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Abstract. Graphical congestion games provide powerful models for a
wide range of scenarios where spatially distributed individuals share re-
sources. Understanding when graphical congestion game dynamics con-
verge to pure Nash equilibria yields important engineering insights into
when spatially distributed individuals can reach a stable resource alloca-
tion. In this paper, we study the convergence dynamics of graphical con-
gestion games where players can use multiple resources simultaneously.
We show that when the players are free to use any subset of resources the
game always converges to a pure Nash equilibrium in polynomial time
via lazy best response updates. When the collection of sets of resources
available to each player is a matroid, we show that pure Nash equilibria
may not exist in the most general case. However, if the resources are ho-
mogenous, the game can converge to a Nash equilibrium in polynomial
time.

Keywords: congestion game, resource allocation, matroid, games on
graphs, graphical.

1 Introduction

Congestion games have found applications in many scientific and engineering
areas. The original congestion game model was introduced by Rosenthal [1]. The
idea behind this model is that players select resources to use, and the payoff a
player gains from using a given resource depends upon that resource’s congestion
level (i.e., the total number of players using it).

The original congestion game model is very general, because it allows different
resources to be associated with different payoff functions, and it allows players
to use multiple resources simultaneously. Also, the game has a very appealing
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feature called the finite improvement property., which means that if the players
keep performing asynchronous better response updates (i.e., the players improve
their strategy choices one at a time) then the system will eventually reach a pure
Nash equilibrium - a strategy profile from which no player has any incentive
to deviate. Intuitively, the finite improvement property means greedy updating
always converges to a stable strategy profile.

The generality and pleasing convergence properties of the original congestion
game model have led to its application to a wide range of resource allocation
scenarios (e.g., economics [2], communication networks [3–6], network routing [7],
network formation [8], ecology [9], and sociology [10]). However, the original
model has the limitation that each player using the same resource gets the same
payoff from it. Treating players identically is unsuitable for many scenarios in
ecology [11], network routing [12], and wireless networks [13] where players are
heterogenous. This has motivated many adaptations of the original congestion
game, including congestion games with player-specific payoff functions [4,14] and
weighted congestion games [16].

In [17], we considered the graphical congestion game (see Figure 1), an im-
portant generalization of the original congestion game concept. This model not
only allows player-specific payoff functions but also models how the spatial po-
sitioning of the players affects their performance in the game. In the original
congestion game model, any pair of users cause congestion to each another when
using the same resource. In the graphical congestion game, we regard the play-
ers as vertices in a conflict graph. Only linked players cause congestion to each
other. Unlinked players can use the same resource without causing congestion
to each other. We describe some scenarios that can be modeled using graphical
congestion games in Table 1.

Fig. 1. A strategy profile in a graphical congestion game. The players (i.e., the vertices
on the graph) select sets of resources to use. Player 1 is using resources 1 and 2. The
amount of payoff a player gains from using a particular resource is a non-increasing
function of the number of its neighbors who are also using that resource.
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Table 1. How graphical congestion games can be used to model various resource
sharing scenarios

Scenario Players
Represent

Resources
Represent

Links in the Conflict Graph Represent

Ecology
[9]

Organisms Food Sources
or Habitats

Organisms are spatially close enough to com-
pete for the same food source or habitat.

Wireless
Networks
[13,15,17]

Wireless
Users

Channels Users are close enough to cause significant in-
terference to each other.

Market
Shar-
ing [23]

Businesses Markets Business locations are close enough to compete
over the same customers.

Although the graphical congestion game has a wide-range applications, it is
no longer guaranteed to possess the finite improvement property or even pure
Nash equilibria. Since the graphical congestion game is highly practically rele-
vant yet may lose some nice features, the obvious question is as follows:What are
the conditions under which a graphical congestion game possesses a pure Nash
equilibrium or even the finite improvement property? This is a question of fun-
damental importance for many spatially distributed resource sharing scenarios.

