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p-Adic Estimates of Hamming Weights in Abelian
Codes Over Galois Rings

Daniel J. Katz, Member, IEEE

Abstract—A generalization of McEliece’s theorem on the -adic
valuation of Hamming weights of words in cyclic codes is proved in
this paper by means of counting polynomial techniques introduced
by Wilson along with a technique known as trace-averaging in-
troduced here. The original theorem of McEliece concerned cyclic
codes over prime fields. Delsarte and McEliece later extended this
to Abelian codes over finite fields. Calderbank, Li, and Poonen ex-
tended McEliece’s original theorem to cover cyclic codes over the
rings

2
, Wilson strengthened their results and extended them

to cyclic codes over , and Katz strengthened Wilson’s results
and extended them to Abelian codes over . It is natural to ask
whether there is a single analogue of McEliece’s theorem which
correctly captures the behavior of codes over all finite fields and
all rings of integers modulo prime powers. In this paper, this ques-
tion is answered affirmatively: a single theorem for Abelian codes
over Galois rings is presented. This theorem contains all previously
mentioned results and more.

Index Terms—Abelian codes, codes over Galois rings, counting
polynomials, McEliece’s theorem.

I. INTRODUCTION

M CELIECE’S theorem [1] is a powerful tool for analyzing
the Hamming weights of codewords in cyclic codes over

prime fields. In fact, it will be more convenient for us to handle
the zero count, i.e., the number of times the symbol zero occurs
in a codeword. Since we always assume that the length of the
codewords is known, and since the Hamming weight is minus
the zero count, all statements about zero count readily translate
into equivalent statements about Hamming weight. So for any
ring , we define by

if and
otherwise.

We extend the function zer to all finite sequences of elements
of so that if , then we set

. To simplify the presentation of material in this
Introduction (Section I), we shall assume that all our codes have
words whose symbols sum to zero. For cyclic codes, this means
that we always assume that is a zero of the generator polyno-
mial of our code.
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A. History

Let be a prime and let be a cyclic code over GF .
McEliece’s theorem relates the highest power of dividing all
the Hamming weights of codewords in to the set of zeroes
of the check polynomial, also known as nonzeroes of the code.
One should calculate the length of the shortest sequence of
nonzeroes whose product is , subject to the constraint that the
length be divisible by and that the sequence not be trivial
(i.e., not composed entirely of ’s). We now cast this definition
into mathematical notation. Using the notation to denote the
set of all finite-length sequences whose terms are elements of a
set , we set

(1)

and then, using to denote the length of a sequence , we set

(2)

Throughout this section, we shall assume that contains some
element other than , so that is nonempty and is defined.
Then we have McEliece’s theorem.

Theorem 1.1: (McEliece [1]) Let be a cyclic code of length
over GF with the set of nonzeroes of and . For

any , we have

where and are as defined in (1) and (2).

Furthermore, this congruence is sharp in the sense that there
is some word such that the congruence does not hold
modulo . In other words, there is some word whose Ham-
ming weight is not divisible by . In fact, the full version
of McEliece’s theorem (not presented in this Introduction) even
provides an explicit formula for calculating the zero count of
a codeword modulo in terms of the Fourier transform
(Mattson–Solomon polynomial). The full version also considers
the possibility that .

Example 1.2: Consider the binary quadratic residue code
of length for a prime with . Let be a
primitive th root of unity over GF . Then can be thought
of as the ideal in GF whose check polynomial
has roots .
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If , then is a quadratic residue modulo .
Thus, and are both nonzeroes, so that contains the
sequence , and so . McEliece’s theorem tells
us that for all . Equivalently, all
Hamming weights are even. The full version of the theorem also
tells us that some Hamming weight is not divisible by .

On the other hand, if , then is not a
quadratic residue modulo . Thus, the inverse of each nonzero
is a zero of the code, hence . In fact, it is always , since
there always exists some such that

is a nonzero and is not a nonzero. Then must
be a nonzero and thus, . So McEliece’s
theorem tells us that all Hamming weights are divisible by
and that some Hamming weight is not divisible by .

Delsarte and McEliece [2] later extended this result to cover
Abelian codes over an arbitrary finite field GF , with .
Since they are no longer dealing solely with cyclic codes, the
set of nonzeroes is replaced with its natural generalization: the
minimal support of the set of Fourier transforms of the code-
words. For brevity, we refer to the set of Fourier transforms of
words in as the Fourier transform of . As in Theorem 1.1,
the highest power of dividing all Hamming weights of code-
words is related to some minimum length of sequences in a
specific class of sequences. This class of sequences has a def-
inition somewhat more complicated than that of the in (1)
above. We present it in a way slightly different than Delsarte
and McEliece do in order to facilitate comparison with the de-
velopments of this paper. Let , where we
recall that our alphabet is GF with . Then set

(3)

and, as before, set

(4)

Note that the condition reduces
modulo to , so that . When

, the defined here is in essence the same as the of (1).
Now we can state the generalization of Delsarte and McEliece.

Theorem 1.3: (Delsarte-McEliece [2]) Let be an Abelian
code of length over GF , with the minimal support of
the Fourier transform of and . For any , we have

where and are as defined in (3) and (4).

As before, this congruence is sharp in the sense that there is
some so that the congruence fails to hold modulo any
higher power of . The full theorem of Delsarte and McEliece
even provides a formula which can be used to calculate the zero
count modulo in terms of the Fourier transform (see
Theorem 5.5). The full version also considers the possibility that

. Theorem 1.3 reduces to McEliece’s original theorem
(Theorem 1.1) discussed above if we restrict to cyclic codes over
prime fields.

Example 1.4: Let , let be the cyclic group of order
generated by an element , and let be the code in

GF whose Fourier transform is supported on the set
. In a more conventional presentation of

cyclic codes, this is the code in GF whose
check polynomial is one of the th-degree irreducible factors of
the cyclotomic polynomial in GF . This code
is also known as the shortened first-order Reed–Muller code of
length over GF . We want to investigate the set , as
defined in (3), and the parameter , as defined in (4), for this
code, so that we may apply the Delsarte–McEliece theorem.

Here and , since we are working with GF .
Thus. . Furthermore, . The
set consists of certain nonempty sequences of the form

with and . The product condition
in allows us to restrict attention to sequences with

From this it is easy to classify minimal-length sequences in .
If has two or more instances of an element , then
we can form a shorter sequence as follows: if ,
then replace the two instances of with one instance of

, but if , then replace the two instances of
with one instance of . In either case, all defining prop-
erties of are preserved. Thus a minimum-length sequence

in has no repeated elements. But then
, which forces equality in the second inequality, which

in turn forces our sequence to have one instance of each ele-
ment . Thus, the sequences of length with exactly
one instance of each element of are precisely the min-
imum-length elements of , and so . By the same rea-
soning, it is not hard to show that each sequence of length
in is obtained from a minimal-length sequence by deleting one
element and inserting two instances of if

, or two instances of if .
Since , the Deslarte–McEliece theorem tells us that

, or equivalently, that all Hamming
weights are divisible by . Furthermore, the full version of
the theorem tells us that some word has Hamming weight not
divisible by . In fact, it is not hard to show that all nonzero
words have Hamming weight .

Ward obtained generalizations of Theorems 1.1 and 1.3 for
codes which are ideals in group algebras GF where is
non-Abelian or of order divisible by [3]–[6]. Calderbank, Li,
and Poonen [7] extended McEliece’s original theorem in a dif-
ferent direction. They proved a version for cyclic codes with al-
phabet . Their result was strengthened and extended to cyclic
codes over by Wilson [8], [9], and his result was further
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strengthened (in the case where ) and extended to Abelian
codes over by Katz [10]. As with the theorem of Delsarte
and McEliece, we set to be the minimal support of the set of
Fourier transforms of the codewords, and then we set and as
in (1) and (2). Then we have the following theorem.

Theorem 1.5: (Katz [10]) Let be an Abelian code of length
over with the minimal support of the Fourier transform

of and . For any codeword , we have

where and are as defined in (1) and (2).

If we set , we obtain a version of McEliece’s theorem
for Abelian codes over prime fields, which is at once a gener-
alization of McEliece’s original theorem (Theorem 1.1) and a
special case of the theorem of Delsarte and McEliece (Theorem
1.3). These theorems of McEliece and Delsarte are sharp, i.e.,
they determine the maximum power of that divides all Ham-
ming weights in the code . Thus, the congruence in Theorem
1.5 becomes sharp when . In the case when and

(i.e., for Abelian codes over ), Katz [10] has shown this
congruence to be sharp in the sense that there is some codeword

with Fourier transform supported on such that the Hamming

weight of is not divisible by . This proves that
Theorem 1.5 is sharp for codes which are free -modules. A
very recent result of the author [11], obtained after this paper
was submitted, shows that Theorem 1.5 is sharp for all codes
which are free -modules (for all and ), but is not sharp
for infinitely many other codes. This new result includes a ver-
sion of Theorem 1.5 which has been refined so as to be sharp for
all Abelian codes over . This new theorem, now only avail-
able in the author’s dissertation [11], will be the subject of a
future paper. The full version of Theorem 1.5 presented by Katz
in [10] also provides formulas for computing the zero count of
a word modulo any power of from its Fourier transform, but
these formulas rapidly become cumbersome modulo powers of

higher than .

