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Visual Distortion Assessment With Emphasis on Spatially Transitional Regions

EePing Ong, Weisi Lin, Zhongkang Lu, Susu Yao, and Minoru Etoh

Abstract—1It is known that the human visual system (HVS) does
not pay equal attention to each error and even region in judging
picture quality. In this paper, we combine a perceptual model
with an integrated detection of the spatially transitional regions in
visual distortion evaluation to better match the HVS perception
to visual quality. For decompressed images or video, the spatially
transitional regions are the regions where major perceptually
disturbing artefacts caused by edge impairments (mainly due
to blurring and locations where the edge information is not
adequately represented) and the presence of false edges (mainly
due to blockiness and the presence of strong rippling effects of
ringing) usually occur. Such regions are efficiently detected based
on a single two-dimensional spatial high-pass filter in our work.
Good correlation between the proposed method and the human
perception has been demonstrated with the full set of 50-Hz video
quality expert group test data.

Index Terms—Blockiness, blurring, edge impairment, false
edges, high-pass spatial filter, ringing, visual perceptual distortion.

I. INTRODUCTION

ESIDES online and offline visual quality evaluation, how

distortion is gauged also plays a determinative role in
shaping most algorithms for image and video manipulations,
such as enhancement, reconstruction, data hiding, compression,
and joint source/channel coding. Visual quality control within
an encoder or distortion assessment for a decoded signal is
particularly of interest due to the widespread applications of
H.26x/MPEG-x compression and coding. Since human eyes
are the end receiver of most decoded images and video, it is
desirable to develop visual quality metrics that correlate better
with human eyes’ perception than the conventional pixel-wise
error [e.g., mean square error (MSE) and peak SNR (PSNR)]
measures.

A number of approaches have been tried to model the
temporal, spatial, and masking characteristics of human vision
[1]-[4], to evaluate common coding artefacts [5]-[7], and to
combine these two paradigms [8], [9].

Perceptual models based upon human vision characteristics
can be constructed [1]-[4]. In the metric proposed in [1] and
[2], the color-transformed original and decoded sequences are
subjected to blocking and the discrete cosine transform (DCT),
and the resultant DCT coefficients are then converted to the
local contrast, which is defined as the ratio of the ac amplitude
to the temporally low-pass filtered dc amplitude. A temporal
recursive discrete second-order IIR filtering operation follows
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to implement the temporal part of the contrast sensitivity func-
tion (CSF). The results are then converted to measures of visi-
bility by dividing each coefficient by its respective visual spatial
threshold. The difference of two sequences is subjected to a con-
trast masking operation, and finally the masked difference will
be pooled over various dimensions to illustrate perceptual error.
With the same paradigm, Winkler’s metric [3], [4] consists of
color conversion, temporal filters, spatial subband filters, con-
trast control, and pooling for various channels, as an attempt
to emulate the spatio-temporal mechanisms in the human vi-
sual system. The difference between original and decoded video
is evaluated to give an estimate of visual distortion of the de-
coded signal. The metric’s parameters were determined by fit-
ting the metric’s output to the experimental data on human eyes
[10]-[14].

DCT-based coding (as in H.261/263, MPEG-1/2/4, JPEG,
and the emerging H.264) introduces specific types of artefacts
[27], [5], [6], [8], [9], such as, blockiness, ringing, and blur-
ring. The metrics presented in [5] and [6] evaluate blocking arte-
facts as the distortion measure. The metric in [7] measured five
types of error (i.e., low-pass filtered error, Weber’s law and CSF
corrected error, blocking error, correlated error, and high-con-
trast transitional error), and used principal component analysis
(PCA) to decide the compound effect on visual quality. In [9],
switching is suggested between a perceptual model and a block-
iness detector depending on the video under test. In [8], a mod-
ified version of the perceptual model proposed in [25] and [26]
is applied to blockiness dominant regions.

Perceptual models are usually applied with equal weight-
ings/emphasis to the whole frame of an image, and this still
follows the methodology similar to the conventional MSE or
PSNR measures. In fact, a more effective metric is possible
with unequal weightings/emphasis toward visual data available,
because:

1) the human vision system does not process and perceive
all of the information equally [15], [10], [11], [12];

2) excessive perceptually insignificant data (due to masking
effects [1], [14]) may disturb the measurement and there-
fore hinder the effectiveness of such metrics.

