
Verifying Identifier-Authenticity in Ubiquitous Computing Environment

Tetsuo Kamina†,‡ Toshinori Aoki‡ Yoshiteru Eto‡ Noboru Koshizuka†,‡

Jun Yamada‡ Ken Sakamura†,‡

†The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
‡YRP Ubiquitous Networking Laboratory

No.28 Kowa Building, 2-20-1 Nishigotanda, Shinagawa-ku, Tokyo 141-0031, Japan

Abstract

In ubiquitous computing environment, identification of
objects and places in the real world is important, and 2-D
printing code is useful to store identifiers of them. How-
ever, since it is easy to modify the content stored in the 2-D
code, we must verify whether the identifier written in the
2-D code is indeed issued by the authorized organization.
In this paper, we propose a verification method for identi-
fiers stored in the 2-D code. Our system makes sure that
the identifier is indeed issued by the authorized organiza-
tion, and the size of pair of identifier and its authenticator
is small enough to be written in a 2-D code. Furthermore,
the proposed system has compatibility with the existing 2-D
code reading software. Our system is now operated in prac-
tical use, and some services based on this mechanism have
been developed.

Keywords: 2-D code, QR Code, infrastructure, authenti-
cator, ucode.

1. Introduction

In ubiquitous computing environment, it is important to
enable mobile computing terminals to identify objects and
places in the real world. There are many methods to achieve
this requirement[9] and one of the most promising ways for
it is to attach a tag containing identifier to the object or place
and provide a tag reader to the mobile terminal.

There are many devices to implement such tags. For ex-
ample, we may use RFID for this purpose; however, the
most costless and easiest way to implement tags is using
printed tags such as barcode and 2-D printing code. For ex-
ample, QR Code[5], which is one kind of 2-D code widely
used in Japan, can contain character strings including digits;

therefore, such a tag is useful to store identifiers represented
in digits or strings.

We have used QR Code tags in many ubiquitous com-
puting experiments and demonstrations; e.g., in an experi-
ment on food distribution tracing, we used QR Code tags
to identify each foodstuff to trace information of it, to pro-
vide detailed information for consumers (Since the amount
of information that can be written in a QR Code tag is
limited, only the identifier is written in it. Other informa-
tion is stored in the online servers that we call information
servers). Furthermore, to recognize places in the real world,
we have attached a large amount of QR Code tags to iden-
tify each spot (Figure 1). In this experiment, we developed
a navigation system that provides not only geographic in-
formation (e.g. latitude and longitude) but also semantic in-
formation about that spot such as the name of building, how
to go up to the conference room in that building, and so on.
Such information is especially useful for visitors, unless we
can properly identify each spot.

However, there has been a problem. Since it is easy to
forge a 2-D code such as QR Code, and each tag is attached
in the public space, someone can maliciously overwrite the
tag, which actually happened in our experiences. Since
identification is so important in ubiquitous computing, we
must make sure that the identifier stored in the 2-D code is
indeed issued by an authorized organization.

In this paper, we propose a verification method for iden-
tifiers stored in the 2-D code. Basic idea of the proposed
method is that additional information indicating the validity
of identifier, which we call authenticator of the identifier,
is stored into the tag in addition to the identifier. There are
many technologies that are possibly useful to implement the
idea; among them, we have deliberately investigated which
one is most appropriate for our purpose and concluded that
using a keyed hash function is one of the most reasonable
ones.

Based on this idea, we have implemented the verification

1



Figure 1. Printed tag attached to one spot of
Shinjuku, a famous town in Tokyo

server that maintains the secret key for keyed hash func-
tion and verifies the authenticators. The proposed system
makes sure that the identifier stored in a 2-D code is indeed
issued by the authorized organization, and the pair of iden-
tifier and its authenticator is small enough to be written in
a QR Code tag. Furthermore, the proposed system is com-
patible with the existing QR Code reading applications that
are normally implemented on cell phones in Japan. The
verification server is now operated in practical use. Some
services based on this mechanism have been developed, in-
cluding network-linked magazines that bind online contents
(which can be updated at any time) with the printed arti-
cles. Furthermore, we are undergoing an ubiquitous com-
puting experiment in which we have attached QR Code tags
to lampposts and other spots (such as shops, banks, etc.) in
Ginza, one of the most famous town in Tokyo. Based on
the proposed system, these QR Code tags securely contain
identifiers of each spot, and many information services are
provided.