1.1 Problem Definition

A generalized graphical congestion game is a 5-tuple g =
(N ,R, (ζn)n∈N , (f r

n)n∈N ,r∈R, G), where:

• N = {1, 2, ..., N} is a set of N players.
• R = {1, 2, ..., R} is a set of R resources.
• ζn ⊆ 2R is1 the collection of resource sets available to player n ∈ N . During
the game player n selects a member of ζn to use. Therefore ζn can be viewed
as the set of strategies available to player n. Sometimes we refer to ζn as
the collection of available resource sets, and the members of ζn as available
resource sets.

• f r
n is the non-increasing payoff function for a player n ∈ N using resource
r ∈ R.

• G = (N , E) is an undirected graph with vertex setN and edge set E . Here E is
a set of unordered pairs {n, n′} of players. We say that player n ∈ N is linked
to player n′ ∈ N if and only if {n, n′} ∈ E . We can interpret {n, n′} ∈ E as
being equivalent to saying that n and n′ can cause congestion to one another.
We assume {n, n} /∈ E for each player n ∈ N . In other words, we assume that
no player is adjacent to itself2. We refer to G as the conflict graph.

1 Here 2R denotes the set of all subsets of R.
2 This is just a convention we adopt for simplicity. All our results persist if we allow
players to be adjacent to/cause congestion to themselves, but the results would look
more cumbersome. One could emulate the idea n is adjacent to themselves under
our framework by replacing their payoff functions fr

n(x) with new payoff functions
fr
n(x+ 1).
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A strategy profile X ∈ ΠN
n=1ζn consists strategy (i.e., a collection of resources)

Xn ∈ ζn of each player n ∈ N .
We define the congestion level crn(X) of resource r ∈ R for player n ∈ N

within strategy profile X to be crn(X) = |{n′ ∈ N : {n, n′} ∈ E , r ∈ Xn′}|. In
other words crn(X) is the number of neighbors that n has in the conflict graph G
which are using resource r in strategy profile X . The total payoff that a player
n gets in strategy profile X is

∑

r∈Xn

f r
n (c

r
n(X)) .

This is the sum of the payoffs f r
n (c

r
n(X)) that n receives from each of the re-

sources r within the resource set Xn that n chooses.

1.2 Better, Best, and Lazy Best Response Updates

We are concerned with how graphical congestion games evolve through time as
the players attempt to improve their resource choices.

Let us define an [n] → S update as the action where player n ∈ N
switches to use resource set S ∈ ζn, while all other players retain their ex-
isting resource selections. If the current strategy profile is X, then the [n] → S
update changes the strategy profile from X to a new strategy profile Y =
(X1, .., Xp−1, S,Xp+1, .., Xn). We wish to emphasize that an [n] → S update
(and, in fact every update we consider) only involves one player changing its
strategy, while all other players keep their strategy choices unchanged.

We say that an [n] → S update is a better response update if it improves
player n’s payoff, i.e.,

∑

r∈Yn

f r
n (c

r
n(Y )) >

∑

r∈Xn

f r
n (crn(X)) .

We say that [n] → S is a best response update if it improves player n’s payoff
to the maximum possible value among all better responses from the current
strategy profile.

We say that [n] → S is a lazy best response update [16] if (a) [n] → S is a
best response update, and (b) for any other best response update [n] → S′ that
n could perform, we have |Xn − S′|+ |S′ −Xn| ≥ |Xn − S|+ |S −Xn|. In other
words, a lazy best response update is a best response update which minimizes
the number |Xn − S|+ |S −Xn| of resources which n must add or remove from
their currently chosen resource set Xn.

We say a strategy profile X ∈ ΠN
n=1ζn is a pure Nash equilibrium3 if and only

if no better response updates can be performed by any player from X.
We give an illustrative example of such a graphical congestion game in Figure

1. Suppose that the collections of available resources for the four players/vertices

3 We always suppose players use pure strategies and so all of the Nash equilibria that
we discuss are pure.
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are ζ1 = 2{1,2,3}, ζ2 = ζ4 = {∅, {1}}, and ζ3 = {∅, {2}}. Assume that the payoff
functions are f r

n(x) = 1 − x for each player n and resource r. In the strategy
profile X shown in Figure 1, player 1 uses strategy X1 = {1, 2} and receives a
total payoff of f1

1 (c
1
1(X)) + f2

1 (c
2
1(X)) = (1 − 2) + (1 − 1). From this strategy

profile, player 1 could perform the better response update [1] → {2} (which is
not a best response update), or the best response update [1] → {2, 3} (which is
not a lazy best response update), or the lazy best response update [1] → {3}
(which leads to a pure Nash equilibrium).