Appropriate manipulation of weightings/emphasis of data pro-
cessed from input images/video is an interesting issue for vi-
sual distortion assessment. The aforementioned application of
a perceptual model to certain regions in an image (such as in
[8]) suggests a possibility along that direction. Edge informa-
tion is found to be of primary importance in visual percep-
tion [16], and this is also evident from the fact that a sketch
image conveys the most visual structuring information in the
scene. Damage in object boundaries tends to introduce more
notable quality degradation than that in textured regions. More-
over, edgelets, together with the common coding artefacts such
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Fig. 1. Perceptual quality affected by edge impairment.

as blockiness and ringing, are associated with high spatial tran-
sition. Blockiness and ringing artefacts were detected for visual
distortion metrics in [8] and [24], respectively. We believe that
a good metric should consider multiple factors in a cost-effec-
tive manner. A scheme is hence proposed in this paper to detect
artefacts such as those caused by the presence of false edges
(e.g., blocking and ringing artefacts) and edge impairment (e.g.,
caused by blurring) in a single step via two-dimensional (2-D)

(b) 'src10_hrel5' (PSNR =23.9 dB: DMOS=68; q=63)

(d) error image for 'src10_hrel15'

w.u-aﬂc?é

HBRD
.masamsu .r,‘

(f) SCSTR for'src10_hrec15'

high-pass spatial filter for the purpose of visual distortion gauge.
Here, edge impairment refers to impairment of the edgels in de-
coded video, of which blurring is the major form of impairment.
The scheme is able to work for situations where not all of the
artefacts are present in a particular image or video (depending
upon the coding scheme or allowed bit rate, for example). In
the remainder of this paper, Section II presents the detection
of changes in the spatially transitional regions for presence of
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TABLE 1
50-Hz VQEG SEQUENCES
Source 1 2 3 4 5 6 7 8 9 10
No. (src)
sequence Tre | Barcel | Harp | Moving | Canoa Fl1 Fries | Horizontal | Rug | Mobile
e ona graphic | Valsesia | Car scrolling2 | by | &
calendar
TABLE 1I
VQEG HYPOTHETICAL REFERENCE CONDITIONS

HRC# | Bitrate resolution | Codec coding quality

16 1.5 Mb/s CIF H.263 low

15 768 kb/s CIF H.263 low

14 2 Mb/s 3/4 mp@ml low

13 2 Mb/s 3/4 sp@ml low

12 4.5 Mb/s full mp@ml low

11 3 Mb/s full mp@ml low

10 4.5 Mb/s full mp@ml low

9 3 Mb/s full mp@ml low/high

8 4.5 Mb/s full mp@ml low/high

7 6 Mb/s full mp@ml high

6 8 Mb/s full mp@ml high

5 8 & 4.5 Mb/s full mp@ml high

4 19/PAL(NTSC)- full 422p@ml high

19/PAL(NTSC)-12 Mb/s

3 50-50-...-50 Mb/s full 422p@ml high

2 19-19-12 Mb/s full 422p@ml high

1 n/a full n/a high

false edges and edge impairment, while Section III gives a modi-
fied version of the perceptual model [3], [4] to be applied to the
said regions. Section IV demonstrates the performance of the
proposed scheme and presents the comparison with PSNR and
the model in [3], [4], using the full set of Video Quality Expert
Group (VQEG) [17] 50-Hz test sequences and their associated
subjective test results. Section V concludes this paper.

II. DETECTION OF CHANGES IN SPATIALLY
TRANSITIONAL REGIONS

Human eyes are highly sensitive to distortion of edges. In
Fig. 1(a) and (b), a frame is shown for each of two decoded
video sequences whose quality have been evaluated by human
observers in the VQEG experiments [17] against the orig-
inal sequence (‘“Mobile&Calendar”). The test combination
‘src10_hrc15’ (src# refers to the sequence as in Table I, while
hrc# indicates the test condition (different bitrate and codec as
in Table II) exhibits much more severe damage on edge than
‘src10_hrc1’ (it is obvious with the calendar, animals, fences,
and other areas). This is also evident from Fig. 1(c) and (d)
where more edge energy can be seen in the error image of
‘src10_hrc15’ than that of ‘src10_hrcl.” The subjective visual
quality is indicated with mean opinion scores (MOSs) [17]
given by human observers. Difference MOS (DMOSs) [17]
refers to the difference of MOSs between the reference video
and the processed video and typically ranges from O (the highest

quality) to 100 (the lowest quality). As expected, the DMOS for
‘src10_hrcl’ is significantly lower than that for ‘src10_hrcl5’
(22 and 68, respectively), although the average PSNR for the
two test combinations is similar (in fact, ‘src10_hrc15’ is even
0.5 dB higher). Thus, it is the concentration of error energy on
edge that causes degradation of perceptual quality.

