We have
implemented a Multi-Agent Potenial Field based bot for the open-source ORTS engine.
The bot has been tested in the yearly ORTS competition organized by the University
of Alberta. As a testbed, we believe that the tournament is good for this purpose for
a number of reasons: i). It is a competition, meaning that others will do their best to
beat us. ii) It provides a standardised way of benchmarking Game AI solutions iii).
The environment is open source and all of the mechanics are transparent. iv) ORTS
uses a client-server architecture where clients only has access to the information sent
by the server. No client can gain an advantage by hacking the game engine as often is
possible in a peer-to-peer architecture. In addition to tournaments, we have conducted
experiments in a controlled and designed environment. In the experiments we have used
the top teams from the 2007 years’ tournament as opponents. We believe that using
opponent teams from the tournament in the experiments is more trustworthy compared
to using bots developed by ourselves as opponents.

1.5 Contributions

In this section, we address the contribution and give a brief summary of each paper.
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1.5.1 RQ1: How does a MAPF based solution perform compared to
traditional solutions?

RQ1 is addressed in Papers I, II and III. In Paper I we present a methodology containing
six phases for designing multi-agent potential fields (MAPF) based bots for real-time
strategy games. A bot for the open RTS game engine ORTS was developed and is eval-
uated in the Tankbattle scenario of 2007 years’ version of an annual open ORTS tourna-
ment organised by the University of Alberta. Even though the bot performed poorly and
was only able to win 32% of the played games, the approach showed some promises.
In Paper III some issues and weaknesses of the bot described in Paper I were identified
and addressed. The MAPF based bot was improved, and in the experiments that we con-
ducted was able to beat the four top teams from 2007 years’ ORTS tournament with an
almost perfect score. In addition the bot was evaluated in 2008 years’ ORTS tournament
where it won the Tankbattle scenario with 98% wins of the games played. Paper II is a
demo paper describing a demonstration of the improved bot from Paper III. Our conclu-
sion is that MAPF based bots is a viable approach in some RTS scenarios being able to
match and surpass the performance of more traditional solutions.

1.5.2 RQ2: To what degree is MAPF an approach that is modifiable
with respect to variations in the game scenario?

RQ2 is addressed in Paper V where we show how a MAPF based bot can be modified to
handle more complex scenarios such as a Full RTS game. In addition to the bot described
in Papers I-IV, Paper V describes how to deal with resource gathering, base building and
high-level tactics. The bot was evaluated in 2008 years’ ORTS tournament where it won
the Full RTS scenario with a win percent of 82.5% of the games played. Our conclusion
is that a MAPF based bot can easily be modified to changes in the setup and goal of a
scenario and still match the perfomance of traditional solutions, thus answering RQ2.

1.5.3 RQ3: To what degree is a MAPF based solution able to handle
incomplete information about the game world?

RQ3 is addressed in Paper IV where we show how a MAPF based bot designed for
scenarios with complete information can be modified to handle incomplete information
of the game world, i.e. fog of war (FoW). We conclude that a bot without complete
information can perform equally good or even surpass a bot with complete information
without using more computational resources.
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1.6 Discussion and Conclusions
First we list a number of criticisms against potential field based solutions with our point
of view:

• PFs have issues like local optima that are difficult to solve. With the use of
pheromone trails as described in Paper II, many local optima issues can be solved.
PFs still have problems in very complex terrain such as mazes, and in those cases
pathfinding based methods are probably better suited. The strength of PFs are in
large dynamic worlds with large open areas and less complicated terrain, and its
ability to handle multiple objectives for the agents. This is the case for many RTS
games of today. There is a need to further compare PF’s with A*, both in terms of
ability to navigate and computational resources used, in a number of fixed scenar-
ios.

• PF based solutions use too much resources. In Paper II and Paper IV we show
that PF based solutions can be implemented with the same or better resource ef-
ficiency as pathfinding based methods. More experiments carried out in other
environments have to be done to back up this statement. Efficiency can still be a
problem, but that can be the case in path planning based systems as well.

• PF based solutions are difficult to implement and tune. PFs can be implemented
with very simple architectures. Tuning can be difficult and time consuming, but
the relative importance between the fields is a great help here (i.e. is destroying
a base more important than destroying units?). A graphical representation of the
potential field view is also valuable. There is however a need for better tools and
methodologies to aid in the calibration process.

• PFs are considered to be less controllable than traditional solutions. In a PF based
solution an often large amount of fields collaborate to form the total potential
field which is used by the agents for navigation in the game world. This can
lead to interesting emergent behaviors, but can also limit the control over agents
compared to path planning solutions. A debug tool with graphical representation
of the potential fields is of great value in this matter.

We believe that potential field based solutions can be a successful option to more con-
ventional path planning based solutions in many RTS scenarios. Papers I, II and III show
that the method is able to match and even surpass the performance of state-of-the-art so-
lutions. The work with incomplete information also shows that PF based solutions are
highly configurable and can adapt well to changes in the game scenario. Another benefit
of using potential fields is the use of non-monotonous fields which can lead to interest-
ing emergent behavior. In our bot we used a field with the most attractive potential at
radius maximum shooting distance from enemy tanks, and in combination with the small
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repelling field around own units lead to our forces being able to surround the enemy at
an appropriate distance. We also show that by simply changing the shape and weights
of potential fields, agents can adapt to changes of the goal. For example an agent con-
trolling a tank move towards enemy units when its weapon is ready to fire, and retreat
outside firerange when the weapon needs to be reloaded. In addition we show how en-
emy units and bases can generate different fields for different unit types to, for example,
reflect the shorter maximum shooting distance of marines compared to tanks.

We also believe that potential field based solutions can be a successful option in
other game genres such as sports and First Person Shooters (FPS). In many sport games,
for example soccer and basketball, agents have to navigate in open areas without static
obstacles but with lots of dynamic obstacle avoidance which suit potential fields well.
Thurau et al. (2004b) describes how potential fields can be used to imitate human move-
ment behavior in the FPS game Quake II.

1.7 Future Work

We define four possible directions for future work; validation in other domains, 3D
worlds, technical refinements, and adaptivity and player experience.

1.7.1 Validation in Other Domains

Our multi-agent potential field methodology has been validated in the ORTS engine. We
have also done some initial testing in the Warcraft II clone Wargus, but it is too early
to draw any conclusions about the performance in that game engine. There is a need to
furher test a MAPF based solution in Wargus, and to test and validate the methodology
in other RTS platforms.

1.7.2 3D worlds

The ORTS engine uses the, for RTS games, very common top-down view where the
player gets a 3D feeling of the game, but the low-level navigation system is running in
2D. A direction for future work would be to try a potential field based navigation system
in a full 3D game where units have an (x, y, z) position in the game world. Full 3D is
rarely used in RTS games and the FPS genre is probably more suited for this direction of
future work. One major problem that needs to be addressed is that navigation is typically
solved by projecting a 2D graph onto the 3D world, and in such a graph Euclidean
distance cannot be used.
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1.7.3 Technical Refinements
This direction involves investigating ideas about how to improve performance or behav-
ior of potential field based solutions. Possible improvements are:

• Non-symmetric directional fields. In our bot the fields generated around enemy
units are circular and symmetric. If, for example, the enemy has stationary ma-
chine gun units, the generated fields can be repelling in the shooting direction of
the machine gun, and attracting in the flanks and the back of it. This will lead to
a situation where own units avoid the line-of-fire of the machine gun and try to
attack it from the flanks or the back. This can also involve investigating the cost
of using non-symmetric fields in terms of increased memory and/or CPU usage.

• Use the GPU to improve performance. Potential field generation require a lot
of float value calculations. Graphics processors, GPUs, are optimized for float
operations and has been used with success for improving performance in many
scientific problems (Owens et al., 2008). The idea is to improve computational
performance by using the GPU for field generation.

• Combinations of pathfinding and potential fields. In some situations it might be
beneficial to combine pathfinding with potential fields in order to benefit from
both techniques. Units can for example use pathfinding for navigation over longer
distances, and switch to potential fields in combat situations which often involves
a large number of dynamic objects.

• Tactical behaviors. Some positions in the game world has a high tactial impor-
tance. This can for example include choke points where the enemy forces can
be ambushed, and areas with lots of resources. In our work potential fields has
mostly been generated by physical objects in the game world, but the idea is to let
tactically important positions generate fields as well.

• Caching of PF values. In our implementation the potential field value in a cer-
tain point is recalculated every time that point is evaluated by a agent, even if the
potential in the point have previously been calculated. A caching of calculated po-
tential field values can probably improve performance of the bot. When caching
values it is important to take in consideration that different subfields can be ac-
tive or inactive depending on the internal state of each agent, and therefore the
potential field value in a point can be different between the agents.

• Use machine learning and optimization techniques to tune potential fields. Tuning
of potential fields can be difficult and time consuming. The idea is to automate
tuning by using techniques such as genetic algorithms, neural networks etc. We
identify two things that may be an issue for this approach: i) evaluation can be time
consuming if full games must be played against one or maybe more opponents,
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and ii) there may be a lot of random factors in a game (for example the damage a
unit make in an attack) that has impact on convergence. Still the idea is interesting.

1.7.4 Adaptivity and Player Experience
This direction is about how potential fields can be adapted to suit player skills. This
includes difficulty scaling at runtime to make games even where neither the computer
player nor the human player is outstanding. It also includes change in tactics at runtime
to match the player, for example switching between defensive and attacking behavior
depending on how the human player controls his army. An important aspect here is
to investigate how adaptivity and difficulty scaling affect player experience. With au-
tomated experiments we can show that the bot adapts and that the difficulty level is
balanced, but is it more fun for the human player than a non-adaptive solution?
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CHAPTER

TWO

PAPER I

Using Multi-agent Potential Fields in
Real-time Strategy Games

Johan Hagelbäck & Stefan J. Johansson
Proceedings of the Seventh International Conference on Autonomous Agents and
Multi-agent Systems (AAMAS). 2008.

2.1 Introduction
A Real-time Strategy (RTS) game is a game in which the players use resource gath-
ering, base building, technological development and unit control in order to defeat its
opponent(s), typically in some kind of war setting. The RTS game is not turn-based in
contrast to board games such as Risk and Diplomacy. Instead, all decisions by all play-
ers have to be made in real-time. Generally the player has a top-down perspective on the
battlefield although some 3D RTS games allow different camera angles. The real-time
aspect makes the RTS genre suitable for multiplayer games since it allows players to in-
teract with the game independently of each other and does not let them wait for someone
else to finish a turn.

Khatib (1986) introduced a new concept while he was looking for a real-time ob-
stacle avoidance approach for manipulators and mobile robots. The technique which he
called Artificial Potential Fields moves a manipulator in a field of forces. The position
to be reached is an attractive pole for the end effector (e.g. a robot) and obstacles are
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repulsive surfaces for the manipulator parts. Later on Arkin (1987) updated the knowl-
edge by creating another technique using superposition of spatial vector fields in order
to generate behaviours in his so called motor schema concept.

Many studies concerning potential fields are related to spatial navigation and obstacle
avoidance, see e.g. Borenstein and Koren (1991); Khatib (2004); Massari et al. (2004).
The technique is really helpful for the avoidance of simple obstacles even though they
are numerous. Combined with an autonomous navigation approach, the result is even
better, being able to surpass highly complicated obstacles (Borenstein & Koren, 1989).
However most of the premises of these approaches are only based on repulsive potential
fields of the obstacles and an attractive potential in some goal for the robot (Vadakkepat,
Tan, & Ming-Liang, 2000).

Lately some other interesting applications for potential fields have been presented.
The use of potential fields in architectures of multi agent systems is giving quite good
results defining the way of how the agents interact. Howard, Matarić, and Sukhatme
(2002) developed a mobile sensor network deployment using potential fields, and po-
tential fields have been used in robot soccer (Johansson & Saffiotti, 2002; Röfer et al.,
2004). Thurau et al. (2004b) has developed a game bot which learns reactive behaviours
(or potential fields) for actions in the First-Person Shooter (FPS) game Quake II through
imitation.

In some respect, videogames are perfect test platforms for multi-agent systems. The
environment may be competitive (or even hostile) as in the case of a FPS game. The
NPCs (e.g. the units of the opponent army in a war strategy game) are supposed to act
rationally and autonomously, and the units act in an environment which enables explicit
communication and collaboration in order to be able to solve certain tasks.

Previous work on describing how intelligent agent technology has been used in
videogames include the extensive survey of Niederberger and Gross (2003) and early
work by vanLent et al. (1999). Multi-agent systems has been used in board games by
Kraus and Lehmann (1995) who addressed the use of MAS in Diplomacy and Johansson
(2006) who proposed a general MAS architecture for board games.