The rest of this paper is structured as follows. In section
2, we introduce the ubiquitous computing architecture we
based as background information, and list the requirements
of the proposed system. Section 3 presents some candi-

Figure 2. Ubiquitous computing architecture
we based [1]

date technologies to implement the requirements, and dis-
cuss which is the most reasonable one. Section 4 shows an
implementation of the proposed system and an example ser-
vice based on it. In section 5, we show some related work.
Finally, section 6 concludes this paper.

2. Requirements for the Proposed System

2.1. Background

Before we proceed, we briefly introduce the ubiquitous
computing architecture we based.

Figure 2 summarizes the architecture. In ubiquitous
computing environment, it is important that every object
and place in the real world is identified by mobile termi-
nals. In our architecture, this requirement is achieved by
attaching a tag containing identifier of the object or place to
be read by using tag readers installed on the mobile termi-
nals. The identifier, which we call ucode (ubiquitous code),
has 128 bit length, which has enough size to identify every
object in which we are interested.

In our architecture, many kinds of tags may be used to
store ucodes. For example, passive RFID, active RFID in
which a battery is built so that it can send radio wave by
itself, and infrared markers may be used. Of all others, us-
ing 2-D printed code is one of the most useful ways to store
ucode, because it is easy to create and there already exists

2



many kinds of 2-D code readers (e.g., readers for QR Code,
a kind of 2-D code, are normally installed on cell phones in
Japan).

Since the ubiquitous computing environment should be
a general purpose infrastructure, the tags should not con-
tain any application specific information; instead, the bind-
ings between ucodes and application specific data are main-
tained in the online servers that we call ucode resolution
servers. The ucode resolution servers are maintained by the
authorized organizations that manage the ucodes. The mo-
bile terminal can connect to the ucode resolution server to
query which information is bound to the ucode written in
the tag. Note that such information may be an address of
the information server that actually maintains the applica-
tion specific data.

For example, in the application where a mobile terminal
reads a ucode tag that is attached in front of a restaurant and
then displays today’s recommended dinner menu, the pro-
cess proceeds as follows; at first, the mobile terminal reads
a ucode from the tag and send a query to the ucode reso-
lution server to fetch the information bound to the ucode;
second, the ucode resolution server responds to it with the
location (e.g. URL of the restaurant) where the information
will be found; finally, the mobile terminal sends a request
to the information server where the URL points and get the
information about the dinner menu.

2.2. Problems and Requirements

As mentioned in the previous subsection, we consider
that our architecture should be a general purpose ubiqui-
tous computing infrastructure where many special purpose
applications are constructed. In our architecture, numer-
ous ucode tags are distributed in the public spaces to iden-
tify objects and places. The problem is that creating a 2-D
code is so easy that it is very probable that someone mali-
ciously overwrite 2-D code placed in the public infrastruc-
ture. Therefore, the authorized organization should be able
to verify that the ucode written in the 2-D code is indeed
issued by the authorized organization.

The problem may be solved by storing additional infor-
mation indicating that the ucode is issued by an authorized
organization in the tag, in addition to the ucode. However,
we should take into account that most 2-D codes provide
only limited space to encode information, thus the widely
used digital signatures are hard to be stored in them as au-
thenticators. For example, in the RSA based digital sig-
nature algorithm[10], it is said that the length of signature
should be at least 2048 bits for ensuring the safety. There-
fore, we have to choose a method in which authenticators
may be small enough to be encoded in 2-D code, without
loss of security.

