1184

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000

A Flexible, Extensible Simulation Environment
for Testing Real-Time Specifications

Monica Brockmeyer, Farnam Jahanian, Constance Heitmeyer, and Elly Winner

Abstract—This paper describes MTSim, an extensible, customizable simulation platform for the Modechart toolset (MT). MTSim

provides support for “plugging in” user-defined viewers useful in simulating system behavior in different ways, including application-
specific ways. MTSim also supports full user participation in the generation of simulations by allowing users to inject events into the
execution trace. Moreover, MTSim provides monitoring and assertion checking of execution traces and the invocation of user-specified
handlers upon assertion violation. This paper also introduces an MTSim component called WebSim, a suite of simulation tools for MT,
and an application-specific component of MTSim which displays the cockpit of an F-18 aircraft and which responds to user inputs to

model a bomb release function.

Index Terms—Simulation, specification, symbolic execution, monitoring and assertion checking, formal methods.

1 INTRODUCTION

SEVERAL studies have shown that the cost of detecting and
removing software errors increases significantly as the
development process moves from requirements specifica-
tion toward implementation [14]. In fact, the cost of
removing an error from a system specification is often an
order of magnitude smaller than the cost of removing it
from a system that is undergoing integration testing. Other
studies have demonstrated that errors in the requirements
specification are the most frequent cause of software errors
and the most expensive to correct [4].

Because the specifications of practical systems are
usually very large, an integrated set of flexible, robust
software tools is useful for specifying and analyzing the
behavior of such systems [12]. Among the tools effective for
testing and debugging specifications early in the design
process are simulators, which allow the user to generate and
examine symbolic executions of the system under develop-
ment. Simulation based on a formal specification is
especially useful because the simulated system behavior
conforms to the formally specified behavior. If the user
finds problems with the simulated behavior, these problems
can be corrected by modifying the formally specified
behavior. To ensure that the problems have been corrected,
the simulator can be used to symbolically execute the
modified specification and the simulated system behavior
can be compared to the user’s notion of the correct system
behavior. The utility of simulation increases as the size and

e M. Brockmeyer is with the Department of Computer Science, Wayne State
University, Detroit, MI 48202. E-mail: mab@cs.wayne.edu.

e F. Jahanian is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109-2122.
E-mail: farnam@eecs.umich.edu.

o C. Heitmeyer is with the Center for High Assurance Computer Systems,
Naval Research Laboratory, Washington, DC 20375.

E-mail: heitmeyer@itd.nrl.navy.mil.

e E. Winner is with the School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA 15213-3891. E-mail: elly@cs.cmu.edu.

Manuscript received 8 Sept. 1997; accepted 19 Jan. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 112757.

complexity of the specification increases; because large
complex specifications may be too large to analyze
exhaustively, simulation of the system behavior can com-
plement formal analysis of the system behavior using, e.g.,

model checking.
A simulator useful in testing and debugging formal

specifications should have a number of features:

e Ability to support plug-in viewers. The simulator
should support alternative representations of an
execution trace. (In this paper, an execution trace is
a finite, timed sequence of events that represent
system behavior over time.) That is, users should be
able to plug in viewers which are most appropriate
for the specification under consideration. Some
views of simulated system behavior graphically
depict the state of the system at a given time point,
while others display the system behavior as a
function of time. In some cases, users want a high-
level understanding of the system behavior repre-
sented by the formal specification. In other cases,
users want to focus on the events which represent
lower-level specification details. Moreover, certain
domains may require application-specific displays to
enhance user understanding. For example, applica-
tion-specific interfaces that mimic the behavior of
real-world systems, such as avionics systems, may
be useful.

e Interactive user participation in generating a
simulation trace. The user should be able to control
the simulated system behavior. In particular, when
the system behavior is nondeterministic, the user
should be able to select the desired behavior. One
way to support this is to permit the user to inject
events into the execution trace.

e Monitoring/Assertion-checking. Most monitoring
tools only allow the user to set simple breakpoints
or to detect the occurrence of simple events. To
analyze complex assertions, the user of such tools

0018-9340/00/$10.00 © 2000 IEEE

BROCKMEYER ET AL.: A FLEXIBLE, EXTENSIBLE SIMULATION ENVIRONMENT FOR TESTING REAL-TIME SPECIFICATIONS

must monitor the display during the simulated
execution or perform a post-hoc analysis of a log
file. Visual inspection is highly error-prone. More-
over, a post-hoc analysis does not permit the user (or
the simulator) to respond to an assertion violation
during a simulation session. A more powerful
option is to design the simulator to support user
specification of complex assertions in a high-level
language and to automatically monitor the asser-
tions during simulation. Such support for monitor-
ing and assertion checking must be integrated with
event injection and flexible displays so that the
simulation or the display characteristics can be
altered in response to an assertion violation.

This paper has two objectives. First, it describes MTSim,
a powerful and flexible approach to simulating system
behavior based on formal specifications, which was de-
signed to satisfy the above requirements. Second, the paper
demonstrates the power and flexibility of MTSim by
describing a suite of simulation and visualization tools.
These tools include WebSim, a tool for testing and
simulating Modechart specifications, as well as a tool for
creating application-specific interfaces for simulation. The
latter is demonstrated by an application-specific interface
which models the behavior of an F-18 cockpit.

MTSim has been developed within the context of the
Modechart toolset (MT) [10], a collection of integrated tools
developed by researchers at the Naval Research Laboratory
and the University of Texas. MT supports the formal
specification of real-time behavior in the graphical
Modechart language [26] and analysis via completeness
and consistency checking, simulation, and formal verifica-
tion. However, the MT simulation framework, MTSim, is
fairly general and could be applied to other formal
simulation tools.

MTSim contains three major components: the server, the
client application programmer interface (API), and a
collection of viewing tools. The server, which is called the
Modechart Simulator Engine, simulates a Modechart
specification by constructing execution traces that satisfy
Modechart semantics [26]. The MTSim Client API commu-
nicates with the MTSim Server in order to specify
simulation options, to inject events into the simulation
trace, and to register for notification of event occurrences,
among other things. Fig. 1 shows the variety of tools that
may be incorporated into the MTSim framework.

WebSim, which provides full-featured simulation and
testing of Modechart specifications, includes several view-
ing tools: a general-purpose controller, a log window, an
animated display, a time-process display, and a monitoring
and assertion checking tool. These prototype tools use the
Client API to support various displays, event-injection and
monitoring.

A specialized interface for an F-18 cockpit is an example
of an application-specific viewer. This viewer was devel-
oped to illustrate how an existing interface can be
transformed into an MTSim-compliant viewer. The F-18
interface was originally designed to provide a realistic
simulation of the behavior visible to the pilot of an F-18
aircraft in setting up and releasing a weapon. The user

1185
Wi
ek Panpsss Hroresar- Eesbicl *H.ilk“inhb Free-Soavdiag Taels
Taol Arrvses- Enabied
Vv liw mrz Vinks
Tl Canealbis 08 Uachpri
ey mmplaiee
g Laicrlace
iy
Tidor Frog=n g
S WHapilay FrrRET
LT
Wiewen
Boimmding Ll T il Tosk
Vicwws
S e anil ol

MITSiws CBent AP

“iliwleafian
faiidales
Fagiae:

Bereer]

Fig. 1. Simulation tools in the MTSim framework.

interacts with the interface to control the simulated aircraft
behavior. The original interface was built by researchers at
the Naval Research Laboratories as a customized front end
for an SCR [22], [24] requirements specification of a simple
weapons system. Only a few hundred lines of code were
needed to integrate the F-18 aircraft into MTSim, thus
demonstrating the flexibility of the MTSim APL

The remainder of this paper is organized as follows: To
put MTSim in context, Section 2 describes other tools
developed to support formal methods, emphasizing those
designed for real-time systems. Section 3 provides an
overview of the Modechart language and describes the
Modechart Toolset. Section 4 describes the viewers devel-
oped for the MTSim framework. Section 5 describes the
MTSim architecture, while Section 6 discusses the different
kinds of tools that can be developed and describes the
MTSim Client APIL Finally, Section 7 concludes by discuss-
ing the lessons learned in developing MTSim.