B. The New Result

Since we now have a version of the McEliece theorem for
Abelian codes over finite fields and a version for Abelian codes
over , we should ask ourselves if these are not special cases
of a more general theorem. First, we need to consider if there is
a general class of rings which includes both the finite fields and
the integers modulo powers of . Fortunately, we do not need to
look far, as such rings, called the Galois rings, have already been
used extensively in researches on cyclic codes over [7], [10],
[12]–[21]. Furthermore, codes over Galois rings, and especially
cyclic and Abelian codes over Galois rings, are being studied
actively at this time [22]–[32], so that it is natural to desire an
analogue of McEliece’s theorem for such codes. Section II-A
of [10] contains, in summary format, all we shall need to know
about Galois rings in this paper. For more details on such rings,
see [33].

In this paper we shall use the notation GR to denote the
Galois ring of characteristic generated by and a primitive

root of unity of order . To construct such a ring, we start by
adjoining a primitive root of unity of order to the -adic
rationals . In this paper, we denote the ring of integers in
by to avoid a clash of notation with the integers modulo .
Now is the ring of elements in that are integral
over , and is a local ring with the sole prime ideal
generated by . Then GR is the quotient of by
the ideal . It is not difficult to see that GR
GF and GR . Thus, both finite fields and rings
of integers modulo prime powers can be viewed as two different
boundary cases of Galois rings.

The following is the main result of this paper.

Theorem 1.6: Let be an Abelian code of length over
alphabet GR with the minimal support of the Fourier
transform of and . For any , we have

where and are as defined in (3) and (4).

This theorem reduces to Theorem 1.3 when and to
Theorem 1.5 when (recall that in all cases). The
full version of Theorem 1.6 also considers the possibility that

(see Corollary 5.2 to Theorem 5.1).

Example 1.7: As in Example 1.4, let and let be
the cyclic group of order generated by an element .
Here we let be the code in GR whose Fourier trans-
form is supported on the set . In a more
conventional presentation of cyclic codes, this is the code in
GR whose check polynomial is one of
the th-degree irreducible factors of the cyclotomic polynomial

in GR .
Here, and since we are working with

GR . We can think of GR as , where is a
root of unity of order . As in Example 1.4, and

. Therefore, is exactly as in Example
1.4, and so here also. Thus, Theorem 1.6 tells us that

, or equivalently, that all Hamming
weights are divisible by .

To prove Theorem 1.6, we first set down mathematical pre-
liminaries and examine the structure of Abelian codes over Ga-
lois rings in Section II. We shall prove a general form of our the-
orem in Section III, which will assume the existence of counting
polynomials which we shall construct later in Section IV, using
a technique called trace-averaging. This will enable us to prove
Theorem 1.6 and related results in Section V.

II. ABELIAN CODES OVER GALOIS RINGS

Here we set down the mathematical foundations needed to
present and prove our results. We are interested in understanding
the structure of Abelian codes over Galois rings by means of the
Fourier transform. These codes have already been studied, as
remarked above, and moreover, their Fourier transform has al-
ready been presented in [30]. The familiar mathematical devices
used for Abelian codes over finite fields or over generalize
neatly to Abelian codes over Galois rings. In the Sections II-A
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through II-C we provide a brief overview of these fundamentals,
while casting them in a notation and terminology which will
facilitate exposition of analogues of McEliece’s theorem. Sec-
tion II-D introduces many compact notations for dealing with
objects related to the set as defined in (1) or (3).

A. Preliminaries

The Galois ring GR is defined in Section I-B above.
As noted there, one can find in Section II-A of [10] all that we
need to know about Galois rings. One also finds there what we
need to know about the rings of algebraic integers in unramified
extensions of the -adic rationals. These latter rings are impor-
tant because Galois rings are quotients of them and because we
perform many of our calculations in -adic fields. Throughout
this paper, integer will mean rational integer, will be the set of
nonnegative integers, will always be a prime in , and and

will be positive integers. We set . The alphabet for our
codes will be GR . As in Section I-B above, is a root of
unity of order over , and denotes the ring of -adic
integers in , and thus GR is the quotient modulo of

.
Our objects of study will be Abelian codes over GR .

Throughout this paper, will be a finite Abelian group with
, and we shall write multiplicatively with identity (or

simply when there is no cause for confusion). An Abelian code
over GR is an ideal in the group ring GR . We
write an element GR as a formal sum ,
and it is clear that such elements can be regarded as words of
length over the alphabet GR .

Since we wish to calculate weights of codewords, or equiva-
lently, to count zeroes, we would like to perform computations
in rings of characteristic zero, since we cannot be sure in ad-
vance how high our counts will become. Thus, it is more ad-
vantageous to perform calculations in a ring like than to
perform them in our alphabet GR , which is the quotient
of modulo . Furthermore, Theorem 2 of [34] tells us
that we can define a Fourier transform if and only if we have a
ring with roots of unity whose orders include all orders of el-
ements in . Therefore, we let be the least positive integer
such that is a multiple of the order of every element in

, and we let be a root of unity of order over , such

that . Then and its quotient GR con-
tain sufficient roots of unity to allow for a Fourier analysis with
the finite Abelian group , and, for the purposes of counting,

is of characteristic (so it contains ).

B. Quotients, Lifts, and Automorphisms

We shall use GR to denote the quotient
map modulo . Note that restricted to is the quotient
modulo onto GR , and restricted to is the quo-
tient modulo onto . Note that and are roots of
unity or orders and , respectively, in GR and
GR .

We also define a right-inverse of , which we call the
standard lift. Any element GR can be written
uniquely as , where each is either zero or
some power of . Any element can be written

uniquely as , where each is either zero
or some power of . We call these the canonical expansions
of elements in GR and . The standard lift of
above is where when
and when . Note that if and
only if . This property is called preservation of support
because a function from a set into GR will vanish
on precisely those points in where the lifted function
vanishes.

The Galois group of over is cyclic of order and
is generated by the automorphism , which fixes pointwise
and maps to (and hence to ). The Galois group of
over is cyclic of order and is generated by , which
takes to . The restriction of to generates the Galois
group of order of over . Since maps to itself and
units to units in the ring , it does not change the -adic
valuation of any element. Thus, it induces an automorphism on
GR which fixes pointwise and maps to .
This automorphism of GR will also be called by abuse
of notation, and it, in turn, restricts to an automorphism of the
subring GR which fixes pointwise and maps
to . All of these versions of , which take roots of unity
to their th power, will be called the Frobenius automorphism.
Note that and , where the version
of appearing on the left-hand sides of these equations is on

, and the version of appearing on the right-hand sides
of these equations is on GR . Thus, we may say that
the Frobenius automorphism commutes with the quotient map
and the standard lift.

Finally, we will employ the trace, the map
given by

which is familiar from the theory of fields. Since is
-linear, we have , so that trace induces

another map from GR to . This map is also called
trace and is also denoted . Note that commutes with
and as a consequence of commutativity of these maps with
the Frobenius automorphism.

C. Fourier Transform

The Fourier transform for Abelian codes over finite fields
was introduced by MacWilliams [35] as a generalization of the
Mattson–Solomon polynomial [36] for cyclic codes over finite
fields. The basic theorems on the Fourier transform for Abelian
codes over Galois rings are presented in [30], often without ex-
plicit proof, since the methods used for Abelian codes over fi-
nite fields and over generalize neatly. This section summa-
rizes the results we shall need. We shall try to stay close to the
style of Delsarte and McEliece [2] to facilitate comparison with
their results. Nevertheless, we differ from them in writing the
group operation of multiplicatively and in other small points
of notation.

Following Delsarte and McEliece [2], we introduce the bi-
linear pairing of [37], which establishes an isomorphism be-
tween and the group of characters of . This provides a con-
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venient mode of presentation, inasmuch as the Fourier transform
becomes a function whose domain is the group rather than the
set of characters of . Fix elements of or-
ders so that every element of may be written
uniquely as , with for each . Set

for each , so that is a root of unity of order .
If and are in , define

We have defined a function , whose basic
properties we now state. We use the convention that if

and is zero otherwise.

Lemma 2.1: For any and

and for all if and only if

Proof: These can be verified easily.