We are interested in how graphical congestion games evolve when the players
keep performing better response updates. Nash equilibria are the fixed points
of such dynamics, since no player has any incentive to deviate from a Nash
equilibrium.

We can put properties a congestion game might possess in the ascending order
of strength/desirability as follows;

1. A pure Nash equilibrium exists.
2. A sufficiently long sequence of lazy best response updates is guaranteed to

drive the system to a pure Nash equilibrium.
3. A sufficiently long sequence of better response updates is guaranteed to drive

the system to a pure Nash equilibrium (the finite improvement property).

This paper is mainly concerned with identifying conditions under which the
generalized graphical congestion games have properties 1, 2, and 3. It should be
noted that the presence of property 3 implies the presence of property 2, which
in turn, implies the presence of property 1. However it is possible to construct
games with only subset (or none) of the above properties.

1.3 Previous Work

Graphical congestion games were introduced in [19], where the authors consid-
ered linear and non-player specific payoff functions. Such games are proved to
have the finite improvement property when the graph is undirected or acyclic.
But the authors illustrated a game on a directed graph with no pure Nash equilib-
ria. In [20], players are assigned different weights, so they suffer more congestion
from “heavier” neighbors. Both [19] and [20] restricted their attention to “sin-
gleton games” (where each player uses exactly one resource at any given time)
with linear and non-player-specific payoff functions.

In [17], the authors introduced the more general graphical congestion game
model as described in Section 1.1 to model spectrum sharing in wireless net-
works (see Table 1). The model allows generic player-specific payoff functions,
as wireless users often have complicated and heterogeneous responses to the
received interference. The authors showed that every singleton graphical con-
gestion game with two resources has the finite improvement property. They also
gave an example of a singleton graphical congestion game (with player-specific
and resource-specific payoff functions) which does not possess any pure Nash
equilibria. In [13], we extended upon this work by showing that every singleton
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graphical congestion game with homogenous resources (i.e. the payoff functions
are not resource-specific) converges to a pure Nash equilibrium in polynomial
time.

In [15], the authors investigated the existence of pure Nash equilibrium of
spatial spectrum sharing games on general interference graphs, especially when
Aloha and random backoff mechanisms are used for channel contention. They
also proposed an efficient distributed spectrum sharing mechanism based on
distributed learning.

1.4 Our Results

We focus upon the generalized graphical congestion games where players can use
multiple resources simultaneously. In general, a player n can use any available
set of resources from ζn at any given time. Our results suggest that the kinds of
restrictions put on the combinatorial structure of the collections of available re-
source sets, ζn, have a dramatic influence on whether the convergence properties
exist or not.

In particular, we find that when the collections of available resource sets ζn
are “matroids” [21], many powerful results can be derived. A matroid M ⊆ 2U

with a ground set U is a set M of subsets S ⊆ U (called independent sets) which
has the following three properties4;

1. Empty set ∅ ∈ M .
2. If S ∈ M and S′ ⊆ S, then S′ ∈ M .
3. If S ∈ M contains less elements than S′ ∈ M , then there exists some x ∈

S′ − S such that S ∪ {x} ∈ M .

We refer to 1, 2 and 3 in the above list as the matroid properties. Properties 1
and 2 are natural. Property 3 ensures that many examples of “independent set
structures” from combinatorics and linear algebra are matroids. In a graph, the
collection of subsets of edges which hold no cycles is a matroid. If U is a finite set
of vectors from a vector space, and M is the collection of linearly independent
subsets of U , then M is a matroid. Another important example of a matroid is
the uniform matroid {S ⊆ U : |S| ≤ k}, which is the collection of all subsets of
a set U which have no more than k elements. A simple kind of matroid is the
powerset M = 2U = {S ⊆ U} (i.e., the collection of all subsets of U).