2 ReLATED WORK

A comprehensive overview of formal methods for real-time
systems appears in [23]. Several researchers of these
methods have noted the need for tool support [12], [16],
[23]. Tools for analyzing specifications of real-time systems
can be organized on a spectrum with model-checking on
one end and simulation and monitoring at the other. Partial
approaches include examination of a subset of the full
computation space, for example, through testing. Like MT,
many of the tools described provide both verification
through a model-checking technique, as well as simulation,
while a few tools are developed to support a single analytic
technique. Not all tools which support simulation provide
testing or monitoring capabilities for execution traces. Very
few support an open framework for attaching user-defined
viewers and displays.

1186

A more complete description of the Modechart Toolset is
found in [10]; the user manual is [33]. The Modechart
Toolset supports specification analysis along the entire
spectrum from model checking to simulation and verifica-
tion. Stuart [34] describes the implementation of the MT
Verifier, while Stuart et al. [35] describe a new partial
approach, simulation-verification. This technique permits the
user to simulate a computation prefix for some finite period
of time before invoking the MT Verifier to perform model-
checking on all computations starting with the given
simulation prefix.

The STATEMATE system [19], which has been widely
employed in industry, has many capabilities not found in
research prototypes, e.g., version management and support
for splitting specifications into multiple documents. The
STATEMATE user can invoke a variety of static queries
about the system specification. STATEMATE also provides
a reporting language and a query language based on
conjunctions and transitive closures. One of the most
powerful capabilities of STATEMATE is the Analyzer tool.
This tool provides extensive user control over system
simulation, including a simulation control language, attach-
ment of watchdog code for monitoring purposes, and
connection of external C code to the symbolic execution. In
an approach similar to our monitoring and assertion
checking technique, these executions can be monitored via
special “watchdog” code, which is defined by the user in
the Statechart language. There is no automatic generation of
watchdog code. It is also possible to set breakpoints in the
Statechart code. In addition, the STATEMATE system
provides a simulation control language to provide addi-
tional control over the generation of execution traces.

The Cabernet tool [28] provide a formal framework for
developing real-time systems based on a temporal and
functional extension of Petri Nets. The main components of
this tool are a graphical editor, a suite of execution/
animation/simulation tools which provide symbolic execu-
tion of the Petri net with an animated graphical display in
real-time, and a reachability graph builder, a tool for
managing hierarchical specification and decomposition of
specifications. The semantics of Cabernet are defined by
TRIO [17], a first order temporal logic, which was
specifically designed for executability. Felder and Morzenti
[13] provide history-checking of TRIO specifications by
applying a tableaux-based algorithm to a history (execution
trace) of a TRIO specification.

The StateTime Tool [31] is a visual toolset for design and
analysis of real-time systems. It provided graphical editing,
simulation, and verification in its BUILD, VERIFY, and
DEVELOP tools. In addition, it supports the semi-auto-
mated system development of real-time systems with the
DEVELOP tool. The graphical editor (the BUILD tool)
supports simulation of system behavior. Variables and
states are displayed in a trace window. This tool does not
support assertion-checking in simulation, although the
VERIFY tool supports checking of specialized assertions
through the use of an observer module. This observer
module is similar to our monitoring fragment.

The Software Cost Reduction toolset, SCR*, supports
specification and analysis of requirements in the tabular

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000

SCR notation [20]. The tools provide completeness and
consistency checking [21], specification editing, simulation,
and mechanical verification. The SCR notation may be used
to specify the required system functions and some time-
dependent system behavior, i.e., behavior that can be
described using time-outs.

The HyTech system provides tool support for specifica-
tion and analysis of hybrid systems, systems which contain
both continuous and discrete components. This tool per-
forms symbolic model checking on systems modeled as
linear hybrid automata [2] which have both finite control
mechanisms, as well as real-valued variables modeling
continuous environmental quantities. A more efficient
version has been completed in C++ and many example
systems have been tested on it. The tool accepts textual
input of system specifications and analysis commands. The
analysis approaches supported include forward and back-
ward reachability analysis, as well as parametric analysis.

The SMV symbolic model-checker supports automated
verification of real-time systems modeled as labeled state-
transition graphs, where each path corresponds to an
execution trace of the program. A state transition graph is
represented internally using binary decision diagrams
(BDD) which generally provide a more compact representa-
tion of the system behavior. The SMV symbolic model
checker has been shown to handle very large state-spaces
efficiently. Campos et al. [7] describe how algorithms for
computing quantitative information about finite-state real-
time systems have been incorporated into the SMV model
checker.

The Concurrency Workbench [9] is an automated tool for
analyzing networks of finite-state processes expressed in
Milner’s Calculus of Communicating Systems [29], [30]. The
tool is designed in a modular fashion in order to
accommodate a variety of specification transformations
and analytical techniques. Equivalence, pre-order, and
model checking, as well as state-space exploration, are
supported.

VERSA [8] is another prototype toolkit which has been
developed to support reasoning about real-time systems
modeled as ACSR processes. ACSR (Algebra of Commu-
nicating Shared Resources) is an extension of CCSR
(Calculus of Communicating Shared Resources) [15], which
was developed to support the notions of both resources and
priorities. In particular, the VERSA toolkit has three major
functions: rewriting, equivalence testing, and interactive
execution. To facilitate the use of ACSR by novice
programmers, the graphical specification language GCSR
(Graphical Communicating Shared Resources) [3], with
semantics defined in ACSR, has been developed and
incorporated into the VERSA toolkit.

3 BACKGROUND ON MODECHART

This section provides a brief overview of the Modechart
language and toolset using the example of a robot controller
for a manufacturing assembly line. This example is used for
purposes of illustration throughout the paper.

BROCKMEYER ET AL.: A FLEXIBLE, EXTENSIBLE SIMULATION ENVIRONMENT FOR TESTING REAL-TIME SPECIFICATIONS

3.1 Modechart

The Modechart Toolset (MT) [10], a collection of integrated
tools developed by the Naval Research Laboratory together
with researchers from the University of Texas, supports the
formal specification of real-time behavior for distributed
systems in the Modechart language and formal analysis via
formal verification, simulation, and completeness and
consistency checking. The toolset includes facilities for
graphically creating and editing Modechart specifications.

MT users may perform a variety of static consistency
and completeness checks on their specifications. For
example, they can check whether all modes have been
specified with appropriate types or whether any mode
transition expression refers to an event that has not been
defined. They may also invoke a verifier that uses model
checking to determine whether a Modechart specification
satisfies any of a broad class of safety assertions. The
MTSim tool complements these tools by symbolically
executing Modechart specifications within a complete
debugging and testing environment.

The basic construct generated, examined, analyzed, and
displayed by the MTSim tool is a simulation prefix. The
prefix is an initial, finite portion of a potentially infinite
simulation trace. The simulation trace is a sequence of sets
of event occurrences, where each set contains event
occurrences which took place at a single moment in time.
This sequence is ordered by the occurrence time.

Modechart [26] is a graphical specification language
based on concurrent finite state diagrams. It provides a
compact and structured way to represent real-time systems.
Although similar to Harel’s Statecharts [18], Modechart is
specifically designed for the specification of real-time
systems. It allows for the specification of modes which
represent control information and thus impose structure on
the operation of a system.

Modechart is extended from Statecharts with constructs
for expressing timing constraints. It has a visual hierarchical
structure and a small set of well-defined constructs for the
definition of event-driven real-time systems. These con-
structs include modes, mode-transitions, events, and timing
constraints. During a nonzero time interval, a mode can be
either active or inactive. Informally, the state of a real-time
system is described by the collection of modes which are
active. Modes are hierarchically arranged in a tree structure;
there is a top level mode from which all modes are
descended and each mode has only one parent. The
children of each mode can execute serially or in parallel,
allowing Modechart to capture both concurrent and
sequential behavior.

The behavior of a real-time system is captured by mode
transitions, expressions which describe exit from one mode
and entry into another mode. When a mode becomes active
(inactive), a mode entry (exit) event corresponding to that
mode occurs. These transitions can be specified by timing
constraints or can be triggered by events in the system or by
predicates on the behavior of modes in the specification.
Events in Modechart include mode-entry, mode-exit events,
transition events, and external events. When a mode
becomes active, it is said that a mode entry event
corresponding to that mode occurs. When a mode becomes

1187

inactive, it is said that a mode exit event occurs. Mode
transition events occur when one mode is exited and
another is entered. Finally, external events represent some-
thing happening in the environment which can affect the
behavior of the system.