The main research question of this paper is: Is Multi-agent Potential Fields (MAPF)
an appropriate approach to implement highly configurable bots for RTS games? This
breaks down to:

1. How does MAPF perform compared to traditional solutions?

2. To what degree is MAPF an approach that is configurable with respect to variations
in the domain?

We will use a proof of concept as our main methodology where we compare an
implementation of MAPF playing ORTS with other approaches to the game. The com-
parisons are based both on practical performance in the yearly ORTS tournament, and
some theoretical comparisons based on the descriptions of the other solutions.
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First we describe the methodology that we propose to follow for the design of a
MAPF bot. In Section 2.3 we describe the test environment. The creation of our MAPF
player follows the proposed methodology and we report on that in Section 2.4. The
experiments and their results are described in Section 2.5. We finish off by discussing,
drawing some conclusions and outlining future work in Sections 2.6–2.7.

2.2 A Methodology for Multi-agent Potential Fields
When constructing a multi-agent system of potential field controlled agents in a certain
domain, there are a number of issues that have to be dealt with. To structure this, we
identify six phases in the design of a MAPF-based solution:

1. The identification of objects,

2. The identification of the driving forces (fields) of the game,

3. The process of assigning charges to the objects,

4. The granularity of time and space in the environment,

5. The agents of the system, and

6. The architecture of the MAS.

In the first phase, we may ask us the following questions: What are the static objects
of the environment? That is: what objects remain their attributes throughout the life-
time of the scenario? What are the dynamic objects of the environment? Here we may
identify a number of different ways that objects may change. They may move around,
if the environment has a notion of physical space. They may change their attractive (or
repulsive) impact on the agents. What are the modifiability of the objects? Some objects
may be consumed, created, or changed by the agents.

In the second phase, we identify the driving forces of the game at a rather abstract
level, e.g. to avoid obstacles, or to base the movements on what the opponent does. This
leads us to a number of fields. The main reason to enable multiple fields is that it is very
easy to isolate certain aspects of the computation of the potentials if we are able to filter
out a certain aspect of the overall potential, e.g. the repulsive forces generated by the
terrain in a physical environment. We may also dynamically weight fields separately,
e.g. in order to decrease the importance of the navigation field when a robot stands still
in a surveillance mission (and only moves its camera). We may also have strategic fields
telling the agents in what direction their next goal is, or tactical fields coordinating the
movements with those of the team-mate agents.

The third phase include to place the objects in the different fields. Static objects
should perhaps be in the field of navigation. Typically, the potentials of such a field is
pre-calculated in order to save precious run time CPU resources.
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In the fourth phase, we have to decide the resolution of space and time. If the agents
are able to move around in the environment, both these measures have an impact on the
look-ahead. The space resolution, since it decides where in space we are able to go, and
the time in that it determines how far we may get in one time frame.

The fifth phase, is to decide what objects to agentify and set the repertoire of those
agents: what actions are we going to evaluate in the look-ahead? As an example, if
the agent is omnidirectional in its movements, we may not want to evaluate all possible
points that the agent may move to, but rather try to filter out the most promising ones by
using some heuristic, or use some representable sample.

In the sixth step, we design the architecture of the MAS. Here we take the unit agents
identified in the fifth phase, give them roles and add the supplementary agents (possibly)
needed for coordination, and special missions (not covered by the unit agents).

2.3 ORTS

Open Real Time Strategy (ORTS) (Buro, 2007a) is a real-time strategy game engine
developed as a tool for researchers within artificial intelligence (AI) in general and game
AI in particular. ORTS uses a client-server architecture with a game server and players
connected as clients. Each timeframe clients receive a data structure from the server
containing the current game state. Clients can then issue commands for their units.
Commands can be like move unit A to (x, y) or attack opponent unit X with unit A. All
client commands are executed in random order by the server.

Users can define different type of games in scripts where units, structures and their
interactions are described. All type of games from resource gathering to full real time
strategy (RTS) games are supported. We focus on two types of two-player games,
tankbattle and tactical combat. These games were part of the 2007 years ORTS compe-
tition (Buro, 2007a).

• In Tankbattle each player has 50 tanks and five bases. The goal is to destroy the
bases of the opponent. Tanks are heavy units with long fire range and devastating
firepower but a long cool-down period, i.e. the time after an attack before the unit
is ready to attack again. Bases can take a lot of damage before they are destroyed,
but they have no defence mechanism of their own so it may be important to defend
own bases with tanks. The map in a tankbattle game has randomly generated
terrain with passable lowland and impassable cliffs.

• In Tactical combat each player has 50 marines and the goal is to destroy all the
marines of the opponent. Marines have short fire range, average firepower and a
short indestructible period. They are at the start of the game positioned randomly
at either right or left side of the map. The map does not have any impassable cliffs.
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Both games contain a number of neutral units (sheep). These are small and (for some
strange reason) indestructible units moving randomly around the map. The purpose of
sheep are to make pathfinding and collision detection more complex.

2.4 MAPF in ORTS
We have implemented an ORTS client for playing both Tankbattle and Tactical Com-
bat based on MAPF following the proposed methodology. Below we will describe the
creation of our MAPF solution.

2.4.1 Identifying objects
We identify the following objects in our applications: Cliffs, Sheep, and own (and op-
ponent) tanks, marines and base stations.

2.4.2 Identifying fields
We identified four driving forces in ORTS: Avoid colliding with moving objects, Hunt
down the enemy’s forces and for the Tankbattle game also to Avoid colliding with cliffs,
and to Defend the bases. This leads us to three types of potential fields: Field of Navi-
gation, Strategic Field, and Tactical field.

The field of navigation is generated by repelling static terrain. We would like agents
to avoid getting too close to objects where they may get stuck, but instead smoothly pass
around them.

The strategic field is an attracting field. It makes agents go towards the opponents
and place themselves on an appropriate distance where they can fight the enemies.

Own units, own bases and sheep generate small repelling fields. The purpose is that
we would like our agents to avoid colliding with each other or bases as well as avoiding
the sheep.

2.4.3 Assigning charges
Each unit (own or enemy), control center, sheep and cliffs has a set of charges which
generates a potential field around the object. Below you will find a more detailed de-
scription of the different fields. All fields generated by objects are weighted and summed
to form a total field which is used by agents when selecting actions. The actual formulas
for calculating the potentials very much depend on the application.

Figure 3.2 in Paper II shows a 2D view of the map during a tankbattle game. It shows
our agents (green) moving in to attack enemy bases and units (red). Figure 3.3 shows the
potential field view of the same tankbattle game. Dark areas has low potential and light
areas high potential. The light ring around enemy bases and units, located at maximum
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shooting distance of our tanks, is the distance our agents prefer to attack opponent units
from. It is the final move goal for our units.

Cliffs Cliffs generate a repelling field for obstacle avoidance. The potential pcliff (d)
at distance d (in tiles) from a cliff is:

pcliff (d) =

{
−80/d2 if d > 0
−80 if d = 0

(2.1)
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Figure 2.1: The potential pcliff (d) generated by a cliff given the distance d.

Note that if more than one cliff affects the same potential field tile, the actual poten-
tial is not calculated as the sum of the potentials (as in the other fields) but rather as the
lowest value. This approach works better for passages between cliffs, see Figure 2.1.

The navigation field is post-processed in two steps to improve the agents abilities to
move in narrow passages and avoid dead ends. The first step is to fill dead ends. The
pseudo code in Figure 2.2 describes how this is done.
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for all x, y in navigation field F (x, y) do
if is_passable(x, y) then

blocked = 0
for all 16 directions around x, y do

if cliff_within(5) then
blocked = blocked + 1

end if
end for
if blocked >= 9 then

IMPASSABLE(x, y) = true
end if

end if
end for

Figure 2.2: Pseudo code for filling dead ends.

For each passable tile (x, y) , we check if there are cliffs within 5 tiles in all 16 di-
rections. If 9 or more directions are blocked by cliffs, we consider tile (x, y) impassable
(Figure 2.3).

Figure 2.3: Example of the navigation field before and after filling dead ends. White are passable
tiles, black impassable tiles and grey tiles filled by the algorithm.

Next step is to clear narrow passages between cliffs from having a negative potential.
This will make it easier for agents to use the passages, see Figure 2.5. Figure 2.4 shows
the pseudo code for this processing step. For each passable tile (x, y) with negative po-
tential, check if adjacent tiles has even lower negative potentials. If so, (x, y) is probably
in a narrow passage and its potential is set to 0.
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for all x, y in navigation field F (x, y) do
potential = p(x, y)
if potential >= −50 AND potential <= −1 then

if p(x− 1, y) < potential AND p(x + 1, y) < potential
then

p(x, y) = 0
end if
if p(x, y − 1) < potential AND p(x, y + 1) < potential
then

p(x, y) = 0
end if

end if
end for

Figure 2.4: Pseudo code for clearing narrow passages.

Figure 2.5: Example of the navigation field before and after clearing passages. White tiles has
potential 0, and the darker the colour the more negative potential a tile has.

The opponent units All opponent units generates a symmetric surrounding field where
the highest potential is in a ring around the object with a radius of MSD (Maximum
Shooting Distance). As illustrated in Figure 2.6, MDR refers to the Maximum Detection
Range, the distance from which an agent starts to detect the opponent unit. In general
terms, the p(d)-function can be described as:

p(d) =


k1d, if a ∈ [0, MSD − a[
c1 − d, if a ∈ [MSD − a, MSD]
c2 − k2d, if a ∈]MSD, MDR]

(2.2)
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Unit k1 k2 c1 c2 MSD a MDR

Marine 2 0.15 24.5 15 7 2 100
Tank 2 0.22 24.1 15 7 2 68
Base 3 0.255 49.1 15 12 2 130

Table 2.1: The parameters used for the generic p(d)-function of Eq. 2.2.
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Figure 2.6: The potential popponent(d) generated by the general opponent function given the
distance d.

Own bases Own bases generate a repelling field for obstacle avoidance. Below is the
function for calculating the potential pownbase(d) at distance d (in tiles) from the center
of the base. Note that 4 is half the width of the base, and distances less than or equal to
this value has a much lower potential. This approximation is not entirely correct at the
corners of the base (since the base is quadratic rather than circular, see Figure 2.7), but
it works well in practice.

pownbase(d) =


5.25 · d− 37.5 if d <= 4
3.5 · d− 25 if d ∈]4, 7.14]
0 if d > 7.14

(2.3)
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Figure 2.7: The repelling potential pownbase(d) generated by the own bases given the distance d.

The own mobile units — tanks and marines Own units, agents, generate a repelling
field for obstacle avoidance (see Figure 2.8). In general terms, the potential pownunit(d)
at distance d (in tiles) from the center of an agent is calculated as:

pownunit(d) =


−20 if d <= radius

d · k − c if d ∈]radius, l],
0 if d >= l

(2.4)

Unit radius k c l
Marine 0.5 3.2 5.6 1.75
Tank 0.875 3.2 10.8 3.375

Table 2.2: The parameters used for the generic pownunit(d)-function of Eq. 2.4.
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Figure 2.8: The repelling potential pownunit(d) generated by the generic function given the dis-
tance d.

Sheep Sheep generate a small repelling field for obstacle avoidance. The potential
psheep(d) (depicted in Figure 2.9) at distance d (in tiles) from the center of a sheep is
calculated as:

psheep(d) =


−10 if d <= 1
−1 if d ∈]1, 2]
0 if d > 2

(2.5)
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Figure 2.9: The potential psheep(d) generated by a sheep given the distance d.

2.4.4 On the granularity
When designing the client we had to decide a resolution for the potential field. A tank-
battle game has a map of 1024x1024 points and the terrain is constructed from tiles of
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16x16 points. After some initial tests we decided to use 8x8 points for each tile in the
potential field. The resolution had to be detailed enough for agents to be able to move
around the game world using only the total potential field, but a more detailed resolution
would have required more memory and the different fields would have been slower to
update.1 Thus in our implementation 8x8 points was found to be a good trade-off.

2.4.5 The unit agent(s)
When deciding actions for an agent, the potential of the tile the agent is at is compared
with the potentials of the surrounding tiles. The agent moves to the center of the neigh-
bour tile with the highest potential, or is idle if the current tile is highest. If an agent has
been idle for some time, it moves some distance in a random direction to avoid getting
stuck in a local maxima. If an opponent unit is within fire range, the agent stops to attack
the enemy.

Since there is an advantage of keeping the agents close to the maximum shooting
distance (MSD), the positions of the opponent units are not the final goal of navigation.
Instead we would like to keep them near the MSD. The obstacles should be avoided,
roughly in the sense that the further away they are, the better it is. Here, the own agents
are considered to be obstacles (for the ability to move).

When an agent executes a move action, the tactical field is updated with a negative
potential (same as the potential around own agents) at the agents destination. This pre-
vents other agents from moving to the same position if there are other routes available.