For , we define the Fourier transform of ,
which we denote by , as the function from to given
by

where we write rather than for the value of at the point
. The Fourier transform maps to , and is in

fact a bijection with inverse

Furthermore, the Fourier transform clearly preserves addition
and -scalar multiplication. It also takes multiplication
in the group ring to pointwise multiplication in

. Thus, the Fourier transform is a -algebra
isomorphism. The Fourier transform and its inverse establish
a bijection between and , so that they
induce a Fourier transform and inverse Fourier transform on
GR and GR . For convenience in pre-
senting our results, it will be useful to introduce a version
of the Fourier transform which has been scaled by , so

we set and call it the scaled Fourier transform.
Since exists in and GR . Then the

inversion formula becomes .
Since our codes are ideals in , a proper subring of

, it will be useful to see which elements of
are actually Fourier transforms of elements in .

Proposition 2.2: (cf. [30, eq. (4)]): Let
(resp., GR ). Then the word is in
(resp., GR ) if and only if for all

. Equivalently, is in (resp., GR )

if and only if for all . The Fourier
transform is thus an isomorphism of GR -algebras from
GR to the GR -algebra consisting of the ele-
ments GR that meet the condition .

Proof: The proof is much the same as that of [2, eq.
(2.10)], [19, Theorem 3], and [10, Proposition 2.1].

The following corollary, needed for our proof, shows that the
scaled Fourier transform and the standard lift are in some respect
compatible.

Corollary 2.3: Let GR and let be the
unique element of so that . Then is in

with .
Proof: This proof is much the same as that of Corollary 2.2

in [10].

If GR , then the proposition shows that
are all determined by the value of . Following Del-

sarte and McEliece (in [2, Section 1]), we define two elements
to be -equivalent if for some (treating

exponents as integers modulo ). This is an equivalence
relation partitioning into -classes (also called cyclotomic
classes), and so the proposition says that if GR ,
then is determined entirely by its values on a set of repre-
sentatives of -classes. The following proposition makes this
observation more precise.

Proposition 2.4: (cf. [30, pp. 2244–2245]): Let be a
set of -class representatives of , and for each , set

equal to the cardinality of the -class of . Then for
each . Let be the GR -subalgebra of GR
as defined in Proposition 2.2. Then restriction of domains
from to is a GR -algebra isomorphism from to

GR .
Proof: The proof is much the same as that of [19, The-

orem 4] or [10, Proposition 2.4].

Combining Propositions 2.2 and 2.4, we obtain the basic
structure theorem for Abelian codes over Galois rings.

Theorem 2.5 (cf. [30, pp. 2245–2246]): Let be a set of
-class representatives of , and for each , set equal to

the cardinality of the -class of . Then the GR -algebra
GR is isomorphic (via Fourier transform followed by
restriction of domains to ) to

GR

This establishes a bijective correspondence between ideals
(codes) in the group ring GR and ideals in the direct
sum , which are of the form GR with

.
Proof: This is just the combination of Propositions 2.2 and

2.4 and the observation that all ideals in a Galois ring are gen-
erated by powers of .

For any function from into a ring, we define a support
of to be a subset of such that for . If our
function takes values in GR , then a -support of
is a subset of such that for . By
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minimal supports or -supports we mean minimal ones under
the inclusion relation . If GR and is the
minimal -support of for , then is
called the tower of supports of .

If is a set of functions, then a support (resp., -support) of
is a set which is simultaneously a support (resp., -support)

of all . If the functions in have GR as their
target space, then has a tower supports formed of its minimal

-supports. This terminology of supports now enables us to
draw out the consequences of Theorem 2.5 for the structure of
Abelian codes over Galois rings.

Corollary 2.6: (cf. [30, p. 2246]): For each ideal (code) in
GR , let be the tower of supports of the set of
Fourier transforms of the elements of . Then is a bijection
between the set of codes in GR and the set of towers

of -closed subsets of .
Proof: The proof is much the same as that of Corollary 2.6

in [10].

This shows that an Abelian code over GR is uniquely
determined by the tower of supports of its Fourier transform.
The sets in the tower are called defining sets in [25], where they
are shown to determine uniquely cyclic codes over Galois rings.
Equivalently, in [30] the collection of sets

called the defining partition, is shown to determine uniquely
Abelian codes over Galois rings. In the case when
GR GF , and the tower is simply , the support
of the Fourier transform modulo . In the finite field GF ,
we have , so is the support of the Fourier transform,
i.e., the spectrum of the code. This prompts us to call the tower
of supports of the Fourier transform of a code in GR
the spectral tower of the code.

D. Accounts and Compact Notations

Here we introduce some notation which is intended to make
constructions like that of in (3) easier to handle. One can ob-
serve that if a sequence is in the set in (3), then so is any per-
mutation of ; the order of the sequences does not play any role
in the determination of the key parameter in (4). This became
apparent in Example 1.4, where, in considering sequences in ,
it was often useful to avoid specifying the order of the terms.
For this reason, we shall be more interested in multisets of el-
ements than in sequences. In fact, it will be convenient to have
a generalization of multisets which allows us to have a nega-
tive count of any given element. Thus, given any finite set ,
we define an account of to be a function from into . If

is an account of , we shall use to denote the value of
at . The set of accounts of is just the free Abelian

group on under addition and is denoted . We can write
the account in additive form or, if there is
danger of confusion of the integer coefficients with the el-
ements , we shall enclose the elements of in square
brackets, so . If , we may consider

to be an element of by considering for
.

Accounts of which take only nonnegative values are iden-
tified with multisets of elements of in the obvious way and
accounts which take only values in are similarly identified
with subsets of . We let denote the set of all multisets
of elements of , and from now on we shall simply say multi-
sets of to mean multisets of elements of . If is a subset
of , we use the notation to mean that is a multiset
supported on , i.e., for and for all .

The size of an account on is and is denoted
by . Note that is a homomorphism of additive
groups. If is a multiset, then size is the same as cardinality.

Now we can formulate an equivalent definition of in (4)
using our new notation for accounts and multisets. For the rest
of this paper, we shall use to denote the set ,
as in Section I-A. With a subset of , we let

(5)

A careful comparison shows that a multiset is in if and
only if it is the multiset of terms of some sequence in the set
defined in (3). Thus, we could define

and this would be equivalent to the definition in (4).

Example 2.7: As in Examples 1.4 and 1.7, let and let
be the cyclic group of order generated by an element . In
both examples, we let be a code over some ring (i.e., we let

be an ideal in ) whose Fourier transform is supported on
the set . We had GF in Example
1.4 and GR in Example 1.7. In both examples,

, so that and were the same.
In Example 1.4, we determined that the minimum-length se-

quences in were all sequences in which each element of
occurred exactly once. Thus, we determined that . Recall
that a sequence is in if and only if the multiset of its terms is
in . Thus, is more convenient to use than because it con-
tains a unique multiset of minimum cardinality: the mul-
tiset with one instance of each element of , which we can
denote as the formal sum

Of course .
In Example 1.4, we also discussed the sequences of length

in , which were obtained from the minimum-length
sequences by deleting an element and inserting two in-
stances of if or two instances of
if . Again, it is easier to handle , wherein there are
precisely multisets of cardinality , which have the
form for or

for .

Since we can think of multisets as sequences without order, it
is useful to provide a terminology and notation which will help
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in counting the number of sequences which can be formed from
a multiset. If , we use as a shorthand for .
Thus, the number of distinct sequences which can be formed
by placing the elements of the multiset in various orders is

.
The definition of in (5), like that of in (3), is still quite

cumbersome, and we shall attempt to make it more manageable.
Note that the multisets in are composed of elements of

. An account is called trivial if it
is supported on , i.e., if whenever .
Note that the first condition in the definition of in (5) says
that is nontrivial.

Now consider the second condition in the definition of . If
, then we define the product of , denoted , to

be

Note that is a homomorphism from the additive group of
into the group . An account is called

unity-product if . Note that the trivial elements of
are always unity-product (indeed, in a trivial way) and

that the empty set is trivial. The second condition in the defini-
tion of in (5) can now be written in a more compact notation

(6)

This is more convenient, but the third condition is still lengthy
to state.

We shall condense the third condition in the definition of
by considering accounts of . If ,

then we define the exponent of , denoted , to be . If
, then define to be the account of expo-

nents in , i.e., is the account with
for all . Note that is a homomorphism of

additive groups from to . With this notation, we
can rewrite the last condition in the definition of in (6) as

If is an account of , we define the sum of , denoted , to
be

Note that is a homomorphism of groups from to the
group of integers modulo under addition. Now we can
further condense our notation for the last condition in the defi-
nition of to obtain

We shall name and more carefully analyze this last condition.

An account on will be called Delsarte–McEliece (or D-M
for short) if . An account is said to
be Delsarte–McEliece (or D–M for short) if is a D-M
account of . So the third condition in the definition of states
that must be D-M.

Example 2.8: We return to the same situation as in Ex-
amples 1.4, 1.7, and 2.7: is the cyclic group
of order generated by

, and . Then it was shown
in Example 2.7 that contains a unique multiset of minimal
cardinality

with . We also saw that contains precisely
multisets of cardinality , which have the form

for or
for .