If M;, and M, are modes, the exit of M; is indicated by
M; — , the entry of M, is indicated by —M,, and the transition
from M; to M, by M; — M,. External events are represented by
single letters, e.g., E. These form the atomic units of a
system; assertions are described in terms of timing and
ordering relationships between instances of these type of
events. Transitions can also be controlled by predicates on
modes. For example, the predicate (M) indicates that the
mode M is active, while < M) indicates that the mode M has
been active for at least one time unit. Further discussion of
the Modechart language can be found in [33], [26]. Finally,
more complex mode transition expressions can be formed
from triggers and timing constraints. More elaborate
triggers can be composed by taking the conjuncts of trigger
expressions and these conjuncts can be disjuncted together
with timing expressions.

3.2 A Robot Controller Example

Consider the robot controller for a manufacturing assembly
line illustrated in Fig. 2. A producer process controls a
conveyer belt carrying items to be processed by a robot. The
producer process is responsible for moving items from
position 1 to position 2. When the item is in position 2, the
robot picks up the item, rotates away from the belt, and
processes the item. (If the robot fails to pick the item up in a
timely fashion and the conveyer belt is still moving, the
item may move off the end of the conveyer belt and fall onto
the floor.) Next, the robot attempts to place the item on
another conveyer belt (position 3) where it is removed by a
consumer process which moves it to position 4.

The Modehart specification depiceted in Fig. 3 is a
simplification of the robot specification described in [5]. The
full specification has 18 root-level modes, representing
18 parallel components of the system.

The specification describes three processes (Producer,
Consumer, and Robot) which are physically distributed and
communicate with each other (as well as with the
environment) through sensors. These sensors are also
specified in Modechart. Finally, Modechart is also used to
model certain aspects of the environment in which the
system operates. This permits expression of various natural
constraints on the behavior of the system.

The producer process, indicated by the serial mode
Producer_Belt, has two major constraints on its behavior. If
the belt has been stopped for one time unit and there is
an item in position 1 and no item in position 2, the
producer process starts the producer conveyer belt. If the
belt has been moving and there is an item in position 2,
the producer process stops the conveyer belt. The
producer belt observes the environment through sensors
which indicate whether there is an item in position 1 or
position 2. The consumer process operates in a similar
manner, starting and stopping the conveyer belt to move
items from position 3 to position 4.

The robot controller moves items from position 2 to
position 3, as well as processing them. The constraints on

1188

Posiliom I

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49,

Position 3 Coansamer Process
—
180 Degrees
= -
S Habaod %
i
|._ l"m:'r'.}ll_ ___.-' CETEES
T -
—
W
L -""-::'

1 Dregrees e

ﬁ"

Frodluction Process pgeirian 2

Fig. 2. Diagram of a robot controller for a manufacturing assembly line.

System (Parallel)

Paosition 4

NO. 11,

Robot_Controller (Scrial)

Robot.Process

{<Arm_Rotation.90)} {<Donc_Processing.Ycs)}
Robol.Wail_to_Drop

{<Producer.Stop)} & {(Position_1.Yes)} & {(Position_2.No)}

Robot.Grab
{<Hand_Position.Holding)} {<Arm_Rotation.180)}
} Robot.Rot90.1 Robot.Rot90.2
{<Arm_Extension.Extended)} {<Position_3.No)}
Robot.Extend
Robot.Drqp
A
{<Position_2.Yes)} Robol.Rol 180 {<Hand_Position.Empty)}
{<Arm_Rotation.0)} _ {<Arm_Extension.Retracted)}
Robot.Wait_To_Grab Robot Retract
Producer_Belt (Serial)
Producer.Stop Producer.Start

{<Producer.Start)} & {(Position_2.Yes)}

Consumer_Belt (Serial)

Consumer.Stop

{<Consumer.Stop)} & {(Position_3.Yes)} & {(Position_4.No)}

Consumer.Start

{<Consumer.Start)} & {(Position_4.Yes)}

Fig. 3. Modechart specification of processes for a robot controller for a manufacturing assembly line.

NOVEMBER 2000

BROCKMEYER ET AL.: A FLEXIBLE, EXTENSIBLE SIMULATION ENVIRONMENT FOR TESTING REAL-TIME SPECIFICATIONS

Position_1 (Serial)

1189

Position_2 (Serial)

Position_1.Yes (Serial)

Positionl. TrueYes Positionl.BelieveYes

{(Env.Posn_1.No)}

(LD (1,1

Positipn_1.No (Serial)

Position1.BelieveNo

Positionl.T"rueNo
{(Env.Posn_1.Yes)}

Position_2.Yes (Serial)

Position2.TrueYes Position2.BelieveYes

{(Env.Posn_2.No)}

(3,3) 33

Positipn_2.No (Serial)

Position2.BelieveNo

Position2.Tru'eNo
{(Env.Posn_2.Yes)}

Fig. 4. Modechart specification of sensors for a robot controller for a manufacturing assembly line.

the robot controller’s behavior are stated informally as
follows: If an item is in position 2 and the robot hand is
empty, the robot extends its arm, grabs the item, rotates
90 degrees, processes the item, then rotates 90 degrees. If
there is no item in position 3, the robot arm drops the
item, then retracts its arm, then rotates -180 degrees. The
robot communicates with the producer belt through the
sensor indicating whether there is an item in position 2. It
communicates with the consumer belt via the sensor
indicating whether there is an item in position 3. This
control cycle is represented by the cycle of modes,
Robot.Wait_To_Grab, Robot.Extend, Robot.Grab, etc., depicted
in the figure. The entry of each of these modes sends a
signal through a mode transition event to the remainder of
the specification that may trigger events in the environ-
ment. Similarly, each transition is controlled by events that
occur in the environment, some of which are reported by
the sensors.

Fig. 4 displays a Modechart specification for some typical
sensors. This figure depicts only two of the four sensors
required by the system.

The sensors detect the state of the environment and relay
this information to the robot controller. Since sensors test
the environment only periodically, there is generally some
delay in relaying a state change in the environment back to
the processes relying on the sensors. As a consequence, it is
possible that a sensor will indicate a stale value to the
controllers. In Fig. 4, mode Positionl.BelieveNo indicates a
situation where there is an item in position 1, but this fact
has not yet been detected by the sensor. After some delay,
the sensor tests the environment again and moves to mode
Position1.TrueYes, which indicates that the sensor now
records the correct state of the environment. The mode
Position_1.Yes indicates the state where the sensor records
that there is an item in position 1, while the mode
Position_1.No indicates the state where the the sensor
records that there is no item in position 1. These modes
are used by the processes to determine mode transitions.

Note that the sensor for position 2 is slower than the one
for position 1. This models a communications path which is
faulty in some way, leading to a delay in transmission of
information to the robot controller. As a consequence, the
controller does not learn about changes in the environment
at position 2 until three time units after they occur. The
MTSim simulation tools, including the MTSim Monitor, are
used to explore the effect of this faulty sensor on the
behavior of the robot.

As noted above, because sensors sample the environ-
ment periodically, there is a delay between the occurrence
of an event in the environment and the time which that
event is visible to the controller process. In this specifica-
tion, the sensor at position 2 is slightly slower than than the
other sensors, requiring three time units to detect a state
change in the environment. The MTSim Tool suite is used to
examine the circumstances under which this delay might
lead to items falling off the end of the producer belt onto the
floor before the controllers have time to take the item for
processing or stop the conveyer belt. Although not all
details are presented, this example is used for the purposes
of illustrating the tools in the remainder of the paper.

4 SIMULATION USING MTSIm

This section describes several prototype MTSim viewers.
Each client demonstrates how the MTSim API supports one
of the main tasks which are required of an industrial-
strength specification simulation environment, namely
flexible displays, event-injection, and monitoring and
assertion checking. In addition, the tools demonstrate that
the MTSim framework is suitable for the development of
both general-purpose and application-specific simulation
viewers and display tools. These client tools include:

e WebSim. WebSim, a suite of graphical, web-centric
simulation tools implemented as Java applets on the
MTSim Client API. This collection of tools permits a
specification designer to view, manipulate, and

1190

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000

[#] Contridler
i ALtach Tirnw I §
5 a
§ |
: 1
v - AR EE
‘
§ Step Mode Step Flay Panse Step :E_
|
TERL ii;ﬁmln'.rr.i:ﬁrﬁ

Furk Ml .ﬂm:!