Blockiness, edge impairments (such as blurring), and ringing
are annoying and may be respectively detected (e.g., [5]-[9]
for blockiness and [24] for ringing). However, our interest here
is to use a single detector for multiple artefacts for implemen-
tation efficiency. This is possible since blockiness, blurring,
and ringing are associated with high-spatial-frequency bands.
Spatial transitional regions can be detected using a single
2-D high-pass (HP) filter, which can be designed to include
edge impairments (such as blurring) and the presence of false
edges (such as blockiness and the strong rippling effects of
ringing). The filter need not distinguish different orientations.
The 2-D HP filter in [18] and [19] has been used in the current
work, since the same filter band has been used for the spatial
decomposition in the adopted perceptual model (as will be
described Section III).

Suppose the results of the original and the corresponding dis-
torted frames of video after the HP filtering are {s(z,y)} and
{s'(z,y)}, as shownin Fig. 4, respectively, where (x, y) denotes
the position of a pixel. A bigger value for s(z, y) or s'(x, y) sig-
nals a higher extent of spatial transition in the vicinity. We are
most interested in the changes in the spatial transitional regions
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(¢) SCSTR

Fig. 2. Extraction of edge impairment and ringing effects.

since they are caused mostly by damaged (and/or blurred) edges,
ringing, and blockiness. Significant changes in the spatial tran-
sitional regions (SCSTRs) can be determined as follows:

1, if e(xz,y) > e
p(zvy) = 07 if e(z,y) < ep (1)
(e(z,y) —eo)/(e1 —eg), otherwise

where e(z,y) = |s(z,y) — s'(z,y)|, e1 is the upper threshold
for the highband errors, and ey is the value where the highband
error is regarded as insignificant. If ¢ is set to zero, changes are
detected throughout the whole image. Absolute value is taken
for e(x, y) because we do not need to distinguish edge impair-
ments from the presence of false edges (although, in theory,
we can distinguish edge impairments from presence of false
edges since a positive value of s(x,y) — s’(z,y) indicates edge
impairments (e.g., due to blurring) while a negative value of

s(z,y)— s'(z,y) indicates the presence of false edges (e.g., due
to blockiness or ringing). A higher p(z, y) means that an error
inlocation (z, y) carries more weight in overall distortion score.

In Fig. 1(e) and (f), regions with edge impairment are lo-
cated and relatively bigger p(z,y) values are assigned to rel-
evant areas for ‘src10_hrc15’ due to the severer edge impair-
ment, and the experiments with the proposed metric in this paper
show that this difference in p(x, y) leads to the distortion assess-
ment that is more consistent with the DMOS in these two cases
(the distortion measurement g in these cases are 32 and 63, re-
spectively). In Fig. 2(a) and (b) shows a standard test image and
its distorted version, while (c) depicts the SCSTR that reflects
edge impairment. Fig. 3(a) and (b) shows a decoded frame in
‘src9_hrc9’ (“Rugby”) and the detected SCSTR indicating the
occurrence of blockiness and edge impairment.

Appropriate detection of SCSTRs enables visual distortion
assessment to be conducted in perceptually significant regions
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(b) SCSTR

Fig. 3. Detection of blocking effects and edge impairment.
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Fig. 4. Block diagram of the proposed perceptual distortion metric.

for both effectiveness and efficiency and provides a proper local
significance indicator for distortion evaluation.

III. PERCEPTUAL MODEL

The perceptual model [3], [4] has been modified and then
applied to areas in the image indicated by the nonzero values
defined in (1). Fig. 4 depicts the block diagram of the proposed
metric.