Note that , so that

Likewise, note that

so that

which is zero, since maps into the integers modulo .

Here we state and prove some important basic results about
D-M accounts of . The first lemma is essentially the same as a
result proved by Ward [6] in a study of -divisibility of weights
in codes, so we omit the proof.

Lemma 2.9: (cf. [6, Lemma 2.1]): All D-M accounts of
have cardinality divisible by . The unique smallest

nonempty D-M multiset of is , which has
cardinality .

This implies corresponding facts about D-M accounts of
.

Corollary 2.10: A D-M account of has cardinality
divisible by , and if it is a nonempty multiset, it has cardi-
nality at least .

Proof: This follows immediately from Lemma 2.9 and the
fact that for any .

Here are some facts about D-M unity-product elements of
that we shall need to know in Section V.

Lemma 2.11: If is a subset of and there is some
with , then there exists a nontrivial D-M unity-product
element of .

Proof: Let be the order of in the group and consider
the multiset . Note that this multiset is nontrivial,
D-M, unity-product, and supported on .
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Lemma 2.12: Suppose that is -closed. Suppose that
is a nontrivial D-M unity-product multiset of minimal

cardinality subject to these conditions. Then will have no more
than instances of any given element, and so will be an
integer not divisible by .

Proof: Suppose that is a nontrivial D-M unity-product
multiset supported on with for some

. We shall construct another nontrivial D-M unity-product
multiset supported on of smaller cardinality. If ,
let , and if , let

. In each case, one can see that is D-M, unity-product,
and supported on . Thus, is D-M, unity-product,
and supported on . Furthermore, since , this new
account is in fact a multiset. Note that

. It remains to show that is nontrivial. If , then
is trivial, and since is nontrivial, this means that must

be nontrivial. So henceforth assume . Then
since is coprime to . Thus, is clearly nontrivial since

if or if .
So it is clear that if is a nontrivial D-M unity-product mul-

tiset supported on of minimal cardinality, then
for all . Thus, is clearly
not divisible by .

We have developed enough notation to express compactly
some notions of previous works. Now we give some nota-
tional conventions whose usefulness will be seen later in this
paper. We shall often use polynomials in the indeterminates

. The boldface letter will always stand
for the list . We can consider an element

as a list of exponents for these indeterminates by
means of the convention . If
or GR , then we define

Note that with this definition we have . If is
a function from to or from to GR and

, we shall use the notation to denote

If is another element of , note that .

III. THE FORM OF THE THEOREM

We now prove a generic version of our analogue of
McEliece’s theorem. It presupposes the existence of poly-
nomials having certain properties; these will be constructed
in Section IV. Although we are interested mainly in -adic
estimates of the Hamming weights (or equivalently, the zero
counts) of codewords, we can work in a more general context,
where we have a function GR , which we call
a weight function, in place of . This function assigns an
integer weight to each letter of the alphabet GR .
If GR is a codeword, the weight of the codeword
is, of course, the sum of the weights of the letters occurring in
it, i.e., , which we denote by . The state-

ment of our theorem uses extensively the compact notations
introduced in Section II-D.

Theorem 3.1: Let be a polynomial
in with the property that

for all . Suppose that GR with a
support of . Let . Then

where is the set of nontrivial unity-product
with .

Proof: The symbol will always denote congruence
modulo in this proof.

Let us start by considering an arbitrary word in the group
ring GR . Set to be the element of such
that . Then by Corollary 2.3, we have , so
that

Corollary 2.3 further tells us that for all , so that
we may employ the given property of the polynomial to obtain

Now we write using the inverse Fourier transform to obtain

We use the distributive law and some combinatorics to manipu-
late the final term. Then is congruent modulo to

which, using our compact notation, equals

Since is always a root of unity, maps it to its th power,
so that

Now Lemma 2.1 tells us that

so that
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Now we exchange the order of summation and apply Lemma 2.1
to get

We may regard the last expression as a polynomial function
with coefficients in and variables in the set

If we segregate all terms that only have vari-
ables in , we obtain

(7)

where is some polynomial in and is the set of
all nontrivial unity-product with .

Now vary over all words in GR such that is
supported on , i.e., over all constant words. By preservation
of support by (see Section II-B), is also supported on .
So for these words, the second term on the right-hand side of (7)
vanishes. Such words have for all . Thus,

for such words. So

for all whose Fourier transform is supported on . For such
words, varies over all of GR . So

for all GR .
Now it should be observed that any word at all in

GR has GR , so that will al-
ways be the standard lift of the element GR .
Thus, we may replace the first term on the right-hand side of
(7) with , to obtain

(8)

Suppose now that (and, hence, ) is supported on the subset
of . Then, by preservation of support by the standard lift

(see Section II-B), is also supported on . Furthermore, sup-
pose that there is some and some with

. Then we have for some and
some . In this case, note that .
Thus, we can replace the set in (8) with as defined in the
statement of this theorem.

We pause to show some examples of the use of this theorem.
In each example, we furnish a particular polynomial which
allows us to use the theorem in our specific application without
giving a detailed account of how such a polynomial is obtained.
The procedure for constructing these polynomials is the subject
of the next section. The main result of this paper, Theorem 1.6,
follows from Theorem 3.1 applied with a family of polynomials
whose existence is proved in Theorem 4.10 of the next section.

Thus, in the most typical application of Theorem 3.1, we shall
not need to construct explicitly or even write out the polynomial

with which the theorem is being applied. Nevertheless, we
write out explicit polynomials in our examples that follow to
give the reader a notion of the objects used in the inner workings
of Theorem 3.1. The first two examples show the usual scenario
in which knowledge of the existence and degree of the polyno-
mial alone is sufficient to obtain useful results from The-
orem 3.1. This is the usual situation. The third example shows
how one can sometimes obtain more information by an explicit
calculation with .

In our first example, we consider a code over a finite field
to show how our method can be used to recover the results of
Delsarte and McEliece (Theorem 1.3).

Example 3.2: Let be the cyclic group of order gener-
ated by an element and let be the code in GR
GF whose Fourier transform is supported on the set

. In a more conventional presentation of cyclic codes,
this is the code in GF whose check polyno-
mial is one of the quadratic irreducible factors of the cyclotomic
polynomial

in GF . This code is also known as the shortened first-order
Reed–Muller code of length over GF . We have already
investigated codes of this form in Example 1.4.

Here and is a root of unity of order
over . The map is reduction modulo . We claim that the
polynomial has the property
that for any we have

if
otherwise.

That is, . We verify this. It
suffices to evaluate the polynomial on a set of representatives
modulo in , for example, on the elements with

. If we set , then . Since
the minimal polynomial of is , we obtain

If and are both even, then clearly .
If and are both odd, then

. If is odd and is even, then
. If is even and is odd, then

in the same manner. See Example 4.11
for an account of how this polynomial was constructed.

Let be any codeword of ; note that since is
not in the support of the Fourier transform of . Then Theorem
3.1 tells us that

(9)

Now , so that is the set of all
multisets of zeroes and ones. Since

, the only such that are , the set
(also denoted ), the multiset with three instances of the
element zero (which we denote ), and the multiset . Note
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that all these multisets are Delsarte–McEliece (see Section II-D
for the definition of a D-M multiset).

For each such multiset , the set consists of those
multisets that are nontrivial, unity-product, and
have . The reader should consult Section II-D to
be familiar with these conditions. We are concerned with
only when is a D-M multiset. In this case, we can think of

in terms of the set defined in Section II-D: is the
set of with . From Example 2.7, we know
that the minimum cardinality of elements of is . Thus, no

can have for or . So
the double sum in (9) is empty, and so .
From Example 1.4, we know that this is precisely what the Del-
sarte–McEliece theorem predicts. In fact, it is not hard to show
that any nonzero word in this code has three zeroes.

For examples of the application of this theorem to a -code
see Examples 3.2 and 3.3 in [10]. Now we work with a code
over a Galois ring which is neither a finite field nor an integer
residue ring.

Example 3.3: Let be the cyclic group of order gen-
erated by an element , and let be the code in GR
whose Fourier transform is supported on the set

. In a more conventional presentation of
cyclic codes, this is the code in GR whose
check polynomial is one of the quintic irreducible factors of
cyclotomic polynomial in GR .

Here and is a root of unity of order over .
The map is reduction modulo . We claim that the polynomial

has the property that for any , we have

if
otherwise.

That is, . We do not verify this
here, but it suffices to check the values for with

. For if , then
since the denominators of the coefficients

of are divisors of . Such a calculation can be done
with standard mathematical software [38]. See Example 4.12
for an account of how this polynomial was constructed.

Let be any codeword of ; note that since is not
in the support of the Fourier transform of . Then Theorem 3.1
tells us that

(10)

Now , so that is the set of all
multisets of zeroes and ones. One can check that has
total degree , and the coefficient of the monomial in
is nonzero only if is a D-M multiset in . Thus, we need
only consider with and Delsarte–McEliece.