2.4.6 The MAS architecture
In a tank-battle game our agents has two high-level tactical goals. If we have a numerical
advantage over the opponent units we attack both bases and units. If not, we attack units
only and wait with attacking bases. For agents to attack both units and bases, one of the
following constraints must be fulfilled:

• We must have at least twice as many tanks as the opponent

• The opponent have less than six tanks left

• The opponent have only one base left

If none of these constraints are fulfilled, the tactical goal is to attack opponent units only.
In this case the field generated by opponent bases are not an attracting field. Instead they
generate a repelling field for obstacle avoidance (same as the field generated by own
bases). We want to prevent our agents from colliding with opponent bases if their goal
is not to attack them. In a tactical combat game no bases are present and agents always
aim to destroy opponent marines.

1The number of positions quadruples as the resolution doubles.
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Attack coordination

We use a coordinator agent to globally optimise attacks at opponent units. The coordina-
tor aims to destroy as many opponent units as possible each frame by concentrating fire
on already damaged units. Below is a description of how the coordinator agent works.
After the coordinator is finished we have a near-optimal allocation of which of our agents
that are dedicated to attack which opponent units or bases.

The coordinator uses an attack possibility matrix. The i × k matrix A defines the
opponent units i (out of n) within MSD which can be attacked by our agents k (out of
m) as follows:

ak,i =

{
1 if the agent k can attack opponent unit i

0 if the agent k cannot attack opponent unit i
(2.6)

A =

 a0,0 · · · am−1,0

...
. . .

...
a0,n−1 · · · am−1,n−1

 (2.7)

We also need to keep track of current hit points (HP ) of the opponent units i as:

HP =

 HP0

...
HPn−1

 (2.8)

Let us follow the example below to see how the coordination heuristic works.

A1 =


1 0 0 1 0 1 0 0
0 1 1 0 0 1 1 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 1 1 0 1
1 0 0 0 0 0 0 1

 HP =


[h]HP0 = 2
HP1 = 3
HP2 = 3
HP3 = 4
HP4 = 4
HP5 = 3

 (2.9)

First we sort the rows so the highest priority targets (units with low HP) are in the top
rows. This is how the example matrix looks like after sorting:

A2 =


1 0 0 1 0 1 0 0
0 1 1 0 0 1 1 0
0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 1 1 0 1
0 0 0 0 0 1 0 1

 HP =


[h]HP0 = 2
HP1 = 3
HP2 = 3
HP5 = 3
HP4 = 4
HP3 = 4

 (2.10)

27



Next step is to find opponent units that can be destroyed this frame (i.e. we have
enough agents able to attack an opponent unit to reduce its HP to 0). In the example we
have enough agents within range to destroy unit 0 and 1. We must also make sure that
the agents attacking unit 0 or 1 are not attacking other opponent units in A. This is done
by assigning a 0 value to the rest of the column in A for all agents attacking unit 0 or 1.

Below is the updated example matrix. Note that we have left out some elements for
clarity. These has not been altered in this step and are the same as in matrix A2.

A3 =


1 0 0 1 0 0 0 0
0 1 1 0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 HP =


HP0 = 2
HP1 = 3
HP2 = 3
HP5 = 3
HP4 = 4
HP3 = 4

 (2.11)

The final step is to make sure the agents in the remaining rows (3 to 6) only attacks
one opponent unit each. This is done by, as in the previous step, selecting a target i for
each agent (start with row 3 and process each row in ascending order) and assign a 0 to
the rest of the column in A for the agent attacking i. This is how the example matrix
looks like after the coordinator is finished:

A4 =


1 0 0 1 0 0 0 0
0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0

 HP =


HP0 = 2
HP1 = 3
HP2 = 3
HP5 = 3
HP4 = 4
HP3 = 4

 (2.12)

In the example the fire coordinator agent have optimised attacks to:

• Unit 0 is attacked by agents 0 and 3. It should be destroyed.

• Unit 1 is attacked by agents 1, 2 and 6. It should be destroyed.

• Unit 5 is attacked by agent 6. Its HP should be reduced to 2.

• Unit 4 is attacked by agents 4 and 5. Its HP should be reduced to 2.

• Units 2 and 3 are not attacked by any agent.

The Internals of the Coordinator Agent

The coordinator agent first receive information from each of the own agents. It contains
its positions and ready-status, as well as a list of the opponent units that are within range.
Ready-status means that an agent is ready to fire at enemies. After an attack a unit has
a cool-down period while it cannot fire. From the server, it will get the current hit point
status of the opponent units.
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Now, the coordinator filters the agent information so that only those agents that are
i) ready to fire and ii). have at least one opponent unit within MSD, are left.

For each agent k that is ready to fire, we iterate through all opponent units and bases.
To see if k can attack unit i we use a three level check:

1. Agent k must be within Manhattan distance2 * 2 of i (very fast but inaccurate
calculation)

2. Agent k must be within real (Euclidean) distance of i (slower but accurate calcu-
lation)

3. Opponent unit i must be in line of sight of k (very slow but necessary to detect
obstacles in front of i)

The motivation behind the three-level check is to start with fast but inaccurate calcula-
tions, and for each level passed a slower and more accurate check is performed. This
reduces CPU usage by skipping demanding calculations such as line-of-sight for oppo-
nent units or bases that are far away.

Next step is to sort the rows in A in ascending order based on their HP (prioritise
attacking damaged units). If two opponent units has same hit points left, the unit i which
can be attacked by the largest number of agents k should be first (i.e. concentrate fire to
damage a single unit as much as possible rather than spreading the fire). When an agent
attacks an opponent unit it deals a damage value randomly chosen between the attacking
unit’s minimum (mindmg) and maximum (maxdmg) damage. A unit hit by an attack get
its HP reduced by the damage value of the attacking unit minus its own armour value.
The armour value is static and a unit’s armour cannot be destroyed.

The next step is to find opponent units which can be destroyed this frame. For every
opponent unit i in A, check if enough agents u can attack i to destroy it as:

(
m−1∑
k=0

a(k, i)) · (damageu − armouri) >= HPi (2.13)

armouri is the armour value for the unit type of i (0 for marines and bases, 1 for
tanks) and damageu = mindmg + p · (maxdmg −mindmg), where p ∈ [0, 1]. We have
used a p value of 0.75, but it can be changed to alter the possibility of actually destroying
opponent units.

If more agents can attack i than is necessary to destroy it, remove the agents with the
most occurrences in A from attacking i. The motivation behind this is that the agents u
with most occurrences in A has more options when attacking other units.

2The Manhattan distance between two coordinates (x1, y1), (x2, y2) is given by abs(x1−x2)+abs(y1−
y2).
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At last we must make sure the agents attacking i does not attack other opponent units
in A. This is done by assigning a 0 value to the rest of the column.

The final step is to make sure agents not processed in the previous step only attacks
one opponent unit each. Iterate through every i that cannot be destroyed but can be
attacked by at least one agent k, and assign a 0 value to the rest of the column for each
k attacking i.

2.5 Experiments
Our bot have participated in the 2007 years ORTS competition. Below is a brief descrip-
tion of the other competition entries (Buro, 2007a). The results from the competition are
presented in Tables 2.3–2.4. As we can see from the results summary our bot was not
among the top entries in the competition, but rather in the bottom half. We did however
win almost a third of the played games in both categories. Note that all other competi-
tion entries are based on more traditional approaches with pathfinding and higher level
planning, and our goal is to investigate if our Multi-agent Potential Fields based bot is
able to reach the same level of performance as the traditional solutions.

Team Wins ratio Wins/games Team name
nus 98% (315/320) National Univ. of Singapore
WarsawB 78% (251/320) Warsaw Univ., Poland
ubc 75% (241/320) Univ. of British Columbia, Canada
uofa 64% (205/320) Univ. of Alberta, Canada
uofa.06 46% (148/320) Univ. of Alberta
BTH 32% (102.5/320) Blekinge Inst. of Tech., Sweden
WarsawA 30% (98.5/320) Warsaw University, Poland
umaas.06 18% (59/320) Univ. of Maastricht, The Netherlands
umich 6% (20/320) Univ. of Michigan, USA

Table 2.3: Summary of the results of ORTS tank-battle 2007

2.5.1 Opponent Descriptions
The team NUS use finite state machines and influence maps in high-order planning on
group level. The units in a squad spread out on a line and surround the opponent units at
MSD. Units use the cool-down period to keep out of MSD. Pathfinding and a flocking
algorithm is used to avoid collisions.

UBC gather units in squads of 10 tanks or marines. Squads can be merged with other
squads or split into two during the game. Pathfinding is combined with force fields to
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Team Wins ratio Wins/games Team name
nus 99% (693/700) National Univ. of Singapore
ubc 75% (525/700) Univ. of British Columbia, Canada
WarsawB 64% (451/700) Warsaw Univ., Poland
WarsawA 63% (443/700) Warsaw Univ., Poland
uofa 55% (386/700) Univ. of Alberta, Canada
BTH 28% (198/700) Blekinge Inst. of Tech., Sweden
nps 15% (102/700) Naval Postgraduate School, USA
umich 0% (2/700) Univ. of Michigan, USA

Table 2.4: Summary of the results of the ORTS tactical combat

avoid obstacles and bit-mask for collision avoidance. Units spread out at MSD when
attacking. Weaker squads are assigned to weak spots or corners of the opponent unit
cluster. If an own base is attacked, it may decide to try to defend the base.

WarsawA synchronises units by assigning each unit position to a node in a grid. The
grid is also used for pathfinding. When units are synchronised they attack the enemy at
a line going for its weakest spots at a predefined distance.

WarsawB uses pathfinding with an additional dynamic graph for moving objects.
Own units uses a repelling force field collision avoidance. Units are gathered in one
large squad. When the squad attacks, its units spread out on a line at MSD and each unit
attack the weakest opponent unit in range. In tactical combat, each own unit is assigned
to an opponent unit and it always tries to be at the same horizontal line (y coordinate) as
its assigned unit.

Uofa uses a hierarchical commander approach ranging from squad commanders
down to pathfinding and attack coordination commanders. Units are grouped in a sin-
gle, large cluster and tries to surround the opponent units by spreading out at MSD. The
hierarchical commander approach is not used in tactical combat.

Umich uses an approach where the overall tactics are implemented in the SOAR
language. SOAR in turn have access to low-level finite state machines for handling, for
example, squad movement. Units are gathered in a single squad hunting enemies, and
opponent units attacking own bases are the primary goals.

Umaas and Uofa entered the competition with their 2006 years entries. No entry
descriptions are available.

2.6 Discussion
We discuss potential fields in general, then the results of the experiments, and finally
write a few words about the methodology.
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2.6.1 The use of PF in games

Traditionally the use of potential fields (PF), although having gained some success in
the area of robotic navigation, has been limited in the domain of game AI. There are a
number of more or less good reasons for that:

1. PF are considered to be less controllable than traditional planning (Tomlinson,
2004). This may be an important feature in the early stages of a game develop-
ment.

2. A* and different domain specific improvements of it has proven to gain suffi-
ciently good results.

3. PF based methods are believed to be hard to implement and to debug. These
problems may especially apply to the representation of the environment, and the
dynamic stability (Tomlinson, 2004).

4. Agents navigating using PFs often get stuck in local optima.

However, from the reported use of potential fields in the area of RoboCup and games
indicate that:

PF may be implemented in a way that use the processing time efficiently, especially
in highly dynamic environments where lots of objects are moving and long term planning
is intractable. By just focusing on nine options (eight directions + standing still) we do,
at most, have to calculate the potentials of 9n positions for our n units. All potential
functions may be pre-calculated and stored in arrays, which makes the actual calculation
of the potential of a position just a matter of summing up a number of array elements.

By using multiple maps over the potential landscape (e.g. one for each type of unit),
the debug process becomes significantly more efficient. We used different potential
landscapes that were put on the map to illustrate the potentials using different colours.

The great thing with PFs is that the attracting – repelling paradigm is very intuitive:
the good outcomes of actions are attractive, and the bad outcomes repellent. Thus an
action that lead to both bad and good outcomes can be tuned at the outcome level, rather
than on the action level.

In static environments, the local optima problem has to be dealt with when using
PF. In ORTS, which in some cases is surprisingly static, we used convex filling and
path clearing of the terrain to help the units, but this did not always help. We believe
that more efforts here will improve the performance. Thurau et al. (2004b) describes
a solution to the local maxima problem called avoid-past potential field forces. Each
of their agents generate a trail of negative potential, similar to a pheromone trail used
by ants, at visited positions. The trail pushes the agent forward if it reaches a local
maximum. This approach may work for our agents as well.

32



2.6.2 The Experiments
There are a number of possible explanations for the good results of the top teams (and
the comparative bad results for our team). First, the top teams are very good at han-
dling difficult terrain which, since the terrain is generated randomly, sometimes cause
problems for our agents due to local optima.