Siadochart Huese; | rofotArs]

Serrvn e .-.;.gw.:..';qa:

Addach |

Fig. 5. WebSim controller.

analyze a specification from a variety of viewpoints.
Section 4.1 provides an overview of the WebSim
Controller. Section 4.2 discusses the support that the
MTSim API provides for monitoring and assertion
checking in the WebSim Monitor. Section 4.3
describes three types of general-purpose displays
provided by WebSim and explains how the MTSim
Client API supports flexible displays.

F-18 cockpit simulation interface. Section 4.4 de-
scribes an application-specific simulation interface,
based on a representation of an F-18 cockpit. This
tool was developed to demonstrate the ease with
which an existing interface can be integrated into the
MTSim framework. It also illustrates the use of the
MTSim framework to support injection of events
into the simulation trace.

4.1 The WebSim Controller

The first WebSim client, the WebSim Controller, is depicted
in Fig. 5. The figure shows the starting of a simulation
session for the robot controller described previously. The
controller client initiates a simulation session, loads a
Modechart specification, and starts and stops simulations.
The controller also sets simulation parameters, permitting
the client to indicate values when the specification is
incomplete or to instruct the simulator about how to handle
nondeterminism. For example, the controller may indicate
that a timing transition should be made as soon as it is
eligible, as late as possible, or at some fixed time point.
Alternately, the controller might register with the server to
be informed when a transition is eligible to be taken. The
controller might then indicate when the transition should
actually occur.

e o 2 L 0 L

4.2 The WebSim Monitor

The WebSim Monitor (Fig. 6) performs monitoring and
assertion-checking capabilities. The basic framework for
performing monitoring and assertion-checking on
Modechart specifications is found in [6].

Monitoring and assertion-checking can be used to detect
an undesirable behavior or violation of a design assumption
as an execution trace is generated. By combining evaluation
of a property with a graphical representation of the
execution trace, the monitoring and assertion-checking tool
can work together with other simulation displays to
conveniently provide better assurance of the user’s intent
during the specification and design phase. Monitoring and
assertion-checking complement the existing tools in the
Modechart Toolset, allowing testing to take place for
program specifications and assertions for which formal
verification may be impractical. This provides valuable
feedback to system designers during the initial design
process. A monitoring and assertion-checking tool can also
be used to invoke user-defined handlers upon detection of
certain properties. The handlers can be used to change the
simulator execution profile or even the system state before
the computation resumes.

The monitoring and assertion-checking tool, implemen-
ted as an MTSim client, meets two requirements. First, the
WebSim Monitor should be flexible in how assertions are
specified. Two approaches to assertion specification are
supported:

e The user can use a subset of Real-Time Logic [27] to
specify assertions descriptively. These assertions are
specified via a graphical, form-based interface. The
user fills the relevant information into the RTL
formula, but is not required to write RTL formulae

from scratch.

BROCKMEYER ET AL.: A FLEXIBLE, EXTENSIBLE SIMULATION ENVIRONMENT FOR TESTING REAL-TIME SPECIFICATIONS 1191

mation | oo | crain | woamsnimai|
i i | 4|

\ g . a 1 | —_—

EINT LR B - ot gt -
- r“‘”‘“”

Fig. 6. WebSim monitor.

The WebSim Monitor supports flexible specifica-
tion of assertions by automatically translating RTL
assertions into Modechart monitoring fragments in
order to provide a specification for the monitoring
process. The monitoring fragments, expressed as
Modechart specifications, are used to represent the
assertions of interest. The MTSim Server produces
an execution trace of the augmented specification.
The monitoring fragment is symbolically executed
together with the original specification generating an
execution trace that highlights the violation of the
original assertion. As a result, detection of the
violation of a potentially complex assertion is
reduced to detection of a simple event or set of
events in the simulation of the monitoring fragment.

These formulae include the following types of
assertions, which describe relationships between
pairs of modes:

- Excludes

- Contains

- During

- Starts

- Finishes

- Is Started By
- Is Finished By
- After

- Before

[|
—_—

- Equals
- Meets
- Met By
- Overlaps
- Opverlapped By

These assertions describe possible temporal re-
lationships between intervals of time, first described
by Allen [1]. For example, “A excludes B” means
that mode A is never active at the same time that
mode B is active. “A during B” means that A is
always active during some interval of time when
mode B is active.

These assertions are complemented by two timing
assertions:

- Delay
- Deadline

These assertions are described more fully in [5],
which also describes how they can be composed into
more complex assertions.
The user can also specify assertions directly by
creating the monitoring fragments in Modechart.
This allows maximum flexibility in terms of what
kind of properties can be monitored. The monitoring
fragments can be developed in the specification
editor in much the same manner as are ordinary
system specifications. The only real difference is that

1192

the user must identify to the WebSim Monitor which
events represent violations of the assertions.

The second requirement for the WebSim Monitor is that
the user is offered flexibility in terms of what action is to
take place upon violation of an assertion. The WebSim
Monitoring client offers built-in support for pausing or
stopping the simulation, displaying custom messages, event
logging, injecting an event into the simulation, and
changing a simulation option (e.g., the time between
occurrences for an event). User-defined handlers, which
allow users to provide custom handlers which launch
specialized displays (MTSim viewers), perform calculations
or take other actions.

Fig. 6 shows the monitoring of two assertions on the
robot controller example. The two assertions are displayed
in a list on the main window. The first assertion states that a
message is to be displayed if an item falls on the floor
(— Floor). The second assertion indicates the simulation is
to be halted if the modes Robot.Process and Robot.Drop are
active simultaneously (Robot.Process Excludes Robot.Drop).
The smaller window shows the assertion editor which
permits common assertion types to be specified by filling in
the relevant modes. The corresponding RTL is displayed
below. During the simulation, additional windows may be
displayed to indicate the possible violation of these
assertions and to show what action has taken place.

4.3 Generic Viewers: WebSim Displays

WebSim contains three types of displays. The first, a simple
logging facility, is depicted in Fig. 7 [20]. At the beginning
of the simulation of the robot controller, all modes which
are initially active are listed. Following, each mode
transition event is displayed for the subsequent time points.
The user may also choose to display only a subset of
transitions, to display mode entry and exit events, or to
display transitions which are eligible to be taken but are not
taken at a particular time point. The window permits
scrolling in order to view the entire simulation trace.

The second display provides an “animated” view of the
simulation behavior. This Animator client is depicted in
Fig. 8, which depicts an animation of the robot controller. (A
similar tool is found in the STATEMATE [25] product.) It
displays the execution of a specification graphically by
displaying the original Modechart specification. As the
simulation progresses, the active modes are displayed as
shaded boxes, while modes that are not active are not
shaded. This approach is good for displaying the state of
the whole system at given points of time. In the figure, the
large window depicts the top level view of the robot
controller and its environment. Internal details of some
modes are not depicted and, by default, mode transition
labels are hidden as well. The user can click on a mode or
drag the mouse on an area of the screen in order to view
more detail. This will cause a smaller window to open,
displaying the specified mode or region in more detail. (In
the figure, two sensors are displayed with additional
detail.) This permits the user to focus on the portions of
the specification which are of interest.

Finally, a Time-Process client displays the simulation as
a series of horizontal bars. This tool is depicted in Fig. 9.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000

(This tool is based on the interface to the original Modechart
Toolset Simulator.) Each bar indicates the behavior of one
mode, transition, or external event over time. The figure
shows bars representing modes from the robot controller
example. Time is indicated by the horizontal axis. Thick
lines indicate the periods of time during which each mode
is active. For example, the user can examine the display to
determine that the mode Hand_Position.Grabbing exits at
the same moment that the mode RC.Process is entered. This
type of display gives a good summary of the behavior of the
system over time, but does not provide a “snapshot” of the
system. As a result, the Animator and the Time-Process
client are highly complementary.

4.4 Application-Specific Tool: An F-18 Cockpit
Simulator Interface

To demonstrate the power and flexibility of the MTSim
Client API, we integrated the interface for an F-18 cockpit
simulator into the MTSim framework. Several goals were
achieved in developing this MTSim viewer. First, usefulness
of the MTSim framework for implementing application-
specific simulation viewers was tested. Because such view-
ers are used in specialized roles, a rapid and straightfor-
ward development process is desirable. Second, it is
important to demonstrate an MTSim viewer which partici-
pated in the simulation by generating events to be
incorporated into the simulation trace. And, finally, it was
possible to evaluate how easily existing software could be
incorporated into the MTSim framework.