As in the previous example, for any such , the set con-
sists of such that , where and
are as defined in Section II-D. From Example 2.7, we know
that contains no multiset with fewer than 10 elements, thus,

cannot be equal to any such that . So the
double sum in (10) is empty, and so .
Equivalently, all Hamming weights are divisible by . In Ex-
ample 1.7, we learn that this is precisely what Theorem 1.6
predicts about -divisibility of Hamming weights in this code.
In fact, direct computations with mathematical software [38]
can be done to show that the weight enumerator of this code
is .

The two examples above show that if the parameter of the
code exceeds the degree of a polynomial which estimates
zero count modulo , then one instantly knows that

without any difficult calculations. This
is the usual way in which Theorem 3.1 is applied. The following
example shows a situation in which an actual calculation with

yields an interesting weight congruence which goes be-
yond the predictions of -divisibility contained in Theorem 1.6.

Example 3.4: Let be the cyclic group of order
generated by an element and let be the code in
GR whose Fourier transform is supported on the
set . In a more conventional presentation
of cyclic codes, this is the code in GR ,
whose check polynomial is one of the quartic irreducible factors
of cyclotomic polynomial in GR .

Here and is a root of unity of order over .
The map is reduction modulo . We use the same polynomial

which was introduced in the previous example and
which has the property that for
any .

Let be any codeword of ; note that since is
not in the support of the Fourier transform of . Then Theorem
3.1 tells us that

(11)

As in the previous example, , so that
, and for the purposes of computing the sum in

(11), we need only consider with and Del-
sarte–McEliece. Again, for each of these relevant , the set
consists of such that , where and are
as defined in Section II-D. From Example 2.7, we know that
contains no multisets of cardinality less than , and that there is
a unique multiset of cardinality , namely,

Thus, in the notation of Sections II-D and the Introduction, we
have for this code. So Theorem 1.6 predicts that

in this case. In fact, a detailed calculation based
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on Theorem 3.1 with our polynomial will show that
for all .

To resume, is the unique minimal-cardinality multiset in
. From Example 2.7, we also know that contains precisely

eight multisets of cardinality , which have the form

for

or

for

Note that all these multisets are Delsarte–McEliece, with
, and

. These are the only relevant in the
first sum in (11). Note that if ,
then and , so that

. Computing the rest of the coefficients of
(11) in this fashion, we obtain

Note that for any , so we can reduce
the coefficients modulo to obtain

Write each lifted scaled Fourier coefficient in its canonical
expansion (see Section II-B) as . Then note
that , so that

(12)
Note that Proposition 2.2 shows us that for all

, and therefore, as well. Furthermore,
since is always zero or a power of , this means that

. From this it is possible to show that
for all and for all . Since is or a
power of the primitive 255th root of unity known as , all terms
of the sums in (12) are either simultaneously or simultaneously

, and so

which is a stronger statement than that given by Theorem 1.6
alone. Indeed, computations with mathematical software [38]
show that the weight enumerator of our code is

.

These examples have shown us that in order to use The-
orem 3.1, we need to furnish the polynomial as described
in the hypothesis, although sometimes it suffices merely to
know that there exists such a polynomial of a certain (preferably
low) degree. We devote the next section to constructing the
polynomials we need in the case where is , the function
which counts the number of zeroes appearing in the codeword.

IV. TRACE-AVERAGED COUNTING POLYNOMIALS

In this section, we shall devise an adaptation of counting poly-
nomial methods (see [8]–[10], [39]) to the problem of -adic es-
timates of weights in codes over Galois rings. We make use of
one fact, which has been proved in [10]; all but the last state-
ment had been proved previously in [9], [39].

Theorem 4.1 ([10, Corollary 4.9]): For any , there
exists a polynomial of degree

such that for any

if
otherwise.

No polynomial of lower degree has this property. If we write

then

Furthermore, we can always choose so that
when .

The theorem says that the polynomial approximates modulo
the characteristic function of the ideal in .

Example 4.2: We claim that the polynomial
has the property that for any

if
otherwise.

To verify this, it suffices to check that this congruence holds for
. Note that Theorem 4.1 tells us that no lower

degree polynomial satisfies the congruence, and furthermore,
that any cubic polynomial
satisfying the congruence has , as is the case
for .

The construction of polynomials such as these is described in
detail in [10, Section IV]. See especially Example 4.10.

Theorem 4.1 was used to prove analogues of McEliece’s
theorem for Abelian codes over in [8]–[10] by lifting code-
words from alphabet to alphabet . For if is
a lift of a symbol , then ;
equivalently, approximates modulo . Here
we can mimic these efforts by lifting our codes from alphabet
GR to alphabet . Unfortunately, we typically
cannot use the polynomials of Theorem 4.1, which approxi-
mate on , to approximate on .

Example 4.3: Consider the polynomial
from Example 4.2, which approximates modulo

on , where is reduction modulo and is the zero-
count weight function on GF GR . Now suppose
that we want to approximate zero counts in codes over GF
GR . Then we extend to be the zero-count weight func-
tion on GF and we extend to be reduction modulo on

, where is a primitive third root of unity over .
Thus, GF is the image of under . Unfortunately,
although we saw in Example 4.2 that
for all , it is not the case that
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for all . Indeed, does not even approximate
modulo on , because . (To
perform the computation, use the minimal polynomial

.)

Thus, the polynomials of Theorem 4.1 developed in [39],
[9], [10] do not provide -adic approximations of zero count
or Hamming weight for use with Galois rings that are not quo-
tients of . The modification of the polynomials of Theorem 4.1
to overcome this obstacle is the subject of this section.

A. Trace and -adic Valuation

The essential insight of this paper is to use the trace to map
the elements of to , so that the polynomial
of Theorem 4.1 may then be applied. This is not straightforward,
since there can be elements of which themselves are
nonzero modulo but whose traces vanish modulo . That
is, if we take from Theorem 4.1 and simply consider
the function

then can equal modulo even in cases where
does not vanish modulo . So the essential problem is

that trace does not preserve -adic valuation. Trace does respect
-adic valuation in a weaker sense, namely, it never decreases
-adic valuation, because trace is -linear and so

The key idea is to consider

where is a set of representatives of equivalence classes
modulo in . Then, as ranges over , the quantity

will range over a family of elements which are uniformly
distributed among those equivalence classes modulo which
have the same -adic valuation as . Recall that trace commutes
with , so that the distribution of values of modulo
will depend only upon . We guess that will vanish
modulo for more values of as increases. Thus,

will depend only upon and we expect it to vary
somewhat as varies.

In order to perform this procedure, which we call trace-aver-
aging, we need to make precise the notions in the previous para-
graph. For now we shall find it convenient to work with trace on
the ring GR with some positive integer. We need a no-
tion of -adic valuation in this finite ring. Quite naturally, for

GR with , we define

and we set . In order to perform the trace-averaging
procedure sketched out in the previous paragraph, we must com-
pute what fraction of the elements in GR with a given val-
uation are taken by trace to . So for ,
we define

GR
GR

(13)

and our goal will be to compute these values. The answer is
given in Proposition 4.5 later, and the rest of this section is de-
voted to proving it.

Recall the definition of trace; for GR , we have

Note that trace is a -linear map from GR to
GR . Trace is also surjective. This can be
demonstrated by recalling from elementary field theory that
the trace from GF GR to GF GR is
surjective and by employing the commutativity of trace with
reduction modulo . Together, these facts show us that there
is some element in GR whose trace in is modulo

. Then -linearity of trace implies that the image of trace
is all of . Our first step in proving Proposition 4.5 uses the
surjectivity of trace.

Lemma 4.4: Given GR , there exists
GR with and with

Proof: Pick such that
. Then choose so that .

Choose GR with (using surjectivity).
Then set . Then

This lemma enables us to pick a set of representatives of
the equivalence classes modulo in GR with the special
property that for any , we have .
We insist that lie in , which is acceptable since has trace

. We define and note that
since . The cardinality of is , and we would like
to know the cardinality of . By the commutativity of the trace
with reduction modulo , this is the size of the kernel of the
trace map from GF to GF . Thus, . Since is
a class of representatives modulo in GR , every element
of GR can be written uniquely as with each

. Now we can prove our proposition.

Proposition 4.5: For , we have

GR

and

GR

so that

where is defined in (13) above. We also have .
Proof: Since is the only element of infinite valuation

and , we have . So henceforth suppose that
, and we shall calculate . We now use the fact that

we can represent elements of GR using the set as noted
above. The elements GR with valuation are just
those which are represented as where
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for , and for . Since , we
obtain the desired formula for GR .
For our element GR represented as with

, we have

We know that for all , so we
know that if and only if for all , i.e., if
and only if for all . Thus, the elements GR
with valuation and trace are those with for

, and for . Recall that so that
we obtain the desired formula for

GR

Now we can calculate by dividing the cardinalities we have
calculated.