A matroid graphical congestion game is a graphical congestion game, within
which the collection of available resource sets ζn of each player n is a matroid
with a ground set R. Matroids are very general, and so matroid graphical conges-
tion games have many applications. In Table 1, we discussed how the graphical
congestion game can be used to model ecologies, wireless networks, and market
sharing. In each of these cases, it is more reasonable to assume that the collection
of available resource sets of each player forms a uniform matroid than to treat
the system as a singleton graphical congestion game. For example, in ecology

4 We write |S| to denote the number of elements in set S and S′ −S to denote the set
of elements in S′ but not S.
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the organisms will be able to access multiple food sources, but they will not be
able to access more than a certain number of food sources because of limited
time and energy. In wireless networks, users can divide their transmission power
among many channels, however they cannot access too many channels because
their total power is limited.5 In market sharing games (e.g., [23]), each player
has a fixed budget they can spend upon serving markets. When the cost of serv-
ing each market is the same, this corresponds to a uniform matroid congestion
game because the number of markets a player can serve is capped. Linked pay-
ers in a matroid graphical congestion game could represent businesses who are
close enough to compete for the same customers. As [16] noted, some network
formation games correspond to congestion games with a matroid structure. For
example, in [22] the authors considered the game where players select spanning
trees of a graph, but suffer congestion from sharing edges with other players.
In such scenarios, the conflict graph could represent which players are able to
observe each others’ actions.

In section 2, we consider the properties of a special important type of matroid
graphical congestion game, the powerset graphical congestion game, within which
the collection of available resource sets ζn of each player n is a powerset ζn = 2Qn

for some subset Qn ⊆ R of available resources. In section 3, we investigate the
properties of more general matroid graphical congestion games. Our main results
are listed below (and illustrated in Figure 2);

• There exist powerset graphical congestion games with homogenous resources
which do not have the finite improvement property (Theorem 1)

• Every powerset graphical congestion game will reach a pure Nash equilibrium
in polynomial time when the system evolves via lazy best response updates
(Theorem 2).

• There exist matroid graphical congestion games which posses no pure Nash
equilibria (Theorem 3).

• Every matroid graphical congestion game with homogenous resources will
reach a pure Nash equilibrium in polynomial time when the system evolves
via lazy best response updates (Theorem 4).

Our main result is Theorem 4, because it identifies a very general class of games
with pleasing convergence properties. This result is especially meaningful for
wireless networks, because wireless channels often have equal bandwidth, which
means that they correspond to homogenous resources (under flat fading or in-
terleaved channelization). The way we prove this convergence result is to define
a potential function, which decreases whenever a player performs a lazy best
response update. The existence of such a function guarantees that lazy best
response updatings eventually lead to a fixed point (a pure Nash equilibrium).

Due to limited space, we refer the readers to our online technical
report [24] for the full proofs of most results in this paper.

5 In reality, when a user shares its power among many channels, the benefit they
receive from using each one is diminished. Our game model does not capture this
effect, however other models that do [18] are often analytically intractable.
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Matroid GCG

Powerset GCG

Matroid
homo-resource

GCG 

Powerset
homo-resource

GCG

Fig. 2. In both Powerset GCG and Matroid homo-resource GCG, lazy best
response update converges to pure Nash equilibria in polynomial time. However, even
in the intersection class of Powerset homo-resource GCG, there exist examples
where better response update may never converge to pure Nash equilibria.

2 Powerset Graphical Congestion Games

We begin our exploration of the dynamics of graphical congestion games with
the “powerset” case, where players may use any subset of a set Qn of resources
available to them. In powerset congestion games, the decision of whether or not
to use one resource has no effect on a player’s ability to use the other resources.
This fact allows us to decouple the system and consider the usage each resource
separately.

As we shall see, the players in a powerset graphical congestion game can reach
a pure Nash equilibrium in polynomial time via selfish updating. However, the
players must be careful about what kind of updates they perform, because the
following result suggests that better response updating is not guaranteed to lead
to a pure Nash equilibrium.