Perceptual decomposition is required to emulate the sensi-
tivity for different frequencies and orientations in the human
visual system. We adopt the similar temporal and spatial fil-
tering as used in [3] and [4], and only the luminance compo-
nent of the input video sequences has been used (as in [29] and
[8]) for efficiency. The luminance component is used because it
plays a much more important role in human visual perception
than chrominance components do. A temporal FIR filter with a
length of nine taps is designed with the following impulse re-
sponse:

h(t) = e~ (HF’

)
to match the sustained mechanism (the transient effect is ig-
nored) of human vision [20], where 7 = 160 ms and ¢ = 0.2.
The steerable pyramid transform introduced in [18] and [19]
is utilized to perform spatial band-pass decomposition to ap-
proximate the characteristics of neurons in the human primary

Fig. 5. Tllustration of spatial decomposition (labeled with subband indices
i, 3).

visual cortex. The original signal 7 and the distorted signal 7’
are decomposed into five frequency levels, resulting in {¢; } and
{ci},i = 1,2,...,5, respectively, where Level 1 corresponds
to the highest resolution image and the increment of ¢ by 1
means a 2:1 pixel down-sampling in both dimensions. Each fre-
quency level is further divided for four orientations: {o0; ;} and
{0ij:},7=1,2,3,4for0°,45°, 90°, and 135°. Thus, there are
a total of 20 subbands as labeled in Fig. 5. The spatial decom-
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TABLE 1II
MODEL PARAMETERS

ey e b d wi

Wo w3 Wy Ws

65 | 35 [ 20 371.8

16.0 881.5 1300.0 | 2100.0

position also produces a low-pass band (LB) and a high-pass
band (HB) which is used for detection of the spatial transitional
regions (as described in Section II). In [3] and [4], the weights
of each level’s output was determined using experimental data
of human sensitivity [10]-[12], which were measured near the
human visibility threshold under strict control of the environ-
ment (e.g., eye movement was compensated). There has been no
evidence that when distortion is above the visibility threshold
(the usual case in decoded images/video) the human percep-
tion behaves similarly as when distortion is near the visibility
threshold. Besides, these data were derived from only pure sine
wave stimuli. In this study, as in [8], subjective test data toward
decoded video are to be used to optimize the weighting param-
eters, {w; }, because such data are more meaningful with the
normal viewing condition.

The contrast gain control in this work aims at emulating the
masking between subbands with different orientations at the
same level (because masking is much more significant with a
similar spatial frequency), and therefore a modified model from
that in [1] is used to derive the output of the process as

d+ 0ij(z,y)*
7
b2 + Z(;;;) 0i1(w,y)?
d+ 0} ;(x,y)?
2 4 o 2
P Zd;;) %ia(%:9)

uij(z,y) = (3a)

!/

ui,j(%y) =

(3b)

where d is added for generality, and d and b are to be determined
later by fitting the metric’s responses to subjective ratings data.

The goal of the pooling stage is to emulate the human vi-
sion process in which the information represented in the var-
ious channels within the primary visual cortex is integrated in
the brain areas. Structured pooling guided by the SCSTR is per-
formed over the simplest Minkowski distance of all subbands to
yield the metric’s output as follows:

1 N
qo NZ

1‘111

H,y)

le

(z,9))]

where ¢ indicates the frame under evaluation and N is total
number of frames, p} (z,v) is calculated with highest resolu-
tion using (1) first and p!(z,y) (i > 1) can be calculated by
down-sampling by 2 in each dimension consecutively, and n} is
the number of pixels in the 7th level of the ¢th frame.

“4)

X (u”(az y) — ug

IV. PERFORMANCE AND COMPARISON OF
THE PROPOSED METRIC

Performance is measured by comparing the metric output g,
with the DMOS between the original and distorted sequences.
To facilitate monotonicity of prediction and a common anal-

ysis space of comparison, ¢, is fitted via a four-parameter cubic
polynomial [21] to the corresponding DMOS as

q = ao+a1(q.) + az (¢2) +as (q2) - ©)

In [17], the output of a metric (e.g., the PSNR, Winkler’s metric)
was fitted to either this cubic polynomial function or a four-pa-
rameter logistic curve (also defined in [21]) depending on which
one achieves the best fit.

The Pearson correlation, which measures the prediction ac-
curacy, i.e., the ability of a metric to predict subjective ratings,
is defined as

Z ( qi — q)(DMOSk — DMOS)
\/Zk (ar — 0)°\/ 21 (DMOS,. — DMOS)’

where ¢ and DMOS are the means of ¢ and DMOS, and k is the
index for the video sequence under test.