This proposition makes precise the intuition that although
trace does not preserve the -adic valuation of elements in
GR , nevertheless the fraction of elements of a given
valuation which lie in the kernel of trace does increase as
increases.

B. Trace-Averaging Functions

Now we are ready to apply the trace-averaging procedure to
functions. It will simplify matters if we first observe the effects
of trace-averaging on the exact characteristic function of the
ideal in (which only takes values and ) rather
than on the polynomial approximations of this characteristic
function furnished by Theorem 4.1.

Lemma 4.6: For , let be the function
defined by

if
otherwise.

Let be any set of representatives of the equivalence classes
modulo in . Let be defined by

Then

if

if

Thus, is independent of the choice of representatives in .
Proof: Let with . First, let us sup-

pose that . Then, for any , we have
and so . Thus, for all ,
so , which equals by Proposition 4.5.

Now let us suppose that . Then as ranges
over , the quantity takes values in with valua-
tion equal to . Let GR be the quotient
map modulo . Then ranges over the set of units in
GR , taking each value once, and so ranges
over GR , taking each value an equal
number of times. Thus, takes the value

precisely times, where is as defined in (13). Propo-
sition 4.5 tells us that and ,
which completes the proof.

This lemma furnishes us with a function which is sensitive
only to the -adic valuation of its argument and which takes
different values for different -adic valuations. Now we shall
make linear combinations of for to obtain the
characteristic function of the ideal generated by in .

Lemma 4.7: With as defined in Lemma 4.6, let

Then

if
if

for all .
Proof: For an element of a given valuation, plug in the

values of given in Lemma 4.6 and perform a routine cal-
culation involving telescoping sums.

We could make a polynomial approximation to the function
defined in Lemma 4.7 above by replacing the which appear

in its definition with trace-averaged polynomials. For , as de-
fined in Lemma 4.6, is just a trace-averaged version of , which
is approximated by the polynomials in Theorem 4.1. Suppose
that we proceed in this way and desire to construct a polynomial
which approximates modulo . Looking at the definition of

, we would want to have a polynomial which approximates
modulo , or equivalently, a polynomial which ap-

proximates modulo . Thus, we should trace-average
the polynomial of Theorem 4.1, which approx-
imates modulo . All the other would also need
to be approximated modulo , since all the coefficients
of the functions in the expression for have the same -adic
valuation.

If we trace-average more carefully, we can reduce the size of
the set of units over which we sum and then we shall not need
to divide by so many powers of to get our trace-averaged func-
tion. This will allow us to use less precise (and hence lower de-
gree) polynomial approximations. We proceed to make a more
selective set of units. For , let GR denote the
multiplicative group of units in GR and let GR
denote the subgroup of GR consisting of elements con-
gruent to modulo . Note that GR is a sub-
group of GR . Let GR be a set of represen-
tatives of equivalence classes in the quotient of GR
modulo . If , then GR GF
and GF , and so GR . If

, then GR GR , and we
shall insist that GR in this case. Now each ele-
ment in GR can be represented uniquely as where

GR and . An element of GR is a
unit if and only if it is nonzero modulo , and the powers of
form a set of representatives of the nonzero congruence classes
modulo . Thus, each element in GR can be represented
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uniquely as where GR , and
.

Now we lift the sets we just defined to via the stan-
dard lift , which takes units in GR to units in .
Let GR and . Note that the stan-
dard lift lifts elements of GR into and so

. Furthermore, note that lifts GR to
, so that we have when or .

Let

Then is a set of representatives modulo for , i.e.,
is a lift (perhaps not the standard lift) of GR . Now

we shall trace-average more efficiently in the following lemma:

Lemma 4.8: Let and be as defined in Lemma 4.6. Let
be the set defined in the text above. Let be

defined by

Then .
Proof: Let and be the sets defined in the text pre-

ceding this lemma. Note that for any and

where the second equality uses the -linearity of trace along
with the fact that , and where the third equality
uses the fact that is a unit in , and so the -adic valuation
of is the same as that of . Thus,

On the other hand

where the final equality uses in the role of in Lemma 4.6.
Thus, we conclude that

Observing that , we finish the proof.

Now we can obtain a new version of the result in Lemma 4.7
by using these new trace-averaged functions instead of the
functions .

Lemma 4.9: With as defined in Lemma 4.8, define
to be

Then

if
if

for all .
Proof: Use Lemma 4.8 to substitute the functions for

, and then Lemma 4.7 completes the proof.

This lemma serves as the model for the trace-averaging tech-
niques we shall apply to polynomials. In the next subsection, we
shall replace the by trace-averaged polynomial approxima-
tions to obtain the polynomials we need to prove Theorem 1.6
from Theorem 3.1.

C. Trace-Averaging Polynomials

Now we shall apply our trace-averaging techniques to poly-
nomials, especially those furnished by Theorem 4.1. We shall
continue to use the sets for as defined in Section IV-B
in the text preceding Lemma 4.8. Given any polynomial

and , we define

Given any , we have

(14)

which is essentially the trace-averaging technique used in
Lemma 4.8. From this we can now make a polynomial approx-
imation of the function in Lemma 4.9.

Theorem 4.10: For each , let be
the polynomial as described in Theorem 4.1. For each with

and each , let

Let

Then for any

if
if
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We can write

where is the set of D-M multisets of having cardinality less
than or equal to and where
each is an element of .

Proof: Theorem 4.1 says that approximates
modulo the function defined in Lemma 4.6. Then
(14) shows us that for any

where is defined in Lemma 4.8. Thus,

and for , we have

Now adding these together along with a constant, we have

for all , where is as defined in Lemma 4.9. Now
Lemma 4.9 completes the proof of our congruence for .

By Lemma 4.13 below, we can write each as a poly-
nomial with coefficients in and monomials of the form

, where must be a D-M multiset of . Thus, we can write

where is the set of all D-M multisets and the coefficients
lie in . Then Lemma 4.14 shows that the degree of
does not exceed . Since the
degree of is , we may restrict the index set of our sum from

to the set as defined in the statement of this theorem.

This establishes the existence of a polynomial which can be
used in Theorem 3.1 to prove Theorem 1.6. We provide two
examples of the computations which would be involved in the
trace-averaging procedure. They explain the origin of the poly-
nomials used in Examples 3.2, 3.3, and 3.4. In typical appli-
cations of Theorem 3.1, such as those use to prove Theorem
1.6, we shall not need to make specific computations such as
these; the existence of the polynomials we need will be guar-
anteed by Theorem 4.10 above, and their degrees are shown to

be sufficiently low in Lemma 4.14 below. So the following ex-
amples show calculations that would not normally need to be
performed; nonetheless, they illustrate the algebraic workings
of the trace-averaging procedure.

Example 4.11: Let us consider the case when
and , so that GR GR GF . Then
GF is the reduction modulo of , where is a prim-
itive third root of unity over . Suppose that we are inter-
ested in a polynomial with the property that for any

if
otherwise.

Then Theorem 4.10 tells us that we should use
, where with

the polynomial furnished by Theorem 4.1. In Example 4.2, we
saw that we could set . Then
we compute by applying the trace-averaging operator
for polynomials, which was defined at the beginning of this
subsection. Note that since we are
working with a finite field, and since . Thus,

Recalling that the minimal polynomial for is
and that , we compute

. Thus, Theorem 4.10 tells us that the polynomial
has the property we want.

Since and are always set to be elements of and
since we are interested in the output of modulo ,
we could equally well use the polynomial .
Recall that this polynomial was used in Example 3.2 to compute
zero counts modulo in codewords of a code over GF .

Example 4.12: Let us consider the case when
and , so that GR GR . Then GR is
the reduction modulo of , where is a primitive third
root of unity over . Here is reduction modulo and
is the zero count weight function on GR . Suppose that we
are interested in a polynomial with the property that
for any

Then Theorem 4.10 tells us that we should use

where with the polynomial fur-
nished by Theorem 4.1.

So we need polynomials and guaranteed to
exist by Theorem 4.1. The construction of such polynomials
is described in [10, Sec. IV]. See especially Example 4.10 of
that paper, which describes the construction of . By
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such methods and with the aid of mathematical software [38] to
perform the computations, one can construct polynomials

and

One can verify that takes the appropriate values modulo
on all of by checking it at the points , for

clearly when , since
all denominators of coefficients are divisors of . Similarly, one
can verify that takes appropriate values modulo on

by checking its values at .
Now we compute by applying to our

polynomials the trace-averaging operator defined at the begin-
ning of this section. Note that and since

. We must determine the set used in trace-averaging;
it is defined in Section IV-B as a set of representatives in the
quotient of

GR

modulo GR . So we may set
. Then

Recalling that the minimal polynomial for is
and that , one can use mathematical software [38] to
compute

The computation is similar to the calcu-
lation done in the previous example, since . We obtain

From these, we can compute

which is a polynomial in which approximates
modulo in the manner desired. If one adds integer

multiples of to the rational coefficients of in such a
way as to make each rational coefficient as small in magnitude
as possible, one obtains the polynomial used in Examples 3.3
and 3.4.