Theorem 1. There exist powerset graphical congestion games with homogenous
resources which do not have the finite improvement property.

Proof. Consider the powerset graphical congestion game g with players N =
{1, 2, 3}, resources R = {1, 2, 3, 4}, strategy sets ζ1 = ζ2 = ζ3 = 2{1,2,3,4}

and payoff functions f r
n such that (f r

1 (0), f
r
1 (1), f

r
1 (2)) = (0,−5,−7) and

(f r
2 (0), f

r
2 (1), f

r
2 (2)) = (f r

3 (0), f
r
3 (1), f

r
3 (2)) = (0,−2,−7). The game is is played

on a three vertex complete graph G. Figure 3 shows how better response up-
dating can lead to cycles in g, meaning g does not have the finite improvement
property. �
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Fig. 3. A cycle in the best response dynamics of the powerset graphical congestion
game discussed in the proof of Theorem 1. The arrows represent how the strategy
profile changes with certain better response updates. Better response updating cannot
be guaranteed to drive this game into a pure Nash equilibrium because better response
updating can lead to cycles.

Notice that the example game in the proof of Theorem 1 is played on a complete
graph and has homogenous resources. Thus the lack of finite improvement prop-
erty is not due to either special property of the graph or the resources. Theorem
1 seems to be quite negative. However, as we shall see, the players often can
be gaurenteed to reach pure Nash equilibria if they update their resources in
special ways (instead of unregulated asynchronous updates). Before we describe
this in more details, let us introduce some tools that will be useful throughout
our analysis: beneficial pickups, beneficial drops, and the temperature function.

2.1 Beneficial Pickups and Drops

A better response update may alter the set of resources that a player is using
in quite complicated ways. However, we will show that better response updates
can be decomposed into sequences of elementary update operations. Here we
introduce two such operations: the beneficial pickup (where a player starts using
a good new resource) and the beneficial drop (where a player stops using a bad
old resource).

More formally, suppose we have a graphical congestion game in the strategy
profile X. A beneficial pickup is a better response update [n] → Xn ∪ {a} with
a /∈ Xn (i.e., a beneficial pickup is where a player starts using a new resource a
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and obtains additional benefits). A beneficial drop is a better response update
[n] → Xn − {b} where b ∈ Xn (i.e., a beneficial drop is where a player stops
using a resource b and gains benefits).

To illustrate these concepts, consider the graphical congestion game depicted
in Figure 1 with parameters as described in Section 1.2. In this case, [1] →
{1, 2, 3} is a beneficial pickup that player 1 can perform and [1] → {2} is a
beneficial drop that player 1 can perform.

We can use beneficial pickups and drops to construct more complex updates.
Thinking in this way is useful, because we can define a global “temperature”
function which decreases every time a player conducts a beneficial pickup or
drop.

2.2 The Temperature Function

The temperature function maps strategy profiles to integers. In certain scenarios,
the temperature function acts like a potential function, which decreases with
lazy best response updates6. This fact allows us to prove our polynomial time
convergence results.

To build the temperature function, we associate each payoff function f with a
left-threshold value T←N [f ] (which, roughly speaking, is the maximum integer x
such that f(x) ≥ 0) and a right-threshold value T→N [f ] (which, roughly speaking,
is the minimum integer x such that f(x) ≤ 0). The values of these thresholds
also depend on the integer N . We will take N to be the number of players in
our game when we apply these concepts later.

More precisely, suppose f is a non-increasing function and N is an integer.
We define the left-threshold T←N [f ] of f with respect to N as follows:

T←N [f ] =

{−1, if f(x) < 0, ∀x ∈ {0, ..., N − 1},
max{x ∈ {0, .., N − 1} : f(x) ≥ 0}, otherwise.

We define the right-threshold T→N [f ] of f with respect to N as follows:

T→N [f ] =

{
N, if f(x) > 0, ∀x ∈ {0, ..., N − 1},
min{x ∈ {0, .., N − 1} : f(x) ≤ 0}, otherwise.