The second advantage is coordinating units in well-formed squads. Since we do not
have any attracting mechanism between agents and higher-level grouping of squads, our
agents are often spread out with a large distance between them. Enemies can in some
cases destroy our agents one at a time without risk of being attacked by a large number
of coordinated agents.

The third advantage is that the top teams spread out units at MSD, and always tries
to keep that distance. Since the field of opponents are a sum of the generated potentials
for all opponent units, the maxima tend to be in the center of the opponent cluster and
our agents therefore attack the enemy at their strongest locations instead of surrounding
the enemy.

We believe it is possible to solve these issues using MAPF. The first issue is a matter
of details in the resolution of the MAPF. Our agents move to the center of the 8x8 points
tile with highest potential. This does not work very well for narrow passages or if bases,
other agents or sheep are close. This could be solved by either increase the resolution of
the MAPF or add functionality for estimating a potential at a point to enable movement
at point level.

The second issue can be solved by using a both positive and negative field for agents.
Close to the agents, there is a surrounding negative field as in our implementation, which
in turn is surrounded by a positive one. The positive field will make the agents to keep an
appropriate distance and possibly having an emergent effect of surrounding the opponent
(see e.g. Mamei and Zambonelli (2004)).

The third issue can be solved by not calculating the potential in a point as the sum
of the potentials all opponent units generate in that point, but rather the highest potential
an opponent unit generate in the point. This will make sure the maxima in the strategic
field always are at MSD even if the opponent units are clustered in large groups, and our
agents will more likely surround the enemy.

To further improve our bot a new type of tactics field can be used. By generating
a large positive field at the weakest spot of the opponent units cluster, agents attack the
weakest spot instead of attacking strong locations. This field differs from the other fields
used in that it is not generated by a game object, but rather generated by a higher-level
tactical decision.

2.6.3 On the Methodology
We chose to implement and test our idea of using a Multi-agent Potential Field based
solution in the yearly ORTS competition. As a testbed, we believe that it is good for this
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purpose for a number of reasons: i). It is a competition, meaning that others will do their
best to beat us. ii) It provides a standardised way of benchmarking Game AI solutions
iii). The environment is open source and all of the mechanics are transparent. iv) ORTS
uses a client-server architecture where clients only has access to the information sent
by the server. No client can gain an advantage by hacking the game engine as often
is possible in a peer-to-peer architecture. v) Even though ORTS is written in C++ the
communication protocol is public and it is possible to write a wrapper to any other
language. The results may seem modest, but we show that MAPFs is an alternative to
A* based solutions in the case of ORTS. We have no reason to believe that MAPF would
not be successful in other RTS games.

2.7 Conclusions and Future Work
A long-term plan, for example path finding, generated by an agent might need re-
planning if the game world changes during the execution of the plan. With a PF based
solution path planning may be replaced by one step look-ahead, if the analysis is carried
out carefully, but yet efficiently. We believe that in ORTS, MAPFs fulfils the requirements
of efficiency and flexibility and conclude that MAPF is indeed an interesting alternative
worth investigating further. However, more research is needed on how to implement
MAPF based solutions in general, and on what tools to use in the debugging and cali-
bration process. Preliminary late results show that our MAPF solution now beat all the
competitors of the 2007 ORTS competition. The future of MAPF looks bright and we
hope to be able to report further on this in the near future. Future work include to opti-
mise the parameters using e.g. genetic algorithms, to take care of the issues mentioned in
Section 2.6, and to refine the agent perspective through distributing the coordination of
attacks and the exploration of the map explicitly. We would also like to try our approach
in other domains.
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CHAPTER

THREE

PAPER II

Demonstration of Multi-agent Potential Fields in
Real-time Strategy Games

Johan Hagelbäck & Stefan J. Johansson
Demo Paper on the Seventh International Conference on Autonomous Agents and
Multi-agent Systems (AAMAS). 2008.

3.1 The ORTS environment
Open Real Time Strategy (ORTS) (Buro, 2007a) is a real-time strategy game engine
developed as a tool for researchers within artificial intelligence (AI) in general and game
AI in particular, see Figure 3.1. ORTS uses a client-server architecture with a game
server and players connected as clients. Each timeframe clients receive a data structure
from the server containing the current game state. Clients can then issue commands for
their units. Commands can be like move unit A to (x, y) or attack opponent unit X with
unit A. All client commands are executed in random order by the server.
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Figure 3.1: The 3D view of the ORTS Tankbattle game.

3.2 The used technology
Khatib (1986) introduced a new concept while he was looking for a real-time obstacle
avoidance approach for manipulators and mobile robots. The technique which he called
Artificial Potential Fields moves a manipulator in a field of forces. The position to be
reached is an attractive pole for the end effector (e.g. a robot) and obstacles are repulsive
surfaces for the manipulator.

Although being a well-known technology in robotics, potential fields has not gained
very much interest in the game industry. We show that, not only is it an efficient and
robust solution for navigation of a single unit, it is also an approach that works very well
in distributed settings of multiple agents. Figure 3.3 shows the potential fields for the
green team.

36



Figure 3.2: The 2D view of the same ORTS Tankbattle game.
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Figure 3.3: The potential field generated by the units and the terrain. The white lines illustrate the
coordinated attacks on a base (lower left) and a unit (upper right).
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3.3 The involved multi-agent techniques
There are several issues to be addressed in an RTS game. First, all units are moving
in parallel, which means that they will have to coordinate their movement in some way
without bumping into each other, or the surrounding environment. We use potential
fields similar to the ones used by e.g. Mamei and Zambonelli (2004) to let the units keep
themselves at the right distance.

Second, to improve the efficiency, we coordinate their attacks through the use of a
central military commander. This agent is not embodied in the field, but makes sure that
no extra shots are spent on opponent units that are already under lethal attack. This is
important, since there is a cool-down period during which the units can not attack after
a shot.

Third, the commander chooses what opponent to attack first. This is a strategic
decision that may follow several strategies, e.g. to try to split the enemies in more, but
weaker groups, or try to attack the enemy from the sides. In order to make the right
decision, an analysis of the spatial (and health-related) positions of the opponent agents
is needed.

3.4 The innovation of the system
The use of separate potential fields for the control of tactical, navigational, and strategic
matters in a system of multiple units (our agents) in an RTS game has, as far as we know,
not been described in academia before. Traditionally, A* and different types of state ma-
chines has been state-of-the-art in the gaming industry. Lately we have seen a growing
interest for alternative solutions, partly as a result of the customer demand for more be-
lievable computer opponents, partly as a result of the increase in processing power that
third generation game consoles such as Sony PlayStation 3 bring us. We believe that the
use of both MAS techniques and potential fields (and why not our proposed combination
of the two?) will gain ground as the game AI field matures. Lately, the performance of
our solution has increased significantly compared to the results presented in Paper I and
these late breaking improvements will of course be demonstrated.

3.5 The interactive aspects
Unfortunately, the human player interface is not yet released by the ORTS developers. If
it will be available at the time of the conference, we will also be able to offer the audience
to play games against our MAPF based bot. If not, we will illustrate its features through
games against other computer opponents. We will be glad to illustrate the performance
of our recently updated solution against the winner of the ORTS tournament described
in Paper I.
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There will be two windows updated in real time. The main window shows a 3D (see
Figure 3.1), or 2D (see Figure 3.2) view of the units and the terrain. The second window
(see Figure 3.3) shows the potential fields of a certain unit, as well as the resulting
coordination done by the military commander. The whole potential field is shown here,
although in the real application, only the potentials of the positions in the map that are
considered interesting are calculated.

3.6 Conclusions
We will show a demonstration of a highly competitive game AI bot for the ORTS envi-
ronment. It is built using the methodology described in Paper I and use a combination
of Multi-agent coordination techniques and potential fields to try to win its games.
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CHAPTER

FOUR

PAPER III

The Rise of Potential Fields in Real Time Strategy Bots

Johan Hagelbäck & Stefan J. Johansson
Proceedings of Artificial Intelligence and Interactive Digital Entertainment (AIIDE).
2008.

4.1 Introduction

A Real-time Strategy (RTS) game is a game in which the players use resource gathering,
base building, technological development and unit control in order to defeat their oppo-
nents, typically in some kind of war setting. The RTS game is not turn-based in contrast
to board games such as Risk and Diplomacy. Instead, all decisions by all players have
to be made in real-time. Generally the player has a top-down perspective on the battle-
field although some 3D RTS games allow different camera angles. The real-time aspect
makes the RTS genre suitable for multiplayer games since it allows players to interact
with the game independently of each other and does not let them wait for someone else
to finish a turn.

Khatib (1986) introduced a new concept while he was looking for a real-time ob-
stacle avoidance approach for manipulators and mobile robots. The technique which he
called Artificial Potential Fields moves a manipulator in a field of forces. The position
to be reached is an attractive pole for the end effector (e.g. a robot) and obstacles are
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repulsive surfaces for the manipulator parts. Later on Arkin (1987) updated the knowl-
edge by creating another technique using superposition of spatial vector fields in order
to generate behaviours in his so called motor schema concept.

Many studies concerning potential fields are related to spatial navigation and obstacle
avoidance, see e.g. Borenstein and Koren (1991); Massari et al. (2004). The technique
is really helpful for the avoidance of simple obstacles even though they are numerous.
Combined with an autonomous navigation approach, the result is even better, being able
to surpass highly complicated obstacles (Borenstein & Koren, 1989).

Lately some other interesting applications for potential fields have been presented.
The use of potential fields in architectures of multi agent systems is giving quite good
results defining the way of how the agents interact. Howard et al. (2002) developed a
mobile sensor network deployment using potential fields, and potential fields have been
used in robot soccer (Johansson & Saffiotti, 2002; Röfer et al., 2004). Thurau et al.
(2004b) has developed a game bot which learns reactive behaviours (or potential fields)
for actions in the First-Person Shooter (FPS) game Quake II through imitation.

First we describe the domain followed by a description of our basic MAPF player.
That solution is refined stepwise in a number of ways and for each and one of them
we present the improvement shown in the results of the experiments. We then discuss
the solution and conclude and show some directions of future work. In Paper I we have
reported on the details of our methodology, and made a comparison of the computational
costs of the bots, thus we refer to that study for these results.

4.2 ORTS

Open Real Time Strategy (ORTS) (Buro, 2007a) is a real-time strategy game engine
developed as a tool for researchers within artificial intelligence (AI) in general and game
AI in particular. ORTS uses a client-server architecture with a game server and players
connected as clients. Each timeframe clients receive a data structure from the server
containing the current game state. Clients can then issue commands for their units.
Commands such as move unit A to (x, y) or attack opponent unit X with unit A. All
client commands are executed in random order by the server.

Users can define different type of games in scripts where units, structures and their
interactions are described. All type of games from resource gathering to full real time
strategy (RTS) games are supported. We focus here on one type of two-player game,
Tankbattle, which was one of the 2007 ORTS competitions (Buro, 2007a). In Tankbattle
each player has 50 tanks and five bases. The goal is to destroy the bases of the opponent.
Tanks are heavy units with long fire range and devastating firepower but a long cool-
down period, i.e. the time after an attack before the unit is ready to attack again. Bases
can take a lot of damage before they are destroyed, but they have no defence mechanism
of their own so it may be important to defend own bases with tanks. The map in a
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tankbattle game has randomly generated terrain with passable lowland and impassable
cliffs.

The game contains a number of neutral units (sheep). These are small indestructible
units moving randomly around the map making pathfinding and collision detection more
complex.

4.2.1 The Tankbattle competition of 2007
For comparison, the results from our original bot against the four top teams were re-
constructed through running the matches again (see Table 4.1). To get a more detailed
comparison than the win/lose ratio used in the tournament we introduce a game score.
This score does not take wins or losses into consideration, instead it counts units and
bases left after a game. The score for a game is calculated as:

score =5 · (ownBasesLeft− oppBasesLeft)+ (4.1)
ownUnitsLeft− oppUnitsLeft

Team Win % Wins/games Avg units Avg bases Avg score
NUS 0% (0/100) 0.01 0.00 -46.99
WarsawB 0% (0/100) 1.05 0.01 -42.56
UBC 24% (24/100) 4.66 0.92 -17.41
Uofa.06 32% (32/100) 4.20 1.45 -16.34
Average 14% (14/100) 2.48 0.60 -30.83

Table 4.1: Replication of the results of our bot in the ORTS tournament 2007 using the latest
version of the ORTS server.

4.2.2 Opponent descriptions
We refer to Paper I section 2.5.1 for opponent descriptions.

4.3 MAPF in ORTS, V.1
We have implemented an ORTS client for playing Tankbattle based on Multi-agent Po-
tential Fields (MAPF) following the proposed methodology in Paper I. It includes the
following six steps:

1. Identifying the objects
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2. Identifying the fields

3. Assigning the charges

4. Deciding on the granularities

5. Agentifying the core objects

6. Construct the MAS architecture

Below we will describe the creation of our MAPF solution.