We finish this section by stating and proving the lemmas
which were used to bound the degree and describe structure
of the polynomials of Theorem 4.10. The first of our proposi-
tions uses some of the compact notations from Section II-D in
its statement and proof, so it might be helpful for readers to re-
view these.

Lemma 4.13: Suppose that and with
and . Then

where is the set of D-M multisets of of cardinality and
. If or , then .

Proof: First note that is -linear. Therefore, it will
suffice to prove the theorem for the monomial . Then

where in the last expression is as defined in the statement
of this lemma. Note that , so that .
Now let us consider the term
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where in the last step it is permissible to think of , an integer
modulo , as an exponent because has order . Thus,

if and
otherwise.

Equivalently, our term is when is Delsarte–McEliece
and vanishes otherwise. Thus,

as we were to show.
It remains to show that if or , then . When

or , then according to the definition in
Section IV-B preceding Lemma 4.8, so this is immediate.

Now we shall prove a result about the degree of the polynomial
of Theorem 4.10. Note that Lemma 4.13 shows that if

is of degree , then is of degree at most , since is a
monomial of degree . We must be careful to note that trace-
averaging may strictly decrease the degree of a polynomial, for
the set of Lemma 4.13 may be empty for a given value of .

Lemma 4.14: The total degree of the polynomial
defined in Theorem 4.10 above is less than or equal to

.
Proof: The polynomial is a constant plus a linear

combination of the polynomials for , which
are also defined in Theorem 4.10. By the remark preceding this
lemma, we know that the degree of is less than or equal
to the degree of , which is described in Theorem 4.1
and used in Theorem 4.10 to define . We also know that

has degree

as given in Theorem 4.1. Thus,

We shall show that
is a strictly increasing function of for , which will
complete our proof. If we assume that , then it is not
hard to show that

But this last expression is at least ,
which is a positive integer.

This finishes the development of what we need to know about
our trace-averaged counting polynomials in order to prove The-
orem 1.6 from Theorem 3.1. The next section is devoted to this
proof and its ramifications.

V. ANALOGUES OF MCELIECE’S THEOREM

Here we prove the main result of the paper (Theorem 1.6) and
show that various generalizations and analogues of McEliece’s
theorem extant in the literature are specializations of our the-
orem. We will see the power and scope of the counting poly-
nomial method in its ability to unify existing results and obtain
new ones.

A. Abelian Codes Over Galois Rings

To prove Theorem 1.6, we simply combine Theorem 3.1
with the trace-averaged counting polynomials developed in
Section IV-C. We start with a somewhat more general theorem,
of which Theorem 1.6 will be a corollary.

Theorem 5.1: Let be given. Let GR
and suppose that is supported on . Let . Let
be the polynomial defined in Theorem 4.10, written

where denotes the set of all D-M multisets of of cardinality
at most . Then

where is the set of nontrivial unity-product
with .

Proof: This is the application of Theorem 3.1 using the
polynomial , whose relevant properties are proved in The-
orem 4.10.

Now we shall prove Theorem 1.6 as a corollary. We rewrite
the assumptions in the notation and terminology which has been
developed for this paper. See Section II-D for the correspon-
dence between the notation used in Section I-B in the statement
of Theorem 1.6 and the notation used here. Note also that this
version of Theorem 1.6 does not require the assumption that the
Fourier transforms of codewords vanish at .

Corollary 5.2: Let GR and suppose that is
supported on the set with . Let be the cardinality of
the smallest nontrivial unity-product D-M multiset in
(which exists by Lemma 2.11). Then

with .

Proof: Let . Set . If
, then the result is trivial, so assume henceforth.

Then , and so

so that

(15)

Now apply our theorem with this value of to obtain

and note that is empty if is a D-M multiset of cardinality
less than . But all are D-M multisets with cardinality less
than by the definition of in the theorem and by (15). This
gives the congruence we were to prove. Now ,

so that if and only if , i.e., if and only if
.
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We pause to present some examples illustrating the use of
Corollary 5.2.

Example 5.3: Let and let be the cyclic group of
order generated by an element . Here we let be the
code in GR whose Fourier transform is supported on
the set . In a more conventional presenta-
tion of cyclic codes, this is the code in GR
whose check polynomial is one of the th-degree irreducible
factors of the cyclotomic polynomial in GR .
The family of codes for was investigated in Example
1.7. It was determined that for this code, and thus Corol-
lary 5.2 (known before as Theorem 1.6) tells us that for any
word , we have . Equivalently,
our theorem shows that the Hamming weights are divisible by

. Example 3.3 shows that when , this result is sharp:
the words of have Hamming weights divisible by , and the
weight enumerator is ,
so some words do not have Hamming weights divisible by .
On the other hand, Example 3.4 shows that our theorem is not
sharp for : the theorem merely predicts that Hamming
weights are divisible by , where in fact the weight enumerator
is . Thus,
all Hamming weights are divisible by (but not all by ). Re-
call that in Example 3.4, a calculation using Theorem 3.1 and
detailed knowledge of the polynomial used to estimate weights
was used to demonstrate that all Hamming weights in this code
are divisible by . Thus, it can happen that the estimates which
give rise to Theorem 5.1 and Corollary 5.2 are not as sharp as
possible, but stronger estimates can be recovered from the gen-
eral theorem (Theorem 3.1).

The following example shows how Corollary 5.2 can also be
applied to relatives of cyclic codes. We consider a family of
codes which are used in constructing the Kerdock codes over
Galois fields of characteristic (see [22] for details).

Example 5.4: For each positive integer , let be the code
described in the previous example. Let be the code generated
by adding constant words to elements of , i.e., the minimal
support of the Fourier transform of is .
Let be the code obtained by appending one extra letter to
each word of in such a way that the letters in each word sum
to zero.

In Example 2.7, we investigated the set (as defined in Sec-
tion II-D) for the codes . A similar analysis shows that for

is quite similar: it contains no multiset of cardinality less than
, and it contains a unique multiset of cardinality , which is

precisely the same as the one in for . Thus, for ,
and so Corollary 5.2 tells us that

(16)

for all .
Now let us consider what this implies for the code . Any

word is obtained by taking a word and ap-
pending the symbol to make a word whose letters
sum to zero. Thus,

Thus, in view of (16), . Since words in
have length , this means all zero counts and Hamming

weights are divisible by .
When is odd and , the results of Nechaev and Kuzmin

[22] show that our claim that zero counts and weights are di-
visible by is sharp, i.e., there exists some word in
with zero count and Hamming weight not divisible by .
Specifically, they prove that the zero counts which occur are

, and .
When is even and , our claim that zero counts

and weights are divisible by is not sharp. For Kuzmin
and Nechaev [22] show that the zero counts that occur are

, and . Thus,
all zero counts and weights are divisible by .

Note that one can also use Theorem 5.1 and Corollary 5.2
to count the number of instances in a codeword of a partic-
ular symbol other than . If GR , then counting the
number of instances of in GR is equivalent to
counting the number of zeroes in the word where
for all . So we apply our theorem to , noting that
for all and .

Now we shall show how various results already in the litera-
ture are special cases of our theorem. We obtain a theorem for
finite fields by setting and a theorem for the rings by
setting .

B. Abelian Codes Over Finite Fields

Throughout this section, we fix so that GR
GF GF , a finite field. We shall show that in this case,
Theorem 5.1 implies the generalization of McEliece’s original
theorem due to Delsarte and McEliece [2]. Theorem 5.1 also
includes sharper versions of the Delsarte–McEliece theorem,
which can be obtained by increasing the parameter , which
controls the -adic precision of the weight congruence. The
main point of the theorem of Delsarte and McEliece is given
as Theorem 1.3, but we shall prove their full theorem, which is
somewhat more precise. The following is equivalent to the Del-
sarte–McEliece theorem.

Theorem 5.5: (Delsarte–McEliece [2]): Let GF
and suppose that is supported on the -closed subset with

. Let . Let be the cardinality of the smallest
nontrivial unity-product D-M multiset in (which ex-
ists by Lemma 2.11). Let . Then

where is the set of nontrivial unity-product D-M multisets
with . The sum over is a -adic integer

so that

and if is varied over all codewords whose Fourier transforms
are supported on , then there is some such that
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Proof: We apply Theorem 5.1 with and as given
in the statement of this theorem to obtain

where is the set of D-M multisets of having cardinality less
than or equal to is the coefficient
of in the polynomial employed in Theorem 5.1, and

is the set of nontrivial unity-product with
. By our given assumption, will be empty for

all D-M multisets with , since implies
. Thus, we have

where is the set of all D-M multisets of having cardinality
equal to .