Spearman rank-order correlation, which measures the pre-
diction monotonicity, i.e., whether the increases/decreases in
one variable are associated with increases/decreases in the other
variable independent of the magnitude of the increase/decrease,
is defined as

(6)

on Ok = X) (v — )
\/Zk Xk_ \/Zk ’Yk__

where X is the rank of ¢ and ~y; is the rank of DMOSy, in the
ordered data series, and x and 7 are the respective midranks. In
the ideal match between a metric’s output and DMOS, r, = 1

(N

and r, = 1.
In order to determine the process parameter set,
Q = Jep,e1,b,d,wy,...,ws], five 50-Hz VQEG [17]

test sequences (src2, src3, src7, src9, and srcl10) (each with 16
test conditions) and the associated DMOSs have been used.
The 30th and 120th frames are used for each test combination.
The process is formulated as

N

Q =arg max rp(€2).
The efficient Hooke and Jeeves’ optimization method [22] has
been used because it is computationally simple and the process
is approximated by tuning a variable at a time (as the application
in [23]). The resultant parameters are listed in Table III.

The proposed metric is tested against the DMOS with all ten
50-Hz VQEG video sequences [17] (src1-10 in Table I). The
frame size of all sequences is 720 x 576 pixels. Each sequence
is evaluated in all 16 test conditions (hrc1-16 in Table II) which
define a wide spectrum of bitrates for several codecs.

Table IV shows the 7, and 7, comparison for all 160 test com-
binations for the proposed metric against PSNR and the result of
Winkler’s method [3], [4] and confirms the better performance
of the proposed approach. The upper and lower bounds indicate
the 95% confidence interval. The results for PSNR and Win-

®)
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TABLE 1V
CORRELATION MEASURES WITH RESPECT TO SUBJECTIVE RATINGS FOR VQEG 50-Hz SEQUENCES
T
correlation upper lower s
bound bound

PSNR 0.78* 0.84 0.72 0.81*

Winklers metric 0.70* 0.77 0.61 0.71%*

Proposed metric 0.84 0.88 0.78 0.83

80 T T T T T

60fF

S50

30F

20F

80 T T T T T

60

Fig. 6.
metric.

kler’s method are extracted from [17], while the results for the
proposed scheme are calculated from the VQEG normalized
TV-format sequences, which are also the sequences shown to
human subjects for performing subjective ratings.

Fig. 6 shows the scatter plots of PSNR, Winkler’s metric,
and the proposed metric against DMOS. The proposed metric
exhibits significantly less outliers than PSNR and Winkler’s
metric, and this is the reason for its better overall performance.

V. CONCLUSION

A new approach for evaluating perceptual distortion for vi-
sual signals has been proposed, based on the combination of a

40 50 60 70

(©)

(a) Scatterplot of DMOS versus PSNR. (b) Scatterplot of DMOS versus output of Winkler’s metric. (c) Scatterplot of DMOS versus output of proposed

perceptual model and the integrated detection of the major per-
ceptually disturbing artefacts (namely, edge impairment and the
presence of false edges) in decoded images. Emphasis on per-
ceptually critical regions is in line with the characteristics of the
human visual perception and may also help to achieve the effi-
ciency necessary for many practical applications. Regions with
edge impairment (mainly blurring) and the presence of false
edges (mainly blockiness and strong rippling effects of ringing)
are found via a single spatial high-pass filter and form the basis
for a perceptual model to be applied. Experiments with a full
set of 50-Hz VQEG test data show that the proposed scheme
assesses visual distortion with higher relevancy to the subjec-
tive test results.
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The proposed scheme places emphasis on edge impairment
and the presence of false edges as the major artifacts in the vi-
sual signal being evaluated. We know that these artifacts are
the major ones affecting picture quality as far as the prevalent
compression methods are concerned. Note that not all the afore-
mentioned artefacts have to be present for evaluation. Although
the scheme has been tested with block-coded video, it is ex-
pected to work for video without blockiness artifacts (e.g., for
wavelet-coded video) since the detected transitional regions are
then with ringing and blurring (still the major artifacts affecting
picture quality there). After all, spatially transitional regions are
where human eyes pay more attention in general when judging
a picture for its quality.
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