4.3.1 Identifying objects
We identify the following objects in our applications: Cliffs, Sheep, and own (and op-
ponent) tanks, and base stations.

4.3.2 Identifying fields
We identified four tasks in ORTS Tankbattle: Avoid colliding with moving objects, Hunt
down the enemy’s forces, Avoid colliding with cliffs, and Defend the bases. This leads
us to three types of potential fields: Field of Navigation, Strategic Field, and Tactical
field.

The field of navigation is generated by repelling static terrain and may be pre-
calculated in the initialisation phase. We would like agents to avoid getting too close
to objects where they may get stuck, but instead smoothly pass around them.

The strategic field is an attracting field. It makes agents go towards the opponents
and place themselves at appropriate distances from where they can fight the enemies.

Our own units, own bases and sheep generate small repelling fields. The purpose
is that we would like our agents to avoid colliding with each other or bases as well as
avoiding the sheep.

4.3.3 Assigning charges
Each unit (own or enemy), base, sheep and cliff have a set of charges which generate
a potential field around the object. All fields generated by objects are weighted and
summed to form a total field which is used by agents when selecting actions. The ini-
tial set of charges were found using trial and error. However, the order of importance
between the objects simplifies the process of finding good values and the method seems
robust enough to allow the bot to work good anyhow. We have tried to use traditional AI
methods such as genetic algorithms to tune the parameters of the bot, but without suc-
cess. The results of these studies are still unpublished. We used the following charges in
the V.1 bot:1

1I = [a, b[ denote the half-open interval where a ∈ I , but b /∈ I
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The opponent units

p(d) =


k1d, if d ∈ [0, MSD − a[
c1 − d, if d ∈ [MSD − a, MSD]
c2 − k2d, if d ∈]MSD, MDR]

(4.2)

Unit k1 k2 c1 c2 MSD a MDR

Tank 2 0.22 24.1 15 7 2 68
Base 3 0.255 49.1 15 12 2 130

Table 4.2: The parameters used for the generic p(d)-function of Equation 4.2.

Own bases Own bases generate a repelling field for obstacle avoidance. Below in
Equation 4.3 is the function for calculating the potential pownB(d) at distance d (in tiles)
from the center of the base.

pownB(d) =


5.25 · d− 37.5 if d <= 4
3.5 · d− 25 if d ∈]4, 7.14]
0 if d > 7.14

(4.3)

The own tanks The potential pownU (d) at distance d (in tiles) from the center of an
own tank is calculated as:

pownU (d) =


−20 if d <= 0.875
3.2d− 10.8 if d ∈]0.875, l],
0 if d >= l

(4.4)

Sheep Sheep generate a small repelling field for obstacle avoidance. The potential
psheep(d) at distance d (in tiles) from the center of a sheep is calculated as:

psheep(d) =


−10 if d <= 1
−1 if d ∈]1, 2]
0 if d > 2

(4.5)

Figure 3.2 in Paper II shows a 2D view of the map during a tankbattle game. It shows
our agents (green) moving in to attack enemy bases and units (red). Figure 3.3 shows the
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potential field view of the same tankbattle game. Dark areas has low potential and light
areas high potential. The light ring around enemy bases and units, located at maximum
shooting distance of our tanks, is the distance our agents prefer to attack opponent units
from. It is the final move goal for our units.

4.3.4 Granularity
We believed that tiles of 8*8 positions was a good balance between performance on the
one hand, and the time it would take to make the calculations, on the other.

4.3.5 Agentifying and the construction of the MAS

We put one agent in each unit, and added a coordinator that took care of the coordination
of fire. For details on the implementation description we have followed, we refer to Paper
I.

4.4 Weaknesses and counter-strategies
To improve the performance of our bot we observed how it behaved against the top
teams from the 2007 years’ ORTS tournament. From the observations we have defined a
number of weaknesses of our bot and proposed solutions to these. For each improvement
we have run 100 games against each of the teams NUS, WarsawB, UBC and Uofa.06. A
short description of the opponent bots can be found below. The experiments are started
with a randomly generated seed and then two games, one where our bot is team 0 and
one where our bot is team 1, are played. For the next two games the seed is incremented
by 1, and the experiments continues in this fashion until 100 games are played.

By studying the matches, we identified four problems with our solution:

1. Some of our units got stuck in the terrain due to problems finding their way
through narrow passages.

2. Our units exposed themselves to hostile fire during the cool down phase.

3. Some of the units were not able to get out of local minima created by the potential
field.

4. Our units came too close to the nearest opponents if the opponent units were gath-
ered in large groups.

We will now describe four different ways to address the identified problems by ad-
justing the original bot V.1 described in Paper I. The modifications are listed in Table
4.3.
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Properties V.1 V.2 V.3 V.4 V.5
Full resolution

√ √ √ √

Defensive field
√ √ √

Charged pheromones
√ √

Max. potential strategy
√

Table 4.3: The implemented properties in the different experiments using version 1–5 of the bot.

4.4.1 Increasing the granularity, V.2
In the original ORTS bot we used 128x128 tiles for the potential field, where each tile
was 8x8 positions in the game world. The potential field generated from a game object,
for example own tanks, was pre-calculated in 2-dimensional arrays and simple copied at
runtime into the total potential field. This resolution proved not to be detailed enough.
In the tournament our units often got stuck in terrain or other obstacles such as our
own bases. This became a problem, since isolated units are easy targets for groups of
attacking units.

The proposed solution is to increase the resolution to 1x1 positions per tile. To re-
duce the memory requirements we do not pre-calculate the game object potential fields,
instead the potentials are calculated at runtime by passing the distance between an own
unit and each object to a mathematical formula. To reduce computation time we only
calculate the potentials in the positions around each own unit, not the whole total po-
tential field as in the original bot. Note that the static terrain is still pre-calculated and
constructed using 8x8 positions tiles. Below is a description and formulas for each of
the fields. In the experiments we use weight 1/7 ≈ 0.1429 for each of the weights w1

to w7. The weight w7 is used to weight the terrain field which, except for the weight,
is identical to the terrain field used in the original bot. The results from the experiments
are presented in Table 4.4. Below is a detailed description of the fields.

Team Win % Wins/games Avg units Avg bases Avg score
NUS 9% (9/100) 1.18 0.57 -32.89
WarsawB 0% (0/100) 3.03 0.12 -36.71
UBC 24% (24/100) 16.11 0.94 0.46
Uofa.06 42% (42/100) 10.86 2.74 0.30
Average 18.75% (18.75/100) 7.80 1.09 -17.21

Table 4.4: Experiment results from increasing the granularity.

The opponent units and bases. All opponent units and bases generate symmetric
surrounding fields where the highest potentials surround the objects at radius D, the
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MSD, R refers to the Maximum Detection Range, the distance from which an agent
starts to detect the opponent unit. The potentials poppU (d) and poppB(d) at distance d
from the center of an agent are calculated as:

poppU (d) = w1 ·


240/d(D − 2), if d ∈ [0, D − 2[
240, if d ∈ [D − 2, D]
240− 0.24(d−D) if d ∈]D,R]

(4.6)

poppB(d) = w6 ·


360/(D − 2) · d, if d ∈ [0, D − 2[
360, if d ∈ [D − 2, D]
360− (d−D) · 0.32 if d ∈]D,R]

(4.7)

Own units — tanks. Own units generate repelling fields for obstacle avoidance. The
potential pownU (d) at distance d from the center of a unit is calculated as:

pownU (d) = w3 ·

{
−20 if d <= 14
32− 2 · d if d ∈]14, 16]

(4.8)
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Own bases. Own bases also generate repelling fields for obstacle avoidance. Below
is the function for calculating the potential pownB(d) at distance d from the center of the
base.

pownB(d) = w4 ·

{
6 · d− 258 if d <= 43
0 if d > 43

(4.9)

Sheep. Sheep generate a small repelling field for obstacle avoidance. The potential
psheep(d) at distance d from the center of a sheep is calculated as:

psheep(d) = w5 ·

{
−20 if d <= 8
2 · d− 25 if d ∈]8, 12.5]

(4.10)

4.4.2 Adding a defensive potential field, V.3
After a unit has fired its weapon the unit has a cooldown period when it cannot attack.
In the original bot our agents was, as long as there were enemies within MSD (D),
stationary until they were ready to fire again. The cooldown period can instead be used
for something more useful and we propose the use of a defensive field. This field makes
the units retreat when they cannot attack, and advance when they are ready to attack
once again. With this enhancement our agents always aim to be at D of the closest
opponent unit or base and surround the opponent unit cluster at D. The potential pdef (d)
at distance d from the center of an agent is calculated using the formula in Equation
4.11. The results from the experiments are presented in Table 4.5.

pdef (d) = w2 ·

{
w2 · (−800 + 6.4 · d) if d <= 125
0 if d > 125

(4.11)

Team Win % Wins/games Avg units Avg bases Avg score
NUS 64% (64/100) 22.95 3.13 28.28
WarsawB 48% (48/100) 18.32 1.98 15.31
UBC 57% (57/100) 30.48 1.71 29.90
Uofa.06 88% (88/100) 29.69 4.00 40.49
Average 64.25% (64.25/100) 25.36 2.71 28.50

Table 4.5: Experiment results from adding a defensive field.
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4.4.3 Adding charged pheromones, V.4

The local optima problem is well known in general when using PF. Local optima are po-
sitions in the potential field that has higher potential than all its neighbouring positions.
A unit positioned at a local optimum will therefore get stuck even if the position is not
the final destination for the unit. In the original bot agents that had been idle for some
time moved in a random direction for some frames. This is not a very reliable solution
to the local optima problem since there is not guarantee that the agent has moved out of,
or will not directly return to, the local optima.

Thurau, Bauckhage, and Sagerer (2004a) described a solution to the local optima
problem called avoid-past potential field forces. In this solution each agent generates
a trail of negative potentials on previous visited positions, similar to a pheromone trail
used by ants. The trail pushes the agent forward if it reaches a local optima.

We have introduced a trail that adds a negative potential to the last 20 positions of
each agent. Note that an agent is not effected by the trails of other own agents. The
negative potential for the trail was set to -0.5 and the results from the experiments are
presented in Table 4.6.

Team Win % Wins/games Avg units Avg bases Avg score
NUS 73% (73/100) 23.12 3.26 32.06
WarsawB 71% (71/100) 23.81 2.11 27.91
UBC 69% (69/100) 30.71 1.72 31.59
Uofa.06 93% (93/100) 30.81 4.13 46.97
Average 76.5% (76.5/100) 27.11 2.81 34.63

Table 4.6: Experiment results from adding charged pheromones.

4.4.4 Using maximum potentials, V.5

In the original bot all potential fields generated from opponent units were weighted and
summed to form the total potential field which is used for navigation by our agents. The
effect of summing the potential fields generated by opponent units is that the highest
potentials are generated from the centre of the opponent unit cluster. This makes our
agents attack the centre of the enemy force instead of keeping the MSD to the closest
enemy. The proposed solution to this issue is that, instead of summing the potentials
generated by opponent units and bases, we add the highest potential any opponent unit
or base generates. The effect of this is that our agents engage the closest enemy unit at
maximum shooting distance instead of moving towards the centre of the opponent unit
cluster. The results from the experiments are presented in Table 4.7.
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Team Win % Wins/games Avg units Avg bases Avg score
NUS 100% (100/100) 28.05 3.62 46.14
WarsawB 99% (99/100) 31.82 3.21 47.59
UBC 98% (98/100) 33.19 2.84 46.46
Uofa.06 100% (100/100) 33.19 4.22 54.26
Average 99.25% (99.25/100) 31.56 3.47 48.61

Table 4.7: Experiment results from using maximum potential, instead of summing the potentials.

4.5 Discussion
The results clearly show that the improvements we suggest increases the performance
of our solution dramatically. We will now discuss these improvements from a wider
perspective, asking ourselves if it would be easy to achieve the same results without
using potential fields.

4.5.1 Using full resolution
We believed that the PF based solution would suffer from being slow. Because of that,
we did not initially use the full resolution of the map. However, we do so now, and
by only calculating the potentials in a number of move candidates for each unit (rather
than all positions of the map), we have no problems at all to let the units move in full
resolution. This also solved our problems with units getting stuck at various objects and
having problems to go through narrow passages.

4.5.2 Avoiding the obstacles
The problems with local optima are well documented for potential fields. It is a result of
the lack of planning. Instead, a one step look-ahead is used in a reactive manner. This is
of course problematic in the sense that the unit is not equipped to plan its way out of a
sub-optimal position. It will have to rely on other mechanisms. The pheromone trail is
one such solution that we successfully applied to avoid the problem.

On the other hand, there are also advantages of avoiding to plan, especially in a
dynamically changing environment where long term planning is hard.