We set in Theorem 4.10, where is defined, to see
that

where is as defined in Theorem 4.1. Note
that the polynomial has degree

and then write it as . By Lemma 4.13, if
, then the coefficient in will be

so that

Thus,

where is as defined in the statement of this theorem. Now by
Lemma 2.12, is not divisible by for any . So

is a -adic integer. Furthermore, is -adically integral
for all and , so that is -adically integral for
all . Therefore, the sum over in the last expression is

-adically integral. Thus, to prove the first congruence asserted
by this theorem, it suffices to show that

Now by Theorem 4.1.
Thus,

and so

Thus the first congruence asserted by this theorem is true.

This congruence is the same, allowing for different nota-
tional conventions, as a congruence in the proof of Delsarte
and McEliece [2, eq. (4.29)], which, as those authors note, is
equivalent to their theorem. In particular, knowing that the sum
over is a -adic integer immediately gives us

To prove the sharpness result, it will suffice to show that

or equivalently

for some with supported on . From Lemma 2.12, we know
that is an integer not divisible by for all . Thus,
has a multiplicative inverse in GF , which we can also write
as without confusion. Since is a homomorphism of rings,
it suffices to show

for some with supported in . Now, using the fact that
commutes with , it is straightforward to show that

, and note that , so that .
Thus, it suffices to show

(17)

for some with supported in .
Let be a set of -class representatives for . For each
, denote the -class of by . Let so that

is a set of -class representatives for . Thus, is the disjoint
union . Set for each . Then

. For any , we have

so that

where the second equality is from Proposition 2.2 and the third
equality uses that fact that takes any element in a finite field
to its th power. So we have

(18)

Thus, can be viewed as a monomial in the variables
.
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We claim that if are distinct, then and give
rise to different monomials in (18). Note that for any , we
have for all by Lemma 2.12. Thus, we

see that for any , the exponent
is the -ary expansion of an integer with , where

is the digit for the -place. Since each such number
has a unique -ary expansion, this means that if , then
the exponents of we get when we apply (18) to and
will coincide if and only if for

and . Thus, the monomials we get by applying (18) to
and will coincide if and only if and take equal values
at all points with , and , i.e.,
if and only if . This proves that for each is
equal to a monomial in the variables where the
exponent of is strictly less than and different give
rise to different monomials. Now note that is nonempty since
it contains the smallest nontrivial unity-product D-M multisets
supported on . Furthermore, recall that is an integer
not divisible by for all , so that is equal to a
nonzero polynomial with coefficients in GF and variables in

, where never occurs with exponent or higher.
We need to prove that this polynomial does not vanish for some
choice of where is supported on .

We are varying over all codewords with supported on ,
or equivalently, by Proposition 2.2, for all codewords with
supported on . Thus, by Theorem 2.5, can vary over all
of GF . Since and is a unit in fields

of characteristic varies over the same set as . So we
have equal to a nonzero polynomial with coefficients
in GF and variables where the degree in each

is less than and each is varied independently of the
others over the field GF . A basic result in the theory of
polynomials over finite fields (given in [2, Lemma 3.10]) says
that since the size of the set over which each is varied exceeds
the degree of in the polynomial, there will be an assignment
of values for the variables where the polynomial does not
vanish. So we have proved (17) for some with supported on

, thus completing the proof of this theorem.

We have now shown that the theorem of Delsarte and
McEliece is one specific case of Theorem 5.1 when
and when we set the -adic precision (governed by the size of

in Theorem 5.1) to be just sufficient to show that
is not always identical to . Raising provides
sharper versions of the Delsarte–McEliece theorem, which are
correspondingly more complex.

It might also be possible to obtain congruences of increased
accuracy (and increased complexity) by expanding upon the ap-
proach of Delsarte and McEliece [2]. Their relation (4.10) for
the zero count in terms of the Fourier transform is an exact ex-
pansion, which is then truncated in (4.14) to obtain a congru-
ence whose -adic accuracy governs the precision of their the-
orem. If more terms were preserved and if the coefficients
in the expansion could be estimated with increased accuracy,
it might be possible to obtain congruences like those furnished
by Theorem 5.1. Determining the coefficients with greater
accuracy would amount to obtaining more accurate versions of

the Stickelberger relation [40]. We leave such matters for future
work, and we now investigate a different specialization of The-
orem 5.1 which recapitulates some recent results.

C. Abelian Codes Over Integer Residue Rings

Throughout this subsection we fix , while can be
any positive integer. Thus, we are working in the case when
the alphabet of our code is GR GR ,
the integers modulo . We prove the following result of Katz
(of which Theorem 1.5 above is a part) by setting in
Theorem 5.1.

Theorem 5.6: ([10, Theorem 5.1 and Corollary 5.2]): Let
be given and set . Let

and suppose that is supported on . Let .
Let

be the polynomial defined in Theorem 4.1. Then

(19)

where is the set of all with ,
and . If contains some element which is not , then
some with is nonempty. Let be the least multiple
of such that . Then

Proof: The symbol will always denote congruence
modulo in this proof.

We apply Theorem 5.1 with to obtain

where is the set of D-M multisets of having cardinality less
than or equal to is the coefficient of in the polynomial

employed in Theorem 5.1, and is the set of nontrivial
unity-product with . Since , we
have . Thus, all multisets of are of the form
with , and then . Furthermore, since ,
the D-M multisets of are precisely those with .
Thus, we have

Since stands for the single indeterminate . Looking
at the definition of in Theorem 4.10 and recalling that

and , we have
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Recall from the discussion preceding Lemma 4.8 that
when , so that

Using the notation for given in the statement of this
theorem, we have

where the second equality uses the fact that is a root of unity
of order . Thus, for with ,
and we have

is the set of nontrivial unity-product with
. Since , this means that is the set

of with
and . For any account in , say ,
we define by setting .
Note that is an group isomorphism from to .
Then , where is as defined in the
statement of this theorem. So

where we have used the observation that . Since
, we have

so that

We note that the only unity-product multisets of of cardinality
less than two are and , and these are supported on .
Thus, and are empty and we can omit the and

terms from the sum to obtain congruence (19), which we
were to prove.

Now suppose further that contains some element other
than . If is the order of , then the multiset is
an element of . This proves the existence of a nonempty

with a multiple of . Let be as defined in the state-
ment of this theorem. Then set and consider
congruence (19). We have , so
that for . Therefore, congruence (19) becomes

which is what we were to show.

The preceding theorem is a strengthening and generalization
of a result of Wilson [8], [9], which in turn is a strengthening and
generalization of a result of Calderbank, Li, and Poonen [7]. As
noted in Section I-A, the congruence

in this theorem is sharp for codes which are free -modules,
but is not sharp for infinitely many other Abelian codes over

[11]. In particular, it is always sharp when (since all
vector spaces are free modules). There one recovers the results
of McEliece and Delsarte for Abelian codes over prime fields.

VI. CONCLUSION

A single analogue of McEliece’s theorem for -adically esti-
mating the zero counts of words in Abelian codes over Galois
rings contains within itself the results of Delsarte and McEliece
for Abelian codes over finite fields and the more recent results of
Katz [10] (improving those of Calderbank, Li, and Poonen [7]
and of Wilson [8], [9]) for Abelian codes over . This shows
that the counting polynomial methods first employed by Wilson,
when applied with appropriate further insights, are powerful
enough to recover all these analogues of McEliece’s theorem,
which were originally proved using a variety of techniques.

Besides unifying existing results, the theorem proved here
tells us new things and opens new directions for research. In one
direction, it can provide us with strengthened versions of the the-
orem of Delsarte and McEliece in [2]. These stronger versions,
like the original theorem, express the approximate zero count
of a codeword in terms of the word’s Fourier transform. They
are stronger in that one may obtain the approximate zero counts
with any desired -adic precision, keeping in mind that increas-
ingly precise versions will be correspondingly more complex.
The original theorem of McEliece [1] not only gave the integer

such that all codewords in a specified cyclic
code over GF have ,
but also provided a formula for modulo in terms
of the Fourier transform of . This was used in the calcula-
tion of weight enumerators of cyclic codes in [41]. It is now
possible to obtain generalizations which give approximations
modulo or modulo even higher powers of . We note that
it has already been shown that analogues of McEliece’s theorem
of arbitrary -adic precision can be devised for Abelian codes
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over . For example, see [10, Theorem 5.1], which appears
as Theorem 5.6 in this paper. Our unified theorem tells us that
arbitrary accuracy can be also be obtained in the same fashion
for Abelian codes over finite fields.

In another direction, our theorem tells us something about the
-adic valuation of Hamming weights in Abelian codes whose

alphabets are Galois rings GR with . Such Ga-
lois rings are neither fields nor quotients of , but have some
properties of both. Many researchers recently have undertaken
the study of Abelian codes over Galois rings and their rela-
tives [22], [24], [25], [27]–[32]. It is hoped that this analogue
of McEliece’s theorem will be helpful in their studies.
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