The F-18 cockpit simulation interface was developed by
NRL researchers as an interface to the SCR* Toolset [20] and
was implemented in Motif using Century Computing’s
TAE+ interface builder tool [11]. The purpose of this
simulation interface was to mimic the physical system
represented by the formal specification. In this case, the
interface supports simulation of the bomb release mechan-
ism of a navy attack aircraft, such as the F-18. This
simulation interface is a visual representation of the
interface used by a pilot to interact with an avionics system.
The required behavior of the avionics system is represented
by a formal specification. In this example, the pilot interacts
with the system by using the interface to set up and to
release a weapon.

The F-18 cockpit simulation interface, depicted in
Fig. 10, is a participant in the simulation process. The
user, interacting with the simulation interface, simulates
the behavior of the environment, while the MTSim Server
simulates the response of the system specification to the
events generated by the environment. It is possible to use
the F-18 simulation interface together with other display
tools to provide additional information to the user. These
display tools could include animated displays, log
windows, and time-process displays. In addition, a
monitoring tool, such as the WebSim Monitor, could be
attached in conjunction with these to provide monitoring
and assertion-checking.

In Fig. 10, the small picture of an airplane in the upper
left corner is a button widget which indicates whether or
not the F-18 is airborne. The bullseye in the center of the
windshield can be moved to indicate the miss distance (the
projected distance from bomb impact point to the target).

BROCKMEYER ET AL.: A FLEXIBLE, EXTENSIBLE SIMULATION ENVIRONMENT FOR TESTING REAL-TIME SPECIFICATIONS

1193

Fig. 7. WebSim logwindow.

The Master Function Switch is modeled with a pop-up
selector on the left panel, while the right panel displays the
stations which contain a bomb. The slider at the bottom left
selects a weapon type, while the pushbutton at the bottom
is used to advance the clock. On the throttle, there are two
pushbuttons. One is used to designate a target. If a target is
locked onto, the words “Target Designated” appear under
the target. The other pushbutton is used to release the
bomb. If all conditions are correct for a bomb to be released
(the plane is airborne, the master function switch is set to an
appropriate value, a weapon of the correct weapon type is
on the selected weapon station, the target is designated, and
the miss distance is below a threshold), the bomb is released

Inclicivtes o rmode transition event
from Posn | Mo o Posnl. Yes. |

upon pushing the bomb release button. In this case, the
words “Bomb Released” appear on top of the plane icon in
the right panel.

Reengineering the SCR version of the simulation inter-
face for MTSim involved two steps. First, the formal SCR
specification for the bomb release mechanism was trans-
lated into Modechart. (A discussion of this process is
beyond the scope of this paper.) Second, after translating
the formal specification, the simulation interface was
integrated as an MTSim viewer. The F-18 simulator tool
has special privileges which permit it to load the specifica-
tion and start it before the panel is displayed. One change
was made to the graphical interface itself, adding a button

1194

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 49, NO. 11, NOVEMBER 2000

5] minvindew| 2somou] ssein] e |
A
. |
Emtem Ewlms Delem Gl famw
o (| 5| G
e I et = = = [— L]
Cl=C1] [C—of =~ | ’#'L"—-

fn LD
=
-Df'qf]

UL

| |
1
i

| =

Fig. 8. WebSim animator.

=

r— [
Fit in Mladons | Toaem Out| Zoare i |

Trm Framrm Wy
et B

i o Wl &

|— |

| i !

_rl.l.—l BT N ¥ o i o E-I-

¥ G

Faremd Ttk T Pt
|
]
|

Bamur; .Hﬂ Tamm L'.r

Fig. 9. TimeProcess display.

and a text display at the bottom of the screen to display the
time and to permit the user to advance the time.

Because the TAE+ toolkit does not generate Java code, a
Java wrapper was used to integrate the generated C code
into the MTSim framework. The generated C code was
invoked as native methods. The C code was reengineered to
invoke the standard MTSim Client APIL.

The goals set for the development of the F-18 cockpit
simulation interface viewer were met. The reengineering of
the original interface was straightforward; the total effort
required fewer than 150 lines of Java code and about the
same number of lines of C code. This illustrates the

usefulness and power of the MTSim Client API with regard
to building application-specific front-ends to MTSim.

5 MTSIM ARCHITECTURE AND DESIGN

The original Modechart Simulator [33] does not support the
attachment of specialized viewers. To achieve this cap-
ability, the implementation of MTSim separates the simula-
tion mechanism from the simulation policy and display.
This implementation supports an extensible environment
within which the user would be able to view the behavior of
the specification from various perspectives, to have flexible

BROCKMEYER ET AL.: A FLEXIBLE, EXTENSIBLE SIMULATION ENVIRONMENT FOR TESTING REAL-TIME SPECIFICATIONS

u
5

Py
P

: 1h.:l'l

Fig. 10. F-18 cockpit simulation interface.

and powerful control over simulation behavior, to be able to
use monitoring and assertion-checking tools, and to be able
to incorporate additional tools, if necessary. As a result,
MTSim provides a powerful testing and debugging
environment for Modechart specifications.

Fig. 11 illustrates MTSim’s architecture. The boxes
indicate the major modules in the system. In this figure,
the dotted line indicates the client API, described in the next
section. Plain arrows indicate method invocation, while the
dotted arrows indicate network messages. A thick arrow
indicates that a module creates instances of another module.
The MTSim framework is composed of three major parts:
the MTSim Server, the MTSim Client Stub, and MTSim
clients. The MTSim Server is responsible for generating
execution traces consistent with the Modechart specifica-
tion. It also accepts connections from clients, satisfies
requests from clients, and reports the simulation events
back to the clients. The MTSim Client Stub provides an
easy-to-use programming interface to facilitate develop-
ment of a variety of simulator clients. This interface permits
a client to attach and detach from a simulation session, set
simulation options, inject simulation events into the event
stream, synchronize with the MTSim Server, and request

1195

|| Close |

| mivamcs cloch | |

notification of event occurrences. Both general-purpose and
application-specific clients can be built on the MTSim
framework.

The MTSim Server is implemented in a combination of
Java and C. Simulation databases and code performing the
actual generation of Modechart execution traces are written
in C. This code, from the original version of the Modechart
Toolset simulator, is combined with Java code, which
performs communication, event notification, event schedul-
ing, and other services described below. The MTSim Client
Stub is written entirely in Java. This permits it to be easily
incorporated into Java client code producing platform
independent clients.

5.1 Communication

The communications system is based on remote method
invocation and relies on an RMI protocol developed for this
application. The underlying transport protocol is TCP/IP.

5.2 The MTSim Server

The major components of the MTSim Server are the Session
Manager, the Client Service Managers, the Privilege
Manager, the Synchronization Manager, the Event Matcher,
and the SimKernel. The Session Manager establishes new

1196

CLIENT

user code

Client APL e N

Client Request
Handler

Client Event
Notifier

Messaging

Fig. 11. Overall architecture of MTSim.

simulation sessions and attaches clients to each session as
they present the appropriate session identifier. The Session
Manager also instantiates a Client Service Manager for each
client as it attaches to a session.

The Client Service Managers coordinate with the
Privilege Manager to respond to client operations as they
come in. Client operations are generally in correspon-
dence with the methods of the client class provided in the
Client APL

When a Client Service Manager is asked to start the
actual execution of the Modechart simulation, it creates a
Synchronization Manager to do so. The Synchronization
Manager invokes the SimKernel to initialize the simulation
databases. After each time point is simulated, the Synchro-
nization Manager yields to the Event Matcher, which
generates Event Notifications which are sent to the Client
Service Managers to send back to the clients. Certain of
these Event Notifications may be for event occurrences for
which the client has asked to synchronize with the server.
The Synchronization Manager waits for Continue messages
from each such client before it invokes the SimKernel to
simulate another time point.

The Synchronization Manager also schedules events
which have been submitted by the clients and forwards
them to the SimKernel for inclusion in the execution trace.