4.5.3 Avoiding opponent fire
The trick to avoid opponent fire by adding a defensive potential field during the cool-
down phase is not hard to implement in a traditional solution. By adding a state of
cool-down, which implements a flee behaviour, that makes the unit run away from the
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enemies, that could be achieved. The potential problem here is that it may be hard to
coordinate such a movement with other units trying to get to the front, so some sort of
coordinating mechanism may be needed. While this mechanism is implicit in the PF
case (through the use of small repulsive forces between the own units), it will have to be
taken care of explicitly in the planning case.

4.5.4 Staying at maximum shooting distance
The problem we had, to keep the units at the MSD from the nearest opponent, was
easily solved by letting that opponent be the one setting the potential in the opponent
field, rather than the gravity of the whole opponent group (as in the case of summing all
potentials). As for the case of bots using planning, we can not see that this really is a
problem for them.

4.5.5 On the methodology
We have used the newer version of the ORTS server for the experiments. On the one
hand, it allows us to use the latest version of our bot, which of course is implemented
to work with the new server. On the other hand, we could not get one of the last years’
participants to work with the new server. Since games like these are not transitive in the
sense that if player A wins over player B, and player B wins over player C, then player
A will not be guaranteed to win over player C, there is a risk that the bot that was left
out of these experiments would have been better than our solution. However, the point is
that we have shown that a potential field-based player is able to play significantly better
than a number of planning-based counterparts. Although we have no reason to believe
that the UofA07 bot would be an exception, we do not have the results to back it up.

The order of the different versions used was determined after running a small series
of matches with different combinations of improvements added. We then picked them
in the order that best illustrated the effects of the improvements.

However, our results were further validated in the 2008 ORTS tournament, where
our PF based bots won the three competitions that we participated in (Collaborative
Pathfinding, Tankbattle, and Complete RTS). In the Tankbattle competition, we won all
100 games against NUS, the winner of last year, and only lost four of 100 games to Lidia
(see Table 4.8).
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Team Total win % Blekinge Lidia NUS
Blekinge 98 — 96 100
Lidia 43 4 — 82
NUS 9 0 18 —

Table 4.8: Results from the ORTS Tankbattle 2008 competition.

4.6 Conclusions and Future Work
We have presented a five step improvement of a potential field based bot that plays the
Strategic Combat game in ORTS. By the full improvement we managed to raise the
performance from winning less than 7 per cent to winning more than 99 per cent of the
games against four of the top five teams at the ORTS tournament 2007. Our bot did also
quite easily win the 2008 tournament.

We believe that potential fields is a successful option to the more conventional planning-
based solutions that uses e.g. A* in Real Time Strategy games.

In the future, we will report on the application of the methodology described in Paper
I to a number of other ORTS games. We will also set up a new series of experiments
where we adjust the ability/efficiency trade-off of the bot in real time to increase the
player experience.
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CHAPTER

FIVE

PAPER IV

Dealing with Fog of War in a Real Time
Strategy Game Environment

Johan Hagelbäck & Stefan J. Johansson
Proceedings of 2008 IEEE Symposium on Computational Intelligence and Games
(CIG). 2008.

5.1 Introduction

A Real-time Strategy (RTS) game is a game in which the players use resource gathering,
base building, technological development and unit control in order to defeat their oppo-
nents, typically in some kind of war setting. An RTS game is not turn-based in contrast
to board games such as Risk and Diplomacy. Instead, all decisions by all players have to
be made in real-time. The player usually has an isometric birds view perspective of the
battlefield although some 3D RTS games allow different camera angles. The real-time
aspect makes the RTS genre suitable for multiplayer games since it allows players to in-
teract with the game independently of each other and does not let them wait for someone
else to finish a turn.

In RTS games computer bots often cheat in the sense that they get access to complete
visibility (perfect information) of the whole game world, including the positions of the
opponent units. Cheating is, according to Nareyek (2004), "very annoying for the player
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if discovered" and he predicts the game AIs to get a larger share of the processing power
in the future which in turn may open up for the possibility to use more sophisticated AIs.

We will show how a bot that uses potential fields can be modified to deal with im-
perfect information, i.e. the parts of the game world where no own units are present are
unknown (usually referred to as Fog of War, or FoW). We will also show that our mod-
ified bot with imperfect information, named FoWbot, actually not only perform equally
good, compared to a version with perfect information (called PIbot), but also that it at
an average consumes less computational power than its cheating counterpart.

5.1.1 Research Question and Methodology
The main research question of this paper is: Is it possible to construct a bot without
access to perfect information for RTS games that perform as well as bots that have
perfect information? This breaks down to:

1. What is the difference in performance between using a FoWbot compared to a
PIbot in terms of a) the number of won matches, and b) the number of units and
bases left if the bot wins?

2. To what degree will a field of exploration help the FoW bot to explore the unknown
environment?

3. What is the difference in the computational needs for the FoWbot compared to the
PIbot?

In order to approach the research questions above, we will implement a FoW version
of our original PIbot and compare its performance, exploration and processing needs
with the original.

5.1.2 Outline
First we describe the domain followed by a description of our Multi-agent Potential Field
(MAPF) player. In the next section we describe the adjustments needed to implement a
working FoW bot and then we present the experiments and their results. We finish by
discussing the results, draw some conclusions and line out possible directions for future
work.

5.2 ORTS
Open Real Time Strategy (ORTS) (Buro, 2007a) is a real-time strategy game engine de-
veloped as a tool for researchers within AI in general and game AI in particular. ORTS
uses a client-server architecture with a game server and players connected as clients.
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Each timeframe clients receive a data structure from the server containing the current
state of the game. Clients can then activate their units in various ways by sending com-
mands to them. These commands can be like move unit A to (x, y) or attack opponent
unit X with unit A. All client commands for each time frame are sent in parallel, and
executed in random order by the server.

Users can define different types of games in scripts where units, structures and their
interactions are described. All types of games from resource gathering to full real time
strategy (RTS) games are supported. We focus here on one type of two-player game,
Tankbattle, which was one of the 2007 ORTS competitions (Buro, 2007a).

In Tankbattle each player has 50 tanks and five bases. The goal is to destroy the bases
of the opponent. Tanks are heavy units with long fire range and devastating firepower
but a long cool-down period, i.e. the time after an attack before the unit is ready to
attack again. Bases can take a lot of damage before they are destroyed, but they have no
defence mechanism so it may be important to defend own bases with tanks. The map in
a Tankbattle game has randomly generated terrain with passable lowland and impassable
cliffs.

The game contains a number of neutral units (sheep). These are small, indestructible
units moving randomly around the map. The purpose of them is to make pathfinding
and collision detection more complex.

We have in our experiments chosen to use an environment based on the best partici-
pants of the last year’s ORTS tournament (Buro, 2007b).

5.2.1 Descriptions of Opponents

We refer to Paper I section 2.5.1 for opponent descriptions.

5.3 Multi-agent Potential Fields

Khatib (1986) introduced a new concept while he was looking for a real-time obstacle
avoidance approach for manipulators and mobile robots. The technique, which he called
Artificial Potential Fields, moves a manipulator in a field of forces. The position to be
reached is an attractive pole for the end effector (e.g. a robot) and obstacles are repulsive
surfaces for the manipulator parts. Later on Arkin (1987) updated the knowledge by cre-
ating another technique using superposition of spatial vector fields in order to generate
behaviours in his so called motor schema concept.

Many studies concerning potential fields are related to spatial navigation and obstacle
avoidance, see e.g. Borenstein and Koren (1991); Massari et al. (2004). The technique
is really helpful for the avoidance of simple obstacles even though they are numerous.
Combined with an autonomous navigation approach, the result is even better, being able
to surpass highly complicated obstacles (Borenstein & Koren, 1989).
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Lately some other interesting applications for potential fields have been presented.
The use of potential fields in architectures of multi agent systems has shown promising
results. Howard et al. (2002) developed a mobile sensor network deployment using po-
tential fields, and potential fields have been used in robot soccer (Johansson & Saffiotti,
2002; Röfer et al., 2004). Thurau et al. (2004b) has developed a game bot which learns
reactive behaviours (or potential fields) for actions in the First-Person Shooter (FPS)
game Quake II through imitation.

In Paper I we propose a methodology for creating an RTS game bot based on Multi-
agent Potential Fields (MAPF). This bot was further improved in Paper III and it is the
improved version that we have used in this experiment.

5.4 MAPF in ORTS
We have implemented an ORTS client for playing Tankbattle games based on Multi-
agent Potential Fields (MAPF) following the proposed methodology of Paper I. It in-
cludes the following six steps:

1. Identifying the objects

2. Identifying the fields

3. Assigning the charges

4. Deciding on the granularities

5. Agentifying the core objects

6. Construct the MAS Architecture

Below we will describe the creation of our MAPF solution.

5.4.1 Identifying objects
We identify the following objects in our applications: Cliffs, Sheep, and own (and op-
ponent) tanks, and base stations.

5.4.2 Identifying fields
We identified five tasks in ORTS Tankbattle:

• Avoid colliding with moving objects,

• avoid colliding with cliffs, and

• find the enemy,

58



• destroy the enemy’s forces, and

• defend the bases.

The latter task will not be addressed in this study (instead, see Paper III), but the rest
lead us to three types of potential fields: Field of navigation, Strategic field, Tactical
field, and Field of exploration.

The field of navigation is generated by repelling static terrain and may be pre-
calculated in the initialisation phase. We would like agents to avoid getting too close
to objects where they may get stuck, but instead smoothly pass around them.

The strategic field is an attracting field. It makes agents go towards the opponents
and place themselves at appropriate distances from where they can fight the enemies.

Our own units, own bases and the sheep generate small repelling fields. The purpose
is that we would like our agents to avoid colliding with each other or the bases as well
as avoiding the sheep.

The field of exploration helps the units to explore unknown parts of the game map.
Since it is only relevant in the case we have incomplete information, it is not part of the
PIbot that we are about to describe now. More information about the field of exploration
is found in Section 5.5.3.

5.4.3 Assigning charges
Each unit (own or enemy), base, sheep and cliff have a set of charges which generate
a potential field around the object. All fields generated by objects are weighted and
summed to form a total field which is used by agents when selecting actions. The ini-
tial set of charges were found using trial and error. However, the order of importance
between the objects simplifies the process of finding good values and the method seems
robust enough to allow the bot to work good anyhow. We have tried to use traditional
AI methods such as genetic algorithms to tune the parameters of the bot, but without
success. We used the following charges in the PIbot:1

The opponent units

p(d) =


k1d, if d ∈ [0, MSD − a[
c1 − d, if d ∈ [MSD − a, MSD]
c2 − k2d, if d ∈]MSD, MDR]

(5.1)

1I = [a, b[ denote the half-open interval where a ∈ I , but b /∈ I
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Unit k1 k2 c1 c2 MSD a MDR

Tank 2 0.22 24.1 15 7 2 68
Base 3 0.255 49.1 15 12 2 130

Table 5.1: The parameters used for the generic p(d)-function of Equation 5.1.

Own bases Own bases generate a repelling field for obstacle avoidance. Below in
Equation 5.2 is the function for calculating the potential pownB(d) at distance d (in tiles)
from the center of the base.

pownB(d) =


5.25 · d− 37.5 if d <= 4
3.5 · d− 25 if d ∈]4, 7.14]
0 if d > 7.14

(5.2)

The own tanks The potential pownU (d) at distance d (in tiles) from the center of an
own tank is calculated as:

pownU (d) =


−20 if d <= 0.875
3.2d− 10.8 if d ∈]0.875, l],
0 if d >= l

(5.3)

Sheep Sheep generate a small repelling field for obstacle avoidance. The potential
psheep(d) at distance d (in tiles) from the center of a sheep is calculated as:

psheep(d) =


−10 if d <= 1
−1 if d ∈]1, 2]
0 if d > 2

(5.4)

Figure 3.2 in Paper II shows a 2D view of the map during a tankbattle game. It shows
our agents (green) moving in to attack enemy bases and units (red). Figure 3.3 shows the
potential field view of the same tankbattle game. Dark areas has low potential and light
areas high potential. The light ring around enemy bases and units, located at maximum
shooting distance of our tanks, is the distance our agents prefer to attack opponent units
from. It is the final move goal for our units.

5.4.4 Finding the right granularity
Concerning the granularity, we use full resolution (down to the point level) but only
evaluate eight directions in addition to the position where the unit is. However, this is
done in each time frame for each of our units.
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5.4.5 Agentifying the objects
We put one agent in every own unit able to act in some way (thus, the bases are ex-
cluded). We have chosen not to simulate the opponent using agents, although that may
be possible, it is outside the scope of this experiment.

5.4.6 Constructing the MAS
All of our unit agents are communicating with a common interface agent to get and
leave information about the state of the game such as to get the position of (visible)
opponents, and to submit the actions taken by our units. The bot also has an attack
coordinating agent that points out what opponent units to attack, if there are several
options.

