
Scavenger:

Automating the Construction of
Application-Optimized Memory Hierarchies

Hsin-Jung Yang†, Kermin E. Fleming‡, Michael Adler‡,

Felix Winterstein§, and Joel Emer†*

† Massachusetts Institute of Technology, ‡ Intel Corporation
§ European Space Agency, *NVIDIA Research

September 3rd, FPL 2015

Abstraction

• Abstraction hides implementation details and provides
good programmability

2

C/Python Application

Memory

Processor

Instruction Set Architecture

CPU I/O

Operating System So
ft

w
ar

e

H
ar

d
w

ar
e

programmer

FPGA

SRAM SRAM

DRAM

LUTs

PCIE

User Program

• Implementation details are
handled by programmers

• Hardware can be optimized for
the target application

• Hardware is optimized for a set of
applications and fixed at design time

Abstraction

• Abstraction hides implementation details and provides
good programmability

3

FPGA

User Program

Abstraction

Memory Communication

• Platform hardware can be
optimized for the target application

C/Python Application

Memory

Processor

Instruction Set Architecture

CPU I/O

Operating System So
ft

w
ar

e

H
ar

d
w

ar
e

programmer

• Hardware is optimized for a set of
applications and fixed at design time

• Goal: build the “best” memory subsystem for a
given application

– What is the “best”?

• The memory subsystem which minimizes the
execution time

– How?

• A clean memory abstraction

• A rich set of memory building blocks

• Intelligent algorithms to analyze programs and
automatically compose memory hierarchies

Application-Optimized Memory

Subsystems

4

5

Observation

• Many FPGA programs do not consume all the available
block RAMs (BRAMs)

– Design difficulty

– Same program ported from smaller FPGAs to larger ones

Goal: Utilizing spare BRAMs to improve program performance

LEAP Memory Abstraction

6

interface MEM_IFC#(type t_ADDR, type t_DATA)
 method void readReq(t_ADDR addr);
 method void write(t_ADDR addr, t_DATA din);
 method t_DATA readResp();
endinterface

LEAP
Memory

User Engine

Interface

LEAP Memory Block
• Simple memory interface
• Arbitrary data size
• Private address space
• “Unlimited” storage
• Automatic caching

LEAP Scratchpad

7

Client Client Client

Interface

Processor

Application

L1 Cache

L2 Cache

Memory

Scratchpads

on-chip SRAM

on-board DRAM

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

LEAP Memory is Customizable

8

• Highly parametric

– Cache capacity

– Cache associativity

– Cache word size

– Number of cache ports

• Enable specific features/optimizations only when
necessary

– Private/coherent caches for private/shared memory

– Prefetching

– Cache hierarchy topology

• Many FPGA programs do not consume all the BRAMs

• Goal: utilize all spare BRAMs in LEAP memory hierarchy

• Problem: need to build very large caches

 9

Utilizing Spare Block RAMs

Cache Scalability Issue

10

• Simply scaling up BRAM-based structures may have a
negative impact on operating frequency

– BRAMs are distributed across chip, increasing wire delay

Cache Scalability Issue

11

• Solution: trade latency for frequency

– Multi-banked BRAM structure

– Pipelining relieves timing pressure

Cache Scalability Issue

12

• Solution: trade latency for frequency

Banked Cache Overhead

13

• Simple kernel (hit rate=100%)

Latency-oriented applications Throughput-oriented applications

Banked Cache Overhead

14

• Simple kernel (hit rate=69%)

Results: Scaling Private Caches

15

• Case study: Merger (an HLS kernel)
Merger has 4 partitions: each connects to a LEAP scratchpad and
forms a sorted linked list from a stream of random values.

Private or Shared Cache?

16

• We can now build large caches

• Where should we allocate spare BRAMs?

– Option1: Large private caches

– Option2: A large shared cache at the next level

• Many applications have multiple memory clients

– Different working set sizes and runtime memory footprints

Adding a Shared Cache

17

Host Memory

Central Cache (DRAM)
FPGA

Host

Scratchpad Controller

Shared On-Chip Cache Consume all extra BRAMs

Automated Optimization

18

User frequency,
memory demands
(ex: cache capacity)

Shared Cache Construction

LEAP Platform Construction

BRAM Usage
Estimation

User Kernel Generation
(Bluespec, Verilog, HLS kernel)

Pre-build database

FPGA Tool Chain

Results: Shared Cache

19

• Case study: Filter (an HLS kernel)

– Filtering algorithm for K-means clustering

– 8 partitions: each uses 3 LEAP Scratchpads

8192 set,
4 way

16384 set,
2 way

8192 set,
2 way

4096 set,
1 way

Conclusion

20

• It is possible to exploit unused resources to construct memory
systems that accelerate the user program.

• We propose microarchitecture changes for large on-chip
caches to run at high frequency.

• We make some steps toward automating the construction of
memory hierarchies based on program resource utilization
and frequency requirements.

• Future work:

– Program analysis

– Energy study

Thank You

21