In an N -player graphical congestion game the input of a payoff function f will
be a congestion level in the range {0, 1, ..., N−1}. The following lemma describes
how T←N [f ] and T→N [f ] indicate when a resource’s congestion level is so high that
it is no longer worth using.

Lemma 1. Suppose T←N [f ] and T→N [f ] are the left-threshold and right-threshold
values of the non-increasing function f (with respect to N), then for any x ∈
{0, ..., N − 1},
6 The temperature function is not always a potential function, because it may not
decrease when certain better response updates are performed in certain cases.
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• f(x) > 0 if and only if x ≤ T→N [f ]− 1, and
• f(x) < 0 if and only if x ≥ T←N [f ] + 1.

Lemma 1 can be proved using basic facts about non-increasing functions. With
this lemma in place we shall define the temperature function.

The temperature function Θ associated with an N -player graphical congestion
game g is defined as

Θ(X) =
∑

n∈N

∑

r∈Xn

(crn(X)− T←N [f r
n]− T→N [f r

n]) .

In many types of graphical congestion game, the temperature function always de-
creases with lazy best response updates. Now we will show that the temperature
function decreases every time a player performs a beneficial pickup or drop.

Lemma 2. Suppose that we have a graphical congestion game in a strategy pro-
file X, and a player n performs a beneficial pickup, [n] → Xn∪{a}, which drives
the system into a strategy profile Y . We have Θ(Y ) ≤ Θ(X)− 1.

Lemma 2 can be proved using Lemma 1 together with the fact that fa
n(c

a
n(X)) >

0 whenever [n] → Xn ∪ {a} is a beneficial pickup.

Lemma 3. Suppose that we have a graphical congestion game in a strategy pro-
file X, and a player n performs a beneficial drop, [n] → Xn − {b}, which drives
the system into a strategy profile Y . We have Θ(Y ) ≤ Θ(X)− 1.

Lemma 3 can be proved using Lemma 1 together with the fact that f b
n(c

b
n(X)) <

0 whenever [n] → Xn − {b} is a beneficial drop.
The temperature function clearly takes integer values. Another crucial feature

of the temperature function is that it is bounded both above and below.

Lemma 4. If X is a strategy profile of a graphical congestion game with N
players and R resources, then temperature function Θ satisfies the inequalities
R(N − 2N2) ≤ Θ(X) ≤ RN2.

2.3 Convergence Dynamics of Powerset Graphical Congestion
Games

Lemma 5 characterizes the relationship between the lazy best response and the
beneficial pickups and drops.

Lemma 5. In a powerset graphical congestion game, every lazy best response
can be decomposed into a sequence of beneficial pickups and/or beneficial drops.

We know from Lemmas 2 and 3 that beneficial pickups and drops decreases the
temperature function. Hence Lemma 5 essentially shows that the temperature
function is a potential function, which decreases by integer steps when a powerset
graphical congestion game evolves via lazy best response updates.
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Theorem 2. Consider a powerset graphical congestion game with N players
and R resources. A Nash equilibrium can be reached from any initial strategy
profile within R(3N2 −N) asynchronous lazy best response updates.

Sketch of Proof. Since each beneficial pickup or drop decreases the tempera-
ture function Θ by at least one (Lemmas 2 and 3), and each lazy best response
update can be decomposed into beneficial pickups and drops (Lemma 5), we have
that each lazy best response update decreases the temperature function by at
least one. Since the temperature function is bounded above by RN2 and below by
R(N−2N2) (Lemma 4), then no more than RN2−(R(N−2N2)) = R(3N2−N)
lazy best response updates can be performed starting from any strategy profile.
When no more lazy best response update can be performed, we reach a pure
Nash equilibrium. �

3 Matroid Graphical Congestion Games

Powerset graphical congestion games have a relatively simple combinatorial
structure, which allows us to prove with relative ease that they always have
pure Nash equilibria. When the resource availability sets ζn’s have a more com-
plicated structure, this is no longer true. In this section, we shall investigate the
properties of the more general matroid graphical congestion games, where each
player’s collection of available resource sets ζn is a matroid. We start by showing
that in a pure strategy Nash equilibrium may not exist in general.