Attack coordination

We use a coordinator agent to globally optimise attacks at opponent units. The coordi-
nator aims to destroy as many opponent units as possible each frame by concentrating
fire on already damaged units. The attack coordinator used are identical to the attack
coordinator agent described in Paper I section 2.4.6.

5.5 Modifying for the Fog of War
To enable FoW for only one client, we made a minor change in the ORTS server. We
added an extra condition to an IF statement that always enabled fog of war for client 0.
Due to this, our client is always client 0 in the experiments (of course, it does not matter
from the game point of view if the bots play as client 0 or client 1).

To deal with fog of war we have made some changes to the bot described in Paper
III. These changes deal with issues like remember locations of enemy bases, explore
unknown terrain to find enemy bases and units, and to remember the terrain (i.e. the
positions of the impassable cliffs at the map) even when there are no units near. Another
issue is dealing with performance since these changes are supposed to require more
runtime calculations than the PIbot. Below are proposed solutions to these issues.

5.5.1 Remember Locations of the Enemies
In ORTS a data structure with the current game world state is sent each frame from the
server to the connected clients. If fog of war is enabled, the location of an enemy base is
only included in the data structure if an own unit is within visibility range of the base. It
means that an enemy base that has been spotted by an own unit and that unit is destroyed,
the location of the base is no longer sent in the data structure. Therefore our bot has a
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dedicated global map agent to which all detected objects are reported. This agent always
remembers the location of previously spotted enemy bases until a base is destroyed, as
well as distributes the positions of detected enemy tanks to all the own units.

The global map agent also takes care of the map sharing concerning the opponent
tank units. However, it only shares momentary information about opponent tanks that
are within the detection range of at least one own unit. If all units that see a certain
opponent tank are destroyed, the position of that tank is no longer distributed by the
global map agent and that opponent disappears from our map.

5.5.2 Dynamic Knowledge about the Terrain
If the game world is completely known, the knowledge about the terrain is static through-
out the game. In the original bot, we created a static potential field for the terrain at the
beginning of each new game. With fog of war, the terrain is partly unknown and must
be explored. Therefore our bot must be able to update its knowledge about the terrain.

Once the distance to the closest impassable terrain has been found, the potential is
calculated as:

pterrain(d) =


−10000 if d <= 1
−5/(d/8)2 if d ∈]1, 50]
0 if d > 50

(5.5)

5.5.3 Exploration
Since the game world is partially unknown, our units have to explore the unknown terrain
to locate the hidden enemy bases. The solution we propose is to assign an attractive field
to each unexplored game tile. This works well in theory as well as in practice if we are
being careful about the computation resources spent on it.

The potential punknown generates in a point (x, y) is calculated as follows:

1. Divide the terrain tile map into blocks of 4x4 terrain tiles.

2. For each block, check every terrain tile in the block. If the terrain is unknown in
ten or more of the checked tiles, the whole block is considered unknown.

3. For each block that needs to be explored, calculate the Manhattan Distance md
from the center of the own unit to the center of the block.

4. Calculate the potential punknown each block generates using Equation 5.6 below.

5. The total potential in (x, y) is the sum of the potentials each block generates in
(x, y).
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punknown(md) =

{
(0.25− md

8000 ) if md <= 2000
0 if md > 2000

(5.6)

5.6 Experiments
We have conducted three sets of experiments:

1. Show the performance of FoWbot playing against bots with perfect information.

2. Show the impact of the field of exploration in terms of the detected percentage of
the map.

3. Show computational resources needed for FoWbot compared to the PIbot.

5.6.1 Performance
To show the performance of our bot we have run 100 games against each of the top
teams NUS, WarsawB, UBC and Uofa.06 from the 2007 years ORTS tournament as
well as 100 matches against our PIbot. In the experiments the first game starts with a
randomly generated seed, and the seed is increased by 1 for each game played. The same
start seed is used for all four opponents.

The experiment results presented in Table 5.2 shows that our MAPF based FoWbot
wins over 98% of the games even though our bot has imperfect information and the
opponent bots have perfect information about the game world.

We may also see that when PIbot and FoWbot are facing each other, FoWbot wins
(surprisingly enough) about twice as often as PIbot. We will come back to the analysis
of these results in the discussion.

FoWbot PIbot
Team Win % Units Base Win % Units Base
NUS 100% 29.74 3.62 100% 28.05 3.62
WarsawB 98% 32.35 3.19 99% 31.82 3.21
UBC 96% 33.82 3.03 98% 33.19 2.84
Uofa.06 100% 34.81 4.27 100% 33.19 4.22
Average 98.5% 32.68 3.53 99.25% 31.56 3.47
FoWbot — — — 66% 9.37 3.23
PIbot 34% 4.07 1.81 — — —

Table 5.2: Performance of FoWbot and PIbot in 100 games against five opponents.
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5.6.2 The Field of Exploration
We ran 20 different games in this experiment, each where the opponent faced both a
FoWbot with the field of exploration enabled, and one where this field was disabled (the
rest of the parameters, seeds, etc. were kept identical).

Figure 5.1 shows the performance of the exploration field. It shows how much area,
for both types of bots, that is explored, given how long a game has proceeded. The
standard deviation increases with the time since only a few of the games last longer than
three minutes.

In Table 5.3, we see that the use of the field of exploration (as implemented here)
does not improve the results dramatically. The differences are not statistically signifi-
cant.
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Figure 5.1: The average explored area given the current game time for a bot using the field of
exploration, compared to one that does not.

Version Won Lost Avg. Units Avg. Bases
With FoE 20 0 28.65 3.7
Without FoE 19 1 27.40 3.8

Table 5.3: Performance of the FoWbot with and without Field of Exploration (FoE) in 20 matches
against NUS.
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5.6.3 Computational Resources
To show the computational resources needed we have run 100 games using the PIbot
against team NUS and 100 games with the same opponent using the FoWbot. The same
seeds are used in both series of runs. For each game we measured the average time (in
milliseconds) that the bot uses in each game frame and the number of own units left.
Figure 5.2 shows the average time for both our bots in relation to number of own units
left.
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Figure 5.2: The average frame time used for PIbot and FoWbot against team NUS.

5.7 Discussion
The performance shows good results, but the question remains: could it be better without
FoW? We ran identical experiments which showed that the average winning percentage
was slightly higher for the PIbot compared to the FoWbot when they faced the top teams
of ORTS 2007, see Table 5.2. We can also see that the number of units, as well as bases
left are marginally higher for the FoWbot compared to the PIbot. However these results
are not statistically significant.

Where we actually see a clear difference is when PIbot meets FoWbot and surpris-
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ingly enough FoWbot wins 66 out of 100 games. We therefore have run a second series
of 100 matches with a version of the PIbot where maximum detection range (i.e. the
range at which a bot starts to sense the opponents’ potential field) was decreased from
1050 to 450. This is not the same as the visibility range in the FoWbot (which is just
160). Remember that the FoWbot has a global map agent that helps the units to dis-
tribute the positions of visible enemies to units that do not have visual contact with the
enemy unit in question. However, the decrease of the maximum detection range in PIbot
makes it less prone to perform single unit attacks and the FoWbot only wins 55 out of
100 games in our new series of matches, which leaves a 37% probability that PIbot is
the better of the two (compared to 0.2% in the previous case).

In Figure 5.1 we see that using the field of exploration in general gives a higher de-
gree of explored area in the game, but the fact that the average area is not monotonically
increasing as the games go on may seem harder to explain. One plausible explanation
is that the games where our units do not get stuck in the terrain will be won faster as
well as having more units available to explore the surroundings. When these games end,
they do not contribute to the average and the average difference in explored areas will
decrease.

Does the field of exploration contribute to the performance? Is it at all important to
be able to explore the map? Our results (see Table 5.3) indicate that it in this case may
not be that important. However, the question is complex. Our experiments were carried
out with an opponent bot that had perfect information and thus was able to find our units.
The results may have been different if also the opponent lacked perfect information.

Concerning the processor resources, the average computational effort is initially
higher for the PIbot. The reason for that is that it knows the positions of all the op-
ponent units, thus include all of them in the calculations of the strategic potential field.
As the number of remaining units decrease the FoWbot has a slower decrease in the
need for computational power than the PIbot. This is because there is a comparably high
cost to keep track of the terrain and the field of navigation that it generates, compared to
having it static as in the case of the PIbot.

This raise the question of whether having access to perfect information is an advan-
tage compared to using a FoWbot. It seems to us, at least in this study, that it is not at
all the case. Given that we have at an average around 32 units left when the game ends,
the average time frame probably requires more from the PIbot, than from the FoWbot.
However, that will have to be studied further before any general conclusions may be
drawn in that direction.

Finally some comments on the methodology of this study. There are of course details
that could have been adjusted in the experiments in order to e.g. balance the performance
of PIbot vs FoWbot. As an example, by setting the detection range in the PIbot identical
to the one in the FoWbot and at the same time add the global map agent (that is only
used in the FoWbot today) to the PIbot. However, it would significantly increase the
computational needs of the PIbot to do so. We are of course eager to improve our bots
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as far as possible (for the next ORTS competition 2009; a variant of our PIbot won the
2008 competition in August with a win percentage of 98%), and every detail that may
improve it should be investigated.

5.8 Conclusions and Future Work
Our experiments show that a MAPF based bot can be modified to handle imperfect in-
formation about the game world, i.e. FoW. Even when facing opponents with perfect
information our bot wins over 98% of the games. The FoWbot requires about the same
computational resources as the PIbot, although it adds a field of exploration that in-
creases the explored area of the game.

Future work include a more detailed experiment regarding the computational needs
as well as an attempt to utilise our experiences from these experiments in the next ORTS
tournament, especially the feature that made FoWbot beat PIbot.
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CHAPTER

SIX

PAPER V

A Multi-agent Architecture for Real Time Strategy Games

Johan Hagelbäck & Stefan J. Johansson
Submitted for publication.

6.1 Introduction
There are many challenges for a real-time strategy (RTS) bot. The bot has to control a
number of units performing tasks such as gathering resources, exploring the game world,
hunting down the enemy and defend own bases. In modern RTS games, the number of
units can in some cases be up to several hundred. The highly dynamic properties of the
game world (e.g. due to the large number of moving objects) make navigation sometimes
difficult using conventional pathfinding methods.

There has been several attempts to build Multi-agent architectures for different kinds
of games. Kraus and Lehmann (1995) created a multi-agent architecture of heteroge-
neous agents that played the board game Diplomacy (including the negotiations with the
opponent players) and MAS in board games in general has been studied by Johansson
(2006).

Artificial Potential Fields, an area originating from robotics, has been used with
some success in video games. Thurau et al. (2004b) has developed a game bot which
learns behaviours in the First-Person Shooter game Quake II through imitation. The
behavious are represented as attractive potential fields placed at interesting points in the

69



game world, for example choke points or areas providing cover. The strength of the
fields are increased/decreased by observing a human player.

6.1.1 Multi-agent Potential Fields

In Paper I we proposed a methodology for designing a multi-agent potential fields (MAPF)
based bot in a real-time strategy game environment. The methodology involves the fol-
lowing six steps: i) Identifying the objects, ii) Identifying the fields, iii) Assigning the
charges, iv) Deciding on the granularities, v) Agentifying the core objects and vi) Con-
struct the MAS architecture. For further details on the methodology, we refer to the
original description.

6.1.2 Outline

We start by describing the environment and the scenario used (Section 6.2). In Sec-
tion 6.3, we apply the methodology in the chosen scenario, and in Sections 6.4–6.6 we
describe the experiments, discuss the results and list some directions for future work.

6.2 ORTS
Open Real Time Strategy (ORTS) (Buro, 2007a) is a real-time strategy game engine
developed as a tool for researchers within AI in general and game AI in particular. ORTS
use a client-server architecture with a game server and players connected as clients.
Users can define different types of games in scripts where units, structures and their
interactions are described. All types of games from resource gathering to full real time
strategy (RTS) games are supported.

In previous work (see Paper I and Paper III) we used the proposed methodology
to develop a MAPF based bot for the quite simple game type Tankbattle. Here, we
extend the work to handle the more complex Full RTS game (Buro, 2007a). In this
game, two players start with five workers and a control center each. The workers can be
used to gather resources from nearby mineral patches, or construct new control centers,
barracks or factories. A control center serves as the drop point for resources gathered
by workers, and it can produce new workers as well. Barracks are used to construct
marines; a light-weight combat unit. If a player has at least one barrack, it can construct
a factory. Factories are used to construct tanks; heavy combat units with long firerange.
A player wins by destroying all buildings of the opponent. The game contains a number
of neutral units (sheep). These are small indestructible units moving randomly around
the map making pathfinding and collision detection more complex.