There still exists some problems. For example, after

reading the tag, the user can acquire the pair of ucode and
its authenticator; the user then can print and put it else-
where to deceive other users. We call it copy attack. Such
copy attacks may be detected in some extent. For exam-
ple, for ucodes that identify spots in public spaces, we can
bind a ucode with geographic information. If a ucode is
copied to another place, a contradiction will be found so
that the copying will be detected. Another problem arises
when some malicious users legally acquire the authority to
issue ucodes. In such a case, we consider that the safety of
the system should be discussed not only from technological
points of view but also from legal and sociological points of
view. This paper, however, does not aim to reveal these is-
sues. Instead, this paper aims to reveal the basic mechanism
of ensuring that ucodes are indeed issued by the authorized
organizations.

Finally, since 2-D code readers and software are nor-
mally installed on many mobile devices, we consider that
the 2-D code tag used in our system should also be able to
processed by using these software; i.e., our 2-D code tag
should be compatible with the existing software.

All in all, we summarize the requirements that the pro-
posed system should satisfy:

• The proposed system must be able to make sure that
the ucode is indeed issued by the authorized organiza-
tion.

• The authenticator must be small enough to be written
in 2-D code, without loss of security.

• The proposed system should be compatible with the
existing 2-D code readers and software.

3. Technical Elements

There are many technologies that are possibly useful to
implement the aforementioned requirements. In this sec-
tion, we discuss which technology is the most reasonable
one among them.

3.1. Digital Signatures

To implement the first requirement, one may consider
that we can store a digital signature into the tag in addition
to the content to verify the validity of identifier. However,
as mentioned in the previous section, the widely used digital
signature schemes[10, 8] require a large amount of data to
store a signature, which conflicts with the second require-
ment. One solution to this problem may be using the Ellip-
tic Curve Cryptography (ECC)[7], which is considered to
be useful to reduce the size of signatures. These algorithms

3



have been proved to be safe and become popular, thus us-
ing digital signatures seems to be feasible if we use such
algorithms.

If we use this approach, the verification of authenticators
will be performed on the mobile terminals. Only the mo-
bile terminals in which signature verification mechanism is
installed can be used for this approach.

3.2. Keyed Hash Functions

There is another way to guarantee that the identifier is not
modified: calculating the hash of identifier using a keyed
hash function. To make the keyed hash function secure, it
is also required that the size of hash should not be small;
however, the size of hash does not have to be very large.
For example, we may use the SHA-1 algorithm[2], whose
hash size (160 bits) is small enough to store hash into the
QR Code tag in addition to the ucode. The problem is how
to manage the secret keys used to calculate hashes. Man-
agement of keys should be centralized on a secure server.

If we use this approach, the verification of authenticators
cannot be performed on the mobile terminals. Instead, we
have to install a verification server that manages the secret
keys for hash functions and performs verification of authen-
ticators.

3.3. 2-D Code and Encoding

There are many kinds of 2-D code systems[5, 3, 4];
among them, we chose QR Code[5] for encoding ucode, be-
cause it is useful to store a serialized ucode represented in
characters and digits strings, and it is widely used in Japan,
thus QR Code readers are normally installed on cell phones.

The mobile terminal explained in Figure 2 communi-
cates with the ucode resolution server using special purpose
software and special purpose protocols. On the other hand,
QR Code readers installed in cell phones interpret URLs
written in the QR Code and communicate with servers us-
ing HTTP. To ensure compatibility to existing software, a
mapping from special purpose protocols we have developed
to HTTP should be considered.

4. Design and Implementation

Based on the previous discussion, we have implemented
a security enhancement on our architecture. The overall de-
scription is summarized in the data flow shown in Figure 3
and sequence diagram shown in Figure 4.

4.1. Issuing and Signing

The proposed system supports both of public-key cryp-
tography based digital signatures and keyed hash functions.

