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a b s t r a c t

Wepresent a new version of the numerical differentiation library (NDL) used for the numerical estimation
of first and second order partial derivatives of a function by finite differencing. In this version we have
restructured the serial implementation of the code so as to achieve optimal task-based parallelization.
The pure shared-memory parallelization of the library has been based on the lightweight OpenMP tasking
model allowing for the full extraction of the available parallelism and efficient scheduling of multiple
concurrent library calls. On multicore clusters, parallelism is exploited by means of TORC, an MPI-based
multi-threaded tasking library. The new MPI implementation of NDL provides optimal performance in
terms of function calls and, furthermore, supports asynchronous execution ofmultiple library calls within
legacy MPI programs. In addition, a Python interface has been implemented for all cases, exporting the
functionality of our library to sequential Python codes.

New version program summary

Program title: NDL-v2.0
Catalog identifier: AEDG_v2_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDG_v2_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 63036
No. of bytes in distributed program, including test data, etc.: 801872
Distribution format: tar.gz
Programming language: ANSI Fortran-77, ANSI C, Python.
Computer: Distributed systems (clusters), shared memory systems.
Operating system: Linux, Unix.
Has the code been vectorized or parallelized?: Yes.
RAM: The library uses O(N) internal storage, N being the dimension of the problem. It can use up to O(N2)
internal storage for Hessian calculations, if a task throttling factor has not been set by the user.
Classification: 4.9, 4.14, 6.5.
Catalog identifier of previous version: AEDG_v1_0
Journal reference of previous version: Comput. Phys. Comm. 180(2009)1404
Does the new version supersede the previous version?: Yes
Nature of problem:
The numerical estimation of derivatives at several accuracy levels is a common requirement in many
computational tasks, such as optimization, solution of nonlinear systems, and sensitivity analysis. For
a large number of scientific and engineering applications, the underlying functions correspond to
simulation codes for which analytical estimation of derivatives is difficult or almost impossible. A
parallel implementation that exploits systems with multiple CPUs is very important for large scale and
computationally expensive problems.
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Solution method:
Finite differencing is used with a carefully chosen step that minimizes the sum of the truncation and
round-off errors. The parallel versions employ both OpenMP and MPI libraries.
Reasons for new version:
The updated version was motivated by our endeavors to extend a parallel Bayesian uncertainty
quantification framework [1], by incorporating higher order derivative information as in most state-of-
the-art stochastic simulation methods such as Stochastic Newton MCMC [2] and Riemannian Manifold
Hamiltonian MC [3]. The function evaluations are simulations with significant time-to-solution, which
also varieswith the input parameters such as in [1, 4]. The runtime of theN-body-type of problem changes
considerablywith the introduction of a longer cut-off between the bodies. In the first version of the library,
the OpenMP-parallel subroutines spawn a new team of threads and distribute the function evaluations
with a PARALLEL DO directive. This limits the functionality of the library as multiple concurrent calls
require nested parallelism support from the OpenMP environment. Therefore, either their function
evaluations will be serialized or processor oversubscription is likely to occur due to the increased
number of OpenMP threads. In addition, the Hessian calculations include two explicit parallel regions that
compute first the diagonal and then the off-diagonal elements of the array. Due to the barrier between the
two regions, the parallelism of the calculations is not fully exploited. These issues have been addressed
in the new version by first restructuring the serial code and then running the function evaluations in
parallel using OpenMP tasks. Although the MPI-parallel implementation of the first version is capable of
fully exploiting the task parallelism of the PNDL routines, it does not utilize the caching mechanism of
the serial code and, therefore, performs some redundant function evaluations in the Hessian and Jacobian
calculations. This can lead to: (a) higher execution times if the number of available processors is lower
than the total number of tasks, and (b) significant energy consumption due to wasted processor cycles.
Overcoming these drawbacks, which become critical as the time of a single function evaluation increases,
was the primary goal of this new version. Due to the code restructure, the MPI-parallel implementation
(and the OpenMP-parallel in accordance) avoids redundant calls, providing optimal performance in terms
of the number of function evaluations. Another limitation of the library was that the library subroutines
were collective and synchronous calls. In the new version, each MPI process can issue any number of
subroutines for asynchronous execution. We introduce two library calls that provide global and local
task synchronizations, similarly to the BARRIER and TASKWAIT directives of OpenMP. The new MPI-
implementation is based on TORC, a new tasking library for multicore clusters [5–7]. TORC improves the
portability of the software, as it relies exclusively on the POSIX-Threads andMPI programming interfaces.
It allows MPI processes to utilize multiple worker threads, offering a hybrid programming and execution
environment similar to MPI+OpenMP, in a completely transparent way. Finally, to further improve the
usability of our software, a Python interface has been implemented on top of both the OpenMP and MPI
versions of the library. This allows sequential Python codes to exploit shared and distributed memory
systems.
Summary of revisions:
The revised code improves the performance of both parallel (OpenMP and MPI) implementations. The
functionality and the user-interface of the MPI-parallel version have been extended to support the
asynchronous execution ofmultiple PNDL calls, issuedbyoneormultipleMPI processes. A newunderlying
tasking library increases portability and allows MPI processes to have multiple worker threads. For both
implementations, an interface to the Python programming language has been added.
Restrictions:
The library uses only double precision arithmetic. The MPI implementation assumes the homogeneity of
the execution environment provided by the operating system. Specifically, the processes of a single MPI
application must have identical address space and a user function resides at the same virtual address. In
addition, address space layout randomization should not be used for the application.
Unusual features:
The software takes into account bound constraints, in the sense that only feasible points are used to
evaluate the derivatives, and given the level of the desired accuracy, the proper formula is automatically
employed.
Running time:
Running time depends on the function’s complexity. The test run took 23 ms for the serial distribution,
25 ms for the OpenMP with 2 threads, 53 ms and 1.01 s for the MPI parallel distribution using 2 threads
and 2 processes respectively and yield-time for idle workers equal to 10 ms.
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