All of these components are written in Java, with the
exception of the SimKernel. The internal representation of
the Modechart specification is stored in a C database. Also
written in C is the actual code responsible for generating a
Modechart execution trace. These C libraries are wrapped
in Java, where they are native functions. This approach
maintains compatibility between MTSim and other tools in
the Modechart Toolset which have been written in C.

5.3 The MTSim Client Stub

The MTSim client stub is the mechanism through which
MTSim clients communicate with the MTSim Server. The
client stub has two main components, a Client Request
Manager and a Client Event Notifier. The client program
invokes the methods included in the API on the client stub.
The client stub translates these into messages which are sent
to the MTSim server. The client stub reads reply messages

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

Java TCP/IP sockets

NOVEMBER 2000

SERVER

simKernel
Modechart

Simulation Databases

Event Matcher

Session

Client Service
M Managers

Privilege
Mana

Messaging

from the server to determine the return value and whether
an exception needs to be thrown to the user code.

The only state maintained by the client stub is held by
the Client Event Notifier. When the user submits a request
for an event notification to the MTSim Server, the MTSim
client stub maintains a callback object for that request.
When an event notification is received by the client stub, the
Event Notifier invokes the notify method on the appro-
priate callback object.

6 MTSim CLIENT API

Client tools built upon the MTSim framework are likely to
require several key functions. Some clients will only need to
register for event notifications in order to display the
simulation behavior. Others may want to participate in the
simulation behavior by generating events to inject into the
simulation trace. Finally, a client may need to start and stop
a simulation and to instruct the MTSim Server which
specification to simulate. Corresponding to these roles, the
Client API supports three types of clients, which are
distinguished in terms of the level of privileges granted to
them by the MTSim Server. A controller client has the most
extensive set of simulator operations and is responsible for
initiating a simulation session, indicating to the MTSim
server which Modechart is to be simulated and establishing
simulation options and defaults. Controller clients may also
perform all of the operations which can be performed by the
other types of clients.

Once a controller client has initiated a simulation session,
other types of clients may attach to that session. These
clients, which perform more basic operations, are display
clients and participants. Display clients are the most basic
type of client. They may attach to a simulation session,
register to receive simulation notifications, and detach.
Participant clients have the privileges of display clients, but
may also generate events which are submitted to the
MTSim Server for execution.

6.1 A Typical Client Session

Fig. 12 depicts a typical client session. A typical session for
using the API in a client program is as follows:

BROCKMEYER ET AL.: A FLEXIBLE, EXTENSIBLE SIMULATION ENVIRONMENT FOR TESTING REAL-TIME SPECIFICATIONS

CLIENT SERVER

CALLBACK OBJECT
1. Attach -

2a. Request Modechart
2b. Receive Modechart__

3. Register for Events

SimKernel
4. Start Simulation

Simulate Time Point
Notify Clicnts
Wait for Synchronization

6. Receive Events
(invoke callback object)

5. Submit Events |:Schedule Events

7 Synchronize on Events

8. Stop Simulation

Fig. 12. A typical Client Session.

1. Attach to a simulation session. The client program
creates a client object of one of the client classes
reflecting the desired level of privilege. The client
then uses the Attach method of the newly created
client object to attach to the MTSim Server, indicat-
ing the MTSim server and a session name in the URL
string.

2. Request a Modechart. Any client may get a static
representation of the loaded Modechart by issuing
the GetModechart method at any time.

3. Register for event notifications. After attaching, the
client process will generally register MTEventPat-
terns with the server using the method RegisterFor-
EventNotification. In doing so, the clients indicate to
the server the simulator events for which they would
like to receive notification. The MTEventPatterns
class provides a powerful approach to specifying
individual Modechart events or groups of events.
The client program also indicates whether the server
should synchronize with the client when the
specified event occurs. If synchronization is re-
quested for certain events, upon generation of those
events, the server will wait for the client to invoke
the Continue method before proceeding with the
simulation. Finally, the client provides an object
which implements the ClientEventHandler interface.
Upon receipt of an event notification which matches
the MTEventPattern, the client object will perform a
callback to the client by invoking the notify method
of the ClientEventHandler object.

4. Begin a Modechart simulation. Controller clients
will then generally invoke a LoadModechart method
and optionally set the simulation options using one
of the SetSimOptions methods. They will then start
the simulation using the StartSimulation method.

5. Submit Events. Clients may submit external events
to submit in the simulation any time between the
start and the end of the session.

6. Receive event notifications. While the simulation is
running, the server will generate event notifications
in the form of MTEventOccurrence objects and send
the notifications to the various clients. The client will
be notified as described above and will use the
notifications to update its display or perform any
relevant computations.

1197

class SimpleHandler implements ClientEventHandler {
ControllerClient sim;
public SimpleHander(ControllerClient s){
sim = s;

}

public void notify (MTEventOccurrence eo) {

System.out.println(eo);

if (eo.event_type == MTEventPattern. TIME)
&& (eo.occurrence time == 10) {
sim.StopSimulation();

}

if (eo.event_type == MTEventPattern.STOP)

{ // end of simulation
sim.Detach();

¥
}

public class SimpleClient{
public static void main(String args[]){
ControllerClient sim = new ControllerClient();
sim.Attach(args[0]);
sim.LoadModechartRemote(args[1]);
sim.RegisterForNotification(
new MTEventPattern(MTEventPattern. ANY)
false, new SimpleHandler(sim));
sim.StartSimulation();

}

}

Fig. 13. Simple client.

7. Synchronize on Events. The clients may choose to
synchronize with the server on certain event
notifications. In this way, the server will not be able
to advance the simulation until all clients have
synchronized on all such events received so far.

8. Stop the simulation. At some point, the controller
client will issue the StopSimulation method and the
various clients will detach themselves from the
simulation.

A very simple controller which loads a Modechart
specification, starts the simulation, and prints out the
events as they occur is depicted in Fig. 13. (For simplicity,
exception handling is not presented.) Here, the class
SimpleHandler provides a basic event handling behavior.
The notify method simply prints out each event. If the time
is equal to 10, the event handler sends a message to stop the
simulation. If the event handler receives notification that the
simulation has stopped, the Detach method is invoked. The
main class, SimpleClient, sets up the connection to the
server, loads a Modechart, registers to receive all events,
and starts the simulation.

6.2 Event Notifications and Views

A client may register to receive all simulation events. In this
scenario, it is the responsibility of the event handler to
distinguish between types of events. A more sophisticated
client application, however, may only be interested in
certain events or may want to provide different event
handlers for different types of events. In particular, the
client may want to synchronize on some events and not
others. For example, the client may want to synchronize on
events which represent the passage of time, but not on other

1198 |IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000
TABLE 1
Event Types Specified by MTEventPattern
Event Mode Descendent | Name When When
Pattern Restriction Restriction | Satisfied | Scheduled
ALL YES YES YES YES
MODE_ENTRY YES YES NO NO
MODE_EXIT YES YES NO NO
MODE_TRANSITION | YES YES YES YES
EXTERNAL NO YES NO YES
TIME NO NO NO NO
TIMEPATTERN NO NO NO NO
STOP NO NO NO NO
START NO NO NO NO
ASSERTION NO NO NO NO

events. This gives the client time to process all events from
each time point before permitting the server to advance to

the next time point.
The set of events in which a particular client is interested

comprise a user-specific view. Although the MTSim Server
generates a single computation trace, each user may be
interested in a different view or subset of the events in the
computation trace. The client can specify the view they
want by registering for Event Patterns. The event patterns
are filtering objects which are registered with the MTSim
Server; each such object can be registered with a different

client event handler.
The user can restrict the collection of events of interest in

four ways.

1. Events can be restricted to those of a particular type.
These event types include mode entry and mode exit
events, mode transitions, external events, and time
passage events. Event types are listed in Table 1.

2. Furthermore, some events (Mode Entry, Mode Exit,
and Mode Transition events) can be considered to be
connected to particular modes. A user can restrict
attention to events which are connected to all
descendents of particular modes.

3. Events have names. An event pattern can use a name
or a regular expression to further restrict the
collection of events. For example, the expression
(MT EventPattern.eventType == MODE_ENTRY)
&&(Name == "C«") will restrict attention to mode
entry events for modes having names which start
with the letter “C.” (Modechart is not case sensitive.)

