
Scavenger: 
 
 

Automating the Construction of 
Application-Optimized Memory Hierarchies 

Hsin-Jung Yang†, Kermin E. Fleming‡, Michael Adler‡,  
 

Felix Winterstein§,  and Joel Emer†* 

 

† Massachusetts Institute of Technology, ‡ Intel Corporation 
§ European Space Agency, *NVIDIA Research 

 

September 3rd, FPL 2015 



Abstraction 

• Abstraction hides implementation details and provides 
good programmability  
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User Program 

• Implementation details are 
handled by programmers 

• Hardware can be optimized for 
the target application 

• Hardware is optimized for a set of 
applications and fixed at design time  



Abstraction 

• Abstraction hides implementation details and provides 
good programmability  
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• Goal: build the “best” memory subsystem for a 
given application 

– What is the “best”? 

• The memory subsystem which minimizes the 
execution time 

– How?  

• A clean memory abstraction 

• A rich set of memory building blocks 

• Intelligent algorithms to analyze programs and 
automatically compose memory hierarchies 

Application-Optimized Memory 

Subsystems 
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Observation 

• Many FPGA programs do not consume all the available 
block RAMs (BRAMs) 

– Design difficulty 

– Same program ported from smaller FPGAs to larger ones 

Goal: Utilizing spare BRAMs to improve program performance  



LEAP Memory Abstraction 
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interface MEM_IFC#(type t_ADDR, type t_DATA) 
       method void readReq(t_ADDR addr); 
       method void write(t_ADDR addr, t_DATA din); 
       method t_DATA readResp(); 
endinterface 

LEAP 
Memory 

User Engine  

Interface 

LEAP Memory Block 
• Simple memory interface 
• Arbitrary data size 
• Private address space 
• “Unlimited” storage 
• Automatic caching 



LEAP Scratchpad 
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M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011. 



LEAP Memory is Customizable 
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• Highly parametric 

– Cache capacity 

– Cache associativity 

– Cache word size 

– Number of cache ports 

• Enable specific features/optimizations only when 
necessary 

– Private/coherent caches for private/shared memory 

– Prefetching 

– Cache hierarchy topology 

 



• Many FPGA programs do not consume all the BRAMs 

 

 

 

 

 

 

• Goal: utilize all spare BRAMs in LEAP memory hierarchy 

• Problem: need to build very large caches 
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Utilizing Spare Block RAMs 



Cache Scalability Issue 
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• Simply scaling up BRAM-based structures may have a 
negative impact on operating frequency 

– BRAMs are distributed across chip, increasing wire delay 

 



Cache Scalability Issue 
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• Solution: trade latency for frequency 

– Multi-banked BRAM structure 

– Pipelining relieves timing pressure 

 



Cache Scalability Issue 
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• Solution: trade latency for frequency  



Banked Cache Overhead 
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• Simple kernel (hit rate=100%) 

Latency-oriented applications Throughput-oriented applications 



Banked Cache Overhead 
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• Simple kernel (hit rate=69%) 



Results: Scaling Private Caches 
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• Case study: Merger (an HLS kernel) 
Merger has 4 partitions: each connects to a LEAP scratchpad and 
forms a sorted linked list from a stream of random values.   



Private or Shared Cache? 

16 

• We can now build large caches 

• Where should we allocate spare BRAMs? 

– Option1: Large private caches 

– Option2: A large shared cache at the next level 

• Many applications have multiple memory clients 

– Different working set sizes and runtime memory footprints 

 



Adding a Shared Cache  

17 

Host Memory 

Central Cache (DRAM) 
FPGA 

Host 

Scratchpad Controller 

Shared On-Chip Cache Consume all extra BRAMs 



Automated Optimization 
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User frequency, 
memory demands 
(ex: cache capacity) 

Shared Cache Construction 

LEAP Platform Construction 

BRAM Usage 
Estimation  

User Kernel Generation 
(Bluespec, Verilog, HLS kernel) 

Pre-build database 

FPGA Tool Chain 



Results: Shared Cache 
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• Case study: Filter (an HLS kernel) 

– Filtering algorithm for K-means clustering 

– 8 partitions: each uses 3 LEAP Scratchpads 

8192 set, 
4 way 

16384 set, 
2 way 

8192 set, 
2 way 

4096 set, 
1 way 



Conclusion 
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• It is possible to exploit unused resources to construct memory 
systems that accelerate the user program. 

• We propose microarchitecture changes for large on-chip 
caches to run at high frequency.  

• We make some steps toward automating the construction of 
memory hierarchies based on program resource utilization 
and frequency requirements. 

• Future work: 

– Program analysis 

– Energy study 



Thank You 
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