Both games are part of the annual ORTS tournament organised by the University of
Alberta.
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6.3 MAPF in a Full RTS Scenario
We have implemented a MAPF based bot for playing the Full RTS game in ORTS follow-
ing the proposed steps presented briefly in Section 6.1. Since this work extends previous
research on MAPF based bots (and the space limitations prevents us from describing
everything in detail), we will concentrate this on the additions we have made. For the
details about the MAPF methodology and the Tankbattle scenario, we refer to Paper I
and Paper III.

6.3.1 Identifying objects
We identify the following objects in our application: Workers, Marines, Tanks, Control
centers, Barracks, Factories, Cliffs, Sheep, and Minerals. Units and buildings are present
on both sides.

6.3.2 Identifying fields
In the Tankbattle scenario we identified four tasks: Avoid colliding with moving objects,
Hunt down the enemy’s forces, Avoid colliding with cliffs, and Defend the bases (see
Paper I). In the Full RTS scenario we identified the following additional tasks: Mine
resources, Create buildings, Train workers and marines, Construct tanks, and Explore
the game world. The tasks are organised into the following types of potential fields:
Field of Navigation. This field contains all objects that have an impact on the navigation
in the game world: terrain, own units and buildings, minerals and sheep. The fields are
repelling to avoid that our agents collide with obstacles.

Strategic Field. This field contains the goals for our agents and is an attractive field,
different for each agent type. Tanks has attractive fields generated by opponent units and
buildings. Workers mining resources has attractive fields generated by mineral patches
(or if they cannot carry anymore, the base where it can drop them).

Field of Exploration. This field is used by workers assigned to explore the game
world and attract them to unexplored areas.

Tactical field. The purpose of the tactical field is to coordinate movements between
our agents. This is done by placing a temporary small repelling field at the next move-
ment position for an agent. This prevents own units from moving to the same location if
there are other routes available.

Field of spatial planning. This field helps us finding suitable places on the map to
construct new buildings such as bases, barracks and factories at.

6.3.3 Assigning charges and granularity
Each game objective that has an effect on navigation or tactics for our agents has a set
of charges which generate a potential field around the object. All fields generated by
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objects are weighted and summed to form a total field which is used by agents when
selecting actions. The initial set of charges was hand crafted. However, the order of
importance between the objects simplifies the process of finding good values and the
method seems robust enough to allow the bot to work good anyhow. Below is a detailed
description of each field.

The opponent units. Opponent units, tanks marines and workers, generate different
fields depending on agent type and internal state. In case of own attacking units, tanks
and marines, opponent units generate attracting symmetric surrounding fields where the
highest potentials are at radius equal to the maximum shooting distance, MSD from the
enemy unit.

Own buildings. Own buildings, control centers barracks and factories, generate re-
pelling fields for obstacle avoidance. An exception is in the case of workers returning
minerals to a control center. In this case control centers generate an attractive field calcu-
lated using Equation 6.2. The repelling potential pownB(d) at distance d from the center
of the building is calculated using Equation 6.1.

pownB(d) = 1.429 ·

{
6 · d− 258 if d <= 43
0 if d > 43

(6.1)

pattractive(d) =

{
240− d · 0.32 if d <= 750
0 if d > 750

(6.2)

Minerals. Minerals generate two different types of field; one attractive field used
by workers mining resources and a repelling field that is used for obstacle avoidance.
The potential pattractive(d) at distance d from the center of a mineral is calculated us-
ing Equation 6.2. In the case when minerals generate a repelling field, the potential
pmineral(d) at distance d from the center of a mineral is calculated as:

pmineral(d) = 1.429 ·

{
−20 if d <= 8
20− 2 · d if d ∈]8, 10]

(6.3)

Field of exploration. The field of exploration is a field with attractive charges at the
positions in the game world that need to be explored. First we calculate an importance
value for each terrain tile in the game world to find a position to explore. This process
is described below. Once a position is found, we use the Field of Navigation, Equation
6.4, to navigate to the spot. This approach seems to be more robust than letting all
unexplored areas generate attractive potentials. In the latter case explorer units tend to
get stuck somewhere in the middle of the map due to the attractive potentials generated
from unexplored edges around the game world.

72



pnavigation(d) =

{
150− d ∗ 0.1 if d <= 1500
0 if d > 1500

(6.4)

The importance value for each tile is calculated as follows:

1. Each terrain tile (16x16 points) is assigned an explore value, E(x, y), initially set
to 0.

2. In each frame, E(x, y) is increased by 1 for all passable tiles.

3. If a tile is occupied by one or more of our own units in the current frame, its
E(x, y) is reset to 0.

4. Calculate an importance value for each tile using Equation 6.5. The distance d is
the distance from the explorer unit to the tile.

importance(x, y, d) =2.4 · E(x, y)− 0.1 · d (6.5)

Pick the tile of the greatest importance (if there are several equally important, pick one
of them randomly), and let that generate the field.

Base building. When a worker is assigned to construct a new building, a suitable
build location must first be found. Section 6.3.4 describes the method we use to find
the location. Once a location is found, the potential pbuilder(d) at distance d from the
position to build at is calculated using the Field of Navigation (see Equation 6.4).

As in the Tankbattle scenario described in Paper III, we use a granularity of 1x1
points in the game world for potential fields, and all fields are updated every frame.

6.3.4 The agents of the bot
Each own unit (worker, marine or tank) is represented by an agent in the system (see
Paper III for a full description of these agents). The multi-agent system also contains a
number of agents not directly associated with a physical object in the game world. The
purpose of these agents is to coordinate the unit agents to a high-level plan rather than
letting them act independently. Below follows a more detailed description of each agent.

CommanderInChief

The CommanderInChief agent is responsible for making an overall plan for the game,
called a battleplan. The battleplan contain the order of creating units and buildings, for
example start with training 5 workers then build a barrack. It also contain special actions,
for example sending units to explore the game world. When one post in the battleplan is
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completed, the next one is executed. If a previously completed post no longer is satisfied,
for example a worker is killed or a barrack is destroyed, the CommanderInChief agent
takes the necessary actions for completing the previous post before continue executing
the current one. A new post is executed when all previous posts are satisfied, and when
there are enough resources available. The battleplan is based on the ideas of subsumption
architectures (see Brooks (1986)) shown in Figure 6.1. Note that all workers, unless
ordered to do something else, are gathering resources.

Figure 6.1: The subsumption hierarchy battleplan used by our bot.

CommanderInField

The CommanderInField agent is responsible for executing the battleplan generated by
the CommanderInChief. It is responsible for setting the goals for each unit agent, and
change the goals during the game if necessary (for example use a worker agent currently
gathering resources to construct a new building, and to have the worker go back to
resource gathering after the building is finished). The CommanderInField agent has
two additional agents to help it with the execution of the battleplan; GlobalMapAgent
and AttackCoordinator. These are described below.

GlobalMapAgent

In ORTS a data structure with the current game world state is sent each frame from the
server to the connected clients. The location of buildings are however only included
in the data structure if an own unit is within visibility range of the building. It means
that an enemy base that has been spotted by an own unit and that unit is destroyed,
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the location of the base is no longer sent in the data structure. Therefore our bot has a
dedicated global map agent to which all detected objects are reported. This agent always
remembers the location of previously spotted enemy bases until a base is destroyed, as
well as distributes the positions of detected enemy units to all the own units.

AttackCoordinator

The purpose of the attack coordinator agent is to optimize attacks at enemy units. The
difference between using the coordinator agent compared to attacking the most dam-
aged unit within fire range (which seemed to be the most common approach used in the
2007 years’ ORTS tournament) is best illustrated with an example. A more detailed
description of the attack coordinator can be found in Paper I.

In Figure 6.2 the own units A, B and C deals 3 damage each. They can all attack
opponent unit X (X can take 8 more damage before it is destroyed) and unit A can also
attack unit Y (Y can take 4 more damage before it is destroyed). If an attack the weakest
strategy is used, unit A will attack Y, and B and C will attack X with the result that both
X and Y will survive.

By letting the coordinator agent optimise the attacks, all units are coordinated to
attack X, which then is destroyed and only Y will survive.

Figure 6.2: Attacking the most damaged unit within the fire range (upper) vs. Optimise attacks to
destroy as many units as possible (lower).
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SpatialPlanner

To find a suitable location to construct new buildings at, we use a special type of field.
The field is only used to find a spot to build at; once it has been found by the Spatial
Planning Agent, a worker agent use the Field of Navigation (see Equation 6.4) to move
to that spot.

Below follow equations used to calculate the potential game objects generate in the
find build spot field.

Own buildings. Own buildings generate a field with an inner repelling area (to avoid
construct buildings too close to each other) and an outer attractive area (for buildings to
be grouped together). Even though the size differs somewhat between buildings for sim-
plicity we use the same formula regardless of the type of building. The pownbuildings(d)
at distance d from the center of an own building is calculated as:

pownbuildings(d) =


−1000 if d <= 115
230− d if d ∈]115, 230]
0 if d > 230

(6.6)

Enemy buildings. Enemy buildings generate a repelling field. The reason is of
course that we do not want own buildings to be located too close to the enemy. The
penemybuildings(d) at distance d from the center of an own building is calculated as:

penemybuildings(d) =

{
−1000 if d <= 150
0 if d > 150

(6.7)

Minerals. It is not possible to construct buildings on top of minerals; therefore they
too have to be repelling. The pmineral(d) at distance d from the center of a mineral is
calculated using Equation 6.8. The field is slightly attractive outside the repelling area
since it is beneficial to have bases located close to resources.

pmineral(d) =


−1000 if d <= 90
5− d · 0.02 if d ∈]90, 250]
0 if d > 250

(6.8)

Impassable terrain. Cliffs generate a repelling field to avoid workers trying to con-
struct a building too close to a cliff. The pcliff (d) at distance d from the closest cliff is
calculated as:

pcliff (d) =

{
−1000 if d <= 125
0 if d > 125

(6.9)
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Game world edges. The edges of the game world have to be repelling as well to
avoid construction of buildings outside the map. The pedge(d) at distance d from the
closest edge is calculated as:

pedge(d) =

{
−1000 if d < 90
0 if d >= 90

(6.10)

To find a suitable location to construct a building at, we start with calculating the
total buildspot potential in the current position of the assigned worker unit. In the next
step we calculate the buildspot potential in points at distance 4 from the location of the
worker, in next step distance 8, and continue up to distance 200. The position with the
highest buildspot potential is the location to construct the building at. If the location
is, for example due to massive terrain, still not suitable to build at a new calculation is
performed once the worker reaches the destination.

6.4 Experiments
We used the ORTS tournament of 2008 as a benchmark to test the strength of our bot. The
number of participants in the Full RTS game was unfortunately very low, but the results
are interesting anyway since the opponent team from University of Alberta has been
very competitive in earlier tournaments. The UOFA bot uses a hierarchy of commanders
where each major task such as gathering resources or building a base is controlled by
a dedicated commander. The Attack commander, responsible for hunting down and
destroy enemy forces, gather units in squads and uses A* for the pathfinding. The results
from the tournament are shown in Table 6.1. Our bot won 82.5% of the games against
the opponent team over 2x200 games (200 different maps where the players switched
sides).

Team Win % Wins/games DC
Blekinge 82.5% (330/400) 0
Uofa 17.5% (70/400) 3

Table 6.1: Results from the ORTS tournament of 2008. DC is the number of disconnections due to
client software failures.
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6.5 Discussion
There are several interesting aspects here.

• First, we show that the approach we have taken, to use Multi-agent potential fields,
is a viable way to construct highly competitive bots for RTS scenarios of medium
complexity. Even though the number of competitors this year was very low, the
opponent was the winner (89 % wins) of the 2007 tournament. Unfortunately,
server updates has prevented us from testing our bot against the other participant
of that year, but there are reasons to believe that we would outperform that solu-
tion too (although it is not sure, since the winning relation between strategies in
games is not transitive, see e.g. Rock, Paper Scissors (deJong, 2004)). We argue
though that the use of open tournaments as a benchmark is still better than if we
constructed the opponent bots ourselves.

• Second, we combine the ideas of using a role-oriented MAS architecture and
MAPF bots. By doing so, we may argue that the ideas about role-oriented MAS
that originally was applied to a board game (Kraus & Lehmann, 1995), also works
in a real time setting.

• Third, we introduce (using the potential field paradigm) a way to place new build-
ings in RTS games.

6.6 Conclusions and Future Work
We have constructed an ORTS bot based on both the principles of role-oriented MAS and
Multi-agent Potential Fields, able to play a full RTS game. It outperforms the competitor
by winning more than 80% of the games in an open tournament where it participated.

Future work will include to generate a battleplan for each game depending on the
skill and the type of the opponent it is facing. If, for example, an own factory is destroyed
it might not be the best option to directly construct a new as our bot does now. A better
strategy might be to construct marines and/or move attacking units back to the base to
get rid of the enemy units before constructing a new factory. We believe that a number
of details in the higher level commander agents may improve in the future versions when
we better adapt to the opponents.
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