4. Finally, certain events may become satisfied or be
scheduled before they occur. For example, a mode
transition may be satisfied without taking place or
an external event may be scheduled by the simulator
before it occurs. In these cases, the client may
register for these special types of notification.

Table 1 also provides a summary of which event types

permit these additional restrictions.

7 DiscussIioN

This paper has described MTSim, an extensible simulation
framework for formal specifications. This infrastructure
supports a customizable environment for simulation,
permitting users to plug in specialized viewers and other
simulation tools, including monitoring and assertion check-
ing tools. This paper has also presented several tools
developed using the MTSim framework, including
WebSim, a suite of general-purpose monitoring tools which
execute on the World Wide Web in the browser environ-
ment, and a free-standing application-specific simulation
interface which models the cockpit of an F-18 aircraft.

This section describes the issues raised and the lessons
learned in developing the WebSim Tool Suite and the F-18
cockpit simulator tool using the MTSim framework.

7.1 Simulation of Formal Specifications as a Design

Tool

Simulation and monitoring of simulation traces provide a
testing approach to specification validation. In contrast to
formal verification, where the entire set of possible system
behaviors may be examined, simulation permits examina-
tion of a single execution trace. As a consequence, errors
present in a specification may not manifest in a single
execution trace. These errors could be propagated to an
implementation based on a specification.

However, experience has shown that a powerful simula-
tion environment is a useful complement to formal
verification because it provides more immediate and more
intuitive feedback to the system designer early in the
specification process. That is, because generation of a
specification trace is computationally less costly than
generation of a computation graph, it is more easily used
during development to ensure that a specification meets
both informal and formal requirements, as well matching a
designer’s intuition.

An important issue is how users or client tools control
the direction of the generation of an execution trace. Since
there are generally an infinite number of simulation traces
corresponding to a given specification, the problem of how
a particular simulation is chosen can be quite complex.
Generally, the selection of a simulation trace can be

BROCKMEYER ET AL.: A FLEXIBLE, EXTENSIBLE SIMULATION ENVIRONMENT FOR TESTING REAL-TIME SPECIFICATIONS

described by a sequence of responses the simulator makes
to nondeterministic choices.

Users can exert control over simulation behavior in two
ways in the MTSim framework. The first is through the use
of an MTSimOptions object which can be submitted to the
MTSim by a Controller Client. The MTSimOptions object
sets basic defaults, such as the amount of time to take on
timing transitions, minimum separation between external
events, and initialization options for items which may have
been underspecified in the simulated specification. Addi-
tional control may be exerted by resubmitting the
MTSimOptions object during the execution.

The second way that users interact and direct the
generation of an execution trace is through the generation
and injection of external events which affect simulation
behavior. Client tools which have registered as participants
may submit external events to the MTSim Server. These
events are included in the execution trace and the
simulation is allowed to respond to these events.

Users have a great deal of control over how these events
are injected into the simulation trace. One event or a
sequence of events may be injected. Injection of events
combined with synchronization provides the user with a
chance to stop the simulation and examine the system state
before injection of additional events. These two approaches
permit the user to specify nondeterministic behavior more
generally by establishing an overall policy for resolving
each type of nondeterminism or at a finer granularity by
injection of steering events.

Another lesson learned was the need for constructs to
support simulation timing on a “human scale.” This means
that the simulation is paced in such a way as to improve the
user’s intuition about simulation behavior. For example,
while a simulation may not take place in real-time, delays
should be proportionate to the real-time delays being
modeled. This can be approximated in our current frame-
work by having a specialized client synchronize on every
event and insert the appropriate delays. Of course,
communication delays will distort the actual timing. This
approach also requires that all other clients synchronize in a
timely enough manner so that additional delays do not
occur.

The current framework is being extended to permit
clients to commit to the amount of time that they require to
process a given event notification. Not only will this
facilitate insertion of human scale delays, but it will
improve performance due to the reduction of synchroniza-
tion acknowledgments.

7.2 Performance and Implementation Issues
Integration of plug-in viewers has been hampered by
performance issues. This is due, in part, to slow execution
of the Java interpreter. Just-in-time compilers [32] and
similar efforts may be able to compensate. However, for this
application, the advantages of execution on multiple plat-
forms, in or out of the browser, were felt to outweigh the
drawbacks.

The most serious performance impairment, however, is
due to slow communication between the MTSim server and
the MTSim client tools. This can be largely attributed to the
Java TCP/IP implementation. Efforts are underway to

1199

mitigate this slowness through the use of UDP/IP commu-
nication and multicast mechanisms.

Client tools may register to synchronize on certain events
when they register for event notification. Synchronization
means that the MTSim Server does not advance the
simulation until a synchronization acknowledgment is
received from the client. Synchronization is used so that
client tools may control the rate of the simulation so that
each client may process events without lagging behind
other clients or the MTSim Server. Synchronization may
also be used to implement breakpoints. When used together
with monitoring, the breakpoints can be predicated on the
satisfaction or violation of a complex condition.

Performance is also highly sensitive to the synchroni-
zation behavior of the client tools. Client tools may be
loosely or tightly synchronized. Since the server does not
advance the simulation until it has received acknowl-
edgments for all event notifications for which synchroni-
zation was requested, all the clients may be delayed until
one client synchronizes. As a result, finely grained
synchronization can result in significant overhead. There-
fore, performance can be improved by eliminating
unnecessary client synchronization.

Since synchronization is designed to permit client tools
to respond to simulation behavior, the type of synchroniza-
tion required varies with the particular requirements of
each type of client. For example, the Time-Process Display
described in Section 4.3 is designed to emphasize a
longitudinal view of the simulation. As a result, it need
not synchronize at every time point since it may be
acceptable for the Time-Process display to fall slightly
behind in displaying simulation events. In contrast, the
Animator tool is designed to display a sequence of system
states. Therefore, it synchronizes on each event notification.
Consequently, all client tools which are executing at the
same time must wait for the Animator to acknowledge this
event before the simulation can continue. Therefore, it is
critical that such tools perform calculations, update dis-
plays, and send acknowledgments as quickly as possible.
(When an incorrect client fails to acknowledge an event
notification for which it has synchronized, the effect is even
more serious, resulting in the halting of the simulation.)

A final issue involved the MTSim API. The usefulness of
higher-level constructs than those provided by the MTSim
API became evident during the development of the WebSim
Tool Suite. The various tools shared many common
elements, such as graphical interfaces for registering with
the server and selection of events for event notification, that
might well be integrated into the MTSim APL

As described in Section 4.4, the F-18 cockpit simulation
tool was easily integrated into the MTSim framework,
despite having been developed for another formal specifi-
cation tool. In fact, translation of the specification was
among the more challenging aspects of the task. With
regard to integration of the simulation software, the most
difficult task was “wrapping” native code generated by the
interface builder so that it could interact with the Java API.
Invocation of the MTSim API was straightforward; the
event notification constructs were a close match for those in
the original software. As mentioned previously, the entire

1200

effort was completed in a few days and required only a few
hundred lines of code.

There are several goals for future work. Among these is
support for persistent simulation sessions, which will
include development of a model for logging and replay
services. In addition, it is important to develop additional
WebSim tools, investigate other types of monitoring (such
as performance monitoring), and to extend the types of
assertions supported by the WebSim monitor. Finally, use
of the MTSim framework to support simulation of other
formal specification languages, such as SCR, is being
evaluated.

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of
Bruce Labaw for his review and suggestions on earlier
drafts of this paper, as well as Eylon Caspi and others at the
Naval Research Laboratory who developed the graphical F-
18 cockpit interface. This work is supported in part by the
US Naval Research Laboratory under Grant N00014-94-
P2015.

REFERENCES

[1] J.F. Allen, “Maintaining Knowledge about Temporal Intervals,”
Comm. ACM, vol. 26, no. 11, pp. 832-843, 1983.

[2] R. Alur, T.A. Henzinger, and P.-H. Ho, “Automatic Symbolic
Verification of Embedded Systems,” Proc. IEEE Real-Time System
Symp., p. 2-11, 1993.

[3] H. Ben-Abdallah, I. Lee, and J.-Y. Choi, “A Graphical Language
with Formal Semantics for the Specification and Analysis of Real-
Time Systems,” Proc. IEEE Real-Time Systems Symp., pp. 276-286,
1995.