Figure 3. Data flow of security enhancement
on our architecture

To provide compatibility to the existing software, or to sup-
port keyed hash functions, we implemented a verification
server that is maintained by an authorized organization.

At first, a person who wants to attach a ucode tag to an
object or place (we call this person owner, because she is
possibly the owner of the object or place) acquires a user
account of the ucode issuing service, and requests a ucode
using this account. The ucode issuing service then issues
a ucode and send a request to the verification server to
sign the ucode. The key used for signing is secretly main-
tained in the verification server, thus signing is performed
on the verification server. The verification server signs the
ucode, stores the pair of ucode and its authenticator into the
database, and returns the authenticator to the ucode issuing
server. The ucode issuing server then creates a QR Code
tag (a binary bitmap image) and returns it to the owner (for
example, by displaying it on the Web browser).

The owner can select which algorithm, public-key cryp-
tography or keyed hash function including MD5, SHA-1,
SHA-256, and so on, is used to sign the ucode.

4.2. Building and Using Applications

The owner prints the QR Code tag and attaches it on the
object or place. Based on the ucode tags distributed in many
objects and places, we can construct many kinds of applica-

4



Figure 4. Sequence diagram of the proposed system

tion services. To build a service, the application developer
(possibly but not necessarily the same as the owner of the
tags) registers information related to the ucode to the ucode
resolution server.

The user of the application service acquires the informa-
tion that the application developer has registered by reading
ucode and its authenticator from the tag. For this purpose,
many kinds of mobile terminals may be used; for example,
we can use our original, special purpose software. However,
to encode the pair of ucode and authenticator, we should
take into account the compatibility to the existing software
such as QR Code readers on cell phones that interpret URLs
encoded in the QR Code and get the contents from the URL.

If the user uses the special purpose software, the process
is straightforward; the mobile terminal accesses the verifi-
cation server to verify the ucode and its authenticator. After
the verification, the verification server sends a query to the
ucode resolution server on behalf of the mobile terminal to
get the information bound to the ucode and returns the result
to the terminal

The existing software, however, does not know where is
the verification server. We therefore encode the ucode and
its authenticator in the form of URL as follows:

http://<verification server>/<path name>
?X-UIDC-UCODE=<ucode>&X-UIDC-SIGNATURE=

<authenticator>&X-UIDC-ALGORITHM=
<algorithm>

where <ucode> and <authenticator> are repre-
sented in hex digits.

The legacy software interprets the URL and sends an
HTTP request to the verification server. To connect to the
legacy software, a Web service is running on the verification
server. Ucode, its authenticator, and algorithm that is used
to calculate authenticator (and possibly some application
specific context information) are augmented using HTTP
request parameters. The verification server then performs
ucode resolution as in the case of communicating with the
special purpose software, and returns the result in the form
of HTTP response. Therefore, the legacy software can be
reused without any modification.

Note that this encoding is only for assuring the compati-
bility to the existing software. There is no guarantee that the
URL written in the QR Code tag is valid one. Therefore, it
is recommended to use the special purpose software where
the list of reliable verification servers are installed.

4.3. Running Systems

The proposed system is now operated in practical
use. Based on this system, a network-linked magazine is

5



published[11]. This service binds an article on printed mag-
azine with an online content that provides detailed and up-
to-date information about that article. On each article, a
ucode is issued and a QR Code tag containing the ucode
and its authenticator is attached. Readers of the article can
get more detailed information about that article by reading
the QR Code tag by using their own QR Code readers. This
service reduces amount of pages of printed magazines thus
reducing the cost for publishing the magazine. Furthermore,
the online article can be updated realtime, thus readers are
provided up-to-date information. Ucodes are signed and
verified by using the proposed system.

We are undergoing an experiment in which we have at-
tached QR Code tags to lampposts and other spots (such
as shops, banks, etc.) in Ginza, one of the most famous
town in Tokyo. For example, QR Code tags attached to
lampposts are used to identify the place to show the infor-
mation around the place, such as list of shops nearby the
place. These QR Code tags are securely signed and verified
by using the proposed system.