[4] B. Boehm, Software Engineering Economics. Englewood Cliffs, N.J.:
Prentice Hall, 1981.

[5] M. Brockmeyer, “Monitoring, Testing, and Abstractions of Real-
Time Specifications,” PhD thesis, Dept. of Electrical Eng. and
Computer Science, Univ. of Michigan, 1999.

[6] M. Brockmeyer, F. Jahanian, C. Heitmeyer, and B. Labaw, “An
Approach to Monitoring and Assertion-Checking Distributed
Real-Time Systems,” Proc. Workshop Parallel and Distributed Real-
Time Systems, Apr. 1996.

[7]1 S. Campos, E. Clarke, W. Marrero, and M. Minea, “Computing
Quantitive Characteristics of Finite-State Real-Time Systems,”
Proc. IEEE Real-Time Systems Symp., pp. 276-286, 1994.

[8] D. Clarke, I. Lee, and H. Xie, “Versa: A Tool for the Specification
and Analysis of Resource-Bound Real-Time Systems,” Technical
Report MS-CIS-93-77, Dept. of Computer and Information Science,
Univ. of Pennsylvania, Sept. 1993.

[91 R. Cleaveland, J. Parrow, and B. Steffen, “The Concurrency

Workbench: A Semantics-Based Tool for the Verification of

Concurrent Systems,” ACM Trans. Programming Languages and

Systems, vol. 15, pp. 36-72, 1993.

P.C. Clements, C.L. Heitmeyer, B.G. Labaw, and A.T. Rose, “MT:

A Toolset for Specifying and Analyzing Real-Time Systems,” Proc.

IEEE Real-Time Systems Symp., Dec. 1993.

Century Computing, TAE Plus Users Guide, Version 5.3, Sept. 1993.

D. Craigen, S. Gerhart, and T. Ralston, “An International Survey of

Industrial Applications of Formal Methods,” Technical Report

NRL-9581, Naval Research Laboratory, Washington, D.C., 1993.

M. Felder and A. Morzenti, “Validating Real-Time Systems by

History-Checking TRIO Specifications,” ACM Trans. Software Eng.

and Methodology, vol. 3, no. 4, Oct. 1994.

D.A. Gabel, “Technology 1994: Software Engineering,” IEEE

Spectrum, vol. 31, no. 1, pp. 38-41, Jan. 1994.

R. Gerber and I. Lee, “CCSR: A Calculus for Communcating

Shared Resources,” Proc. CONCUR ’90, pp. 263-277, 1990.

S. Gerhart, D. Craigen, and T. Ralston, “Experience with Formal

Methods in Critical Systems,” IEEE Software, vol. 11, no. 1, pp. 21-

28, Jan. 1994.

(10]

(1]
(12]

(13]

(14]
[15]

[1o]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

(171

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]
[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(33]

NOVEMBER 2000

C. Ghezzi, D. Mandrioli, and A. Morzenti, “TRIO, a Logic
Language for Executable Specification of Real-Time Software,”
J. System Software, vol. 12, pp. 107-120, 1990.

D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, vol. 8, 1987.

D. Harel et al, “Statemate: A Working Environment for the
Development of Complex Reactive Systems,” IEEE Trans. Software
Eng., vol. 16, Apr. 1990.

C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw, “SCR*: A Toolset
for Specifying and Analyzing Requirements,” Proc. COMPASS:95,
1995.

C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj,
“Using Abstraction and Model Checking to Detect Safety
Violations in Requirements Specifications,” IEEE Trans. Software
Eng., vol. 24, no. 11, Nov. 1998.

C. Heitmeyer, B. Labaw, and D. Kiskis, “Consistency Checking of
SCR-Style Requirements Specifications,” Proc. Int’l Symp. Require-
ments Eng., Mar. 1995.

Formal Methods for Real-Time Computing, C. Heitmeyer and
D. Mandrioli, eds. John Wiley and Sons, 1996.

C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw, “Automated
Consistency Checking of Requirements Specifications,” ACM
Trans. Software Eng. and Methodology, vol. 5, no. 3, pp. 231-261,
July 1996.

iLogix Corporation, The Languages of STATEMATE, 1991.

F. Jahanian and A.K. Mok, “Modechart: A Specification Language
for Real-Time Systems,” IEEE Trans. Software Eng., vol. 20, no. 10,
Oct. 1994.

F. Jahanian and A K.-L. Mok, “Safety Analysis of Timing Proper-
ties in Real-Time Systems,” IEEE Trans. Software Eng., vol. 12,n0.9,
pp- 890-904, Sept. 1986.

D. Mandrioli, A. Morzenti, M. Pezze, P. SanPietro, and S. Silva, “A
Petri Net and Logic Approach to the Specification and Verification
of Real Time Systems,” Formal Methods for Real-Time Computing,
C. Heitmeyer and D. Mandrioli, eds., chapter 6. John Wiley &
Sons, 1996.

R. Milner, Communication and Concurrency. Prentice Hall, 1989.

R. Milner, A Calculus of Communicating Systems. Springer-Verlag,
1990.

J.S. Ostroff, “Statetime—A Visual Toolset for the Design and
Verification of Real-Time Systems,” Technical Report CS-ETR-94-
07, York Univ., 1994.

M.P. Plezbert and R.K. Cytron, “Does ‘Just in Time” = 'Better Late
than Never?” Proc. Principles of Programming Languages, pp. 120-
131, Jan. 1997.

A. Rose, M. Perez, and P. Clements, “Modechart Toolset User’s
Guide,” Technical Report NRL/MRL/5540-94-7427, Center for
Computer High Assurance Systems, Naval Research Laboratory,
Washington, D.C., Feb. 1994.

D. Stuart, “Implementing a Verifier for Real-Time Systems,” Proc.
Real-Time Systems Symp., pp. 62-71, Dec. 1990.

D. Stuart, M. Brockmeyer, A. Mok, and F. Jahanian, “Simulation-
Verification: Biting at the State-Space Explosion Problem,” IEEE
Trans. Software Eng., to appear.

Monica Brockmeyer received her PhD degree
in electrical engineering and computer science
from the University of Michigan in 1999. She
received her BS and MS degrees from the
University of Michigan in 1986 and 1995,
respectively. She is an assistant professor at
Wayne State University, Detroit, Michigan. Her
research interests include formal methods and
real-time and fault-tolerant computing.

BROCKMEYER ET AL.: A FLEXIBLE, EXTENSIBLE SIMULATION ENVIRONMENT FOR TESTING REAL-TIME SPECIFICATIONS

Farnam Jahanian received the MS and PhD
degrees in computer science from the University
of Texas at Austin in 1987 and 1989, respec-
tively. He is currently an associate professor of
electrical engineering and computer science at
the University of Michigan. Prior to joining the
faculty at the University of Michigan in 1993, he
was a research staff member at the IBM T.J.
Watson Research Center, where he led several
experimental projects in distributed and fault-
tolerant systems. His current research interests include real-time and
fault-tolerant computing and network protocols and architectures.

1201

Constance Heitmeyer holds MAs in mathe-
matics and history from the University of
Michigan and currently is head of the Software
Engineering Section of the Naval Research
Laboratory’s (NRL) Center for High Assurance
Computer Systems. Before assuming her cur-
rent position at NRL, she was a visiting scientist
at the NATO Undersea Research Center in La
Spezia, ltaly. She served in 1996 as program
chair for the 11th Annual COMPASS Confer-
ence and in 1997 as general chair for the Third IEEE Symposium on
Requirements Engineering. She has also served as an associate editor
for the Journal of Real-Time Systems and is currently an associate
editor of the Requirements Engineering Journal. In 1996, she coedited a
book on formal methods for real-time systems with D. Mandrioli. She
also serves on the steering committee of IFIP Working Group 2.9 on
software requirements and the steering committee of the International
Symposium on Requirements Engineering. Ms. Heitmeyer and David
Parnas are currently guest editors of a special issue on tabular notations
of the Kluwer journal Formal Methods in System Design. Her research
interests are in formal methods, requirements, and real-time computing.

Elly Winner is a PhD student at Carnegie
Mellon University, Pittsburgh, Pennsylvania.
This research was performed while she was an
undergraduate student at the University of
Michigan, where she received her BS degree
in 1998. Her current research interests are in
artifical intelligence, particularly in inexact plan-
ning and in multirobot interactions.