Furthermore, Nihon Unisys clearly stated that they use
our system in their equipment management. These case
studies will provide more insight in this research field.

5. Related Work

There exists some related researches on signing contents
written in 2-D code. Especially for QR Code, Ito et al. pro-
posed an authentication method using 3-D pattern commu-
nication to use QR Code in authentication[6]. Using the
display of cell phones, this method displays a number of
codes one after another thus using 3-D pattern to encode
information that is too large to be stored into the 2-D QR
Code. Based on this method, they built an e-ticket issuing
system as a case study[13]. However, this method cannot be
used for the printing tags that have no displaying devices.

Toye et al. proposed a mobile service toolkit (MST) that
enables mobile devices such as cell phones to access site-
specific services [12]. As in our system, MST provides a
way to connect the online server that provides site-specific
services by reading visual tags similar to QR Code tags.
However, the system’s architecture is less generic; in this
system, address of the server and application specific data
are written in the tag, while in our system, a tag contains
only an identifier.

6. Concluding Remarks

This paper presents how to verify identification in the
ubiquitous computing environment. By attaching additional
information (authenticator) that indicates the validity of
ucode, our system makes it possible to guarantee that the

ucode is indeed issued by the authorized organization. To
generate authenticator, we choose a method using a keyed
hash function to calculate a hash of the ucode among some
candidate technologies. Verification is securely performed
on the verification server. The size of pair of ucode and its
authenticator is small enough to be written in the QR Code
tag. Furthermore, the proposed system has compatibility to
the existing QR Code reading applications implemented in
vast series of cell phones.

Acknowledgments. We thank infrastructure research
group and secure networking research group in YRP Ubiq-
uitous Networking Laboratory for fruitful discussion. Es-
pecially, Shingo Miyazaki, Katsunori Shindo, and Chiaki
Ishikawa gave us very helpful comments on improving this
paper. The experiment in Ginza is sponsored by Tokyo
Metropolitan Government and Ministry of Land, Infrastruc-
ture and Transport Japan.

References

[1] Ubiquitous ID Center. http://www.uidcenter.org/.
[2] D. Eastlake and P. Jones. US Secure Hash Algorithm 1

(SHA1). RFC 3174, 2001.
[3] ISO/IEC15438:2001. Information technology – automatic

identification and data capture techniques – bar code sym-
bology specifications – PDF417.

[4] ISO/IEC16023:2000. Information technology – interna-
tional symbology specification – MaxiCode.

[5] ISO/IEC18004:2000. Information technology – automatic
identification and data capture techniques – bar code sym-
bology – QR Code.

[6] M. Ito, R. Uda, K. Awaya, S. Nasu, G. Inomae, H. Shigeno,
K. Okada, and Y. Matsushita. Authentication with 3-D
pattern communication. Trans. IEICE, J86-B(4):619–629,
2003. (In Japanese).

[7] N. Koblitz. Algebraic aspects of cryptography. Algorithms
and Computation in Mathematics, 3:148–178, 1998.

[8] National Institute for Standards and Technology. The digital
signature standard. Communications of the ACM, 35(7):36–
40, 1992.

[9] P. Peursum, H. H. Bui, S. Venkatesh, and G. A. West. Us-
ing interaction signatures to find and label chairs and floors.
Pervasive Computing, 3(4):58–65, 2004.

[10] R. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Com-
munications of the ACM, 21(2):120–126, 1978.

[11] K. Sakamura, editor. TRONWARE. Number 101. Personal
Media, 2006.

[12] E. Toye, R. Sharp, A. Madhavapeddy, and D. Scott. Us-
ing smart phones to access site-specific services. Pervasive
Computing, 4(2):60–66, 2005.

[13] R. Uda, S. Ichimura, and M. Ito. E-ticket issuing system
with 3-D pattern recognition for mobile terminals. Collected
papers on Mito Software Projects, 2003. (In Japanese).

6