Theorem 3. There exist matroid graphical congestion games which do not pos-
sess a pure Nash equilibrium.

Sketch of Proof. In [17], the authors gave an example of a singleton graphical
congestion game g (with strictly positive payoff functions) that has no pure
Nash equilibria. We can convert g into a matroid graphical congestion game
g′ by giving players the extra option of using no resources (i.e., by adding the
empty set into their collection of available resource sets). Since using a resource
in g′ leads to a positive payoff, rational players in g′ will behave exactly as in
g (i.e., they will always want to use some resource). Since g has no pure Nash
equilibria, g′ has no pure Nash equilibria either. �

Next we shall examine a special type of matroid graphical congestion game,
which is guaranteed to possess a pure Nash equilibrium and nice convergence
properties.

3.1 Convergence Dynamics of Matroid Graphical Congestion
Games with Homogenous Resources

We say a graphical congestion game g = (N ,R, (ζn)n∈N , (f r
n)n∈N ,r∈R, G) has

homogenous resources when the payoff functions are not resource specific (i.e.,
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f1
n(x) = f2

n(x) = ... = fR
n (x) = fn(x), ∀n ∈ N , ∀x). Note that different play-

ers can have different payoff functions. When discussing resource homogenous
games, we often suppress the superscript on the payoff functions, writing f r

n(x)
as fn(x) to represent the fact that the payoff functions do not depend on the
resources.

We will show that a matroid graphical congestion game with homogenous
resources will reach a pure Nash equilibrium in polynomial time if the players
perform lazy best response updates. We prove this result with the help of the
temperature function. Before we do this, we must introduce a third type of
elementary update operation – the beneficial swap, which is a better response
update [n] → (Xn ∪ {a}) − {b}) where a /∈ Xn and b ∈ Xn (i.e., a beneficial
swap is where a player stops using a resource b and starts using a resource a,
and benefits as a result.)

Our next result states that in any graphical congestion game with homogenous
resources (but not necessarily with matroid structure), a beneficial swap will
decrease the temperature function Θ by at least one.

Lemma 6. Suppose we have a graphical congestion game with homogenous
resources in a strategy profile X, and we perform a beneficial swap [n] →
(Xn ∪ {a}) − {b}, which moves the system into a strategy profile Y . We have
Θ(Y ) ≤ Θ(X)− 1.

Lemma 6 follows from the fact that if [n] → (Xn∪{a})−{b} is a beneficial swap
and the resources are homogenous, then can(X) < cbn(X).

Lemmas 2, 3, and 6 together imply that any beneficial pickup, drop, or swap
in a graphical congestion game with homogenous resources will decrease the
temperature function. Next we will show that if the strategy sets ζn’s of the
game are matroids, then it is always possible to perform a beneficial pickup,
drop, or swap from a non-equilibrium state. In particular we will show that
each lazy best response update in a matroid graphical congestion game with
homogenous resources can be decomposed into a sequence of beneficial pickups,
drops, and/or swaps. The following three lemmas will allow us to achieve this
goal.

Lemma 7. If [n] → S is a lazy best response update that can be performed from
a strategy profile X of a matroid graphical congestion game with homogenous
resources and |Xn| < |S|, then there exists a ∈ S−Xn such that [n] → Xn ∪{a}
is a beneficial pickup that player n can perform from X.

Lemma 8. If [n] → S is a lazy best response update that can be performed from
a strategy profile X of a matroid graphical congestion game with homogenous
resources and |Xn| > |S|, then there exist b ∈ S −Xn such that [n] → Xn − {b}
is a beneficial drop that player n can perform from X.

Lemma 9. If [n] → S is a lazy best response update that can be performed from
a strategy profile X of a matroid graphical congestion game with homogenous
resources and |Xn| = |S|, then there exists a ∈ Xn − S and ∃b ∈ S −Xn such
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that [n] → (Xn ∪ {a})− {b} is a beneficial swap that player n can perform from
X.

Lemmas 7 and 8 can be shown using the basic matroid properties. Our proof to
Lemma 9 uses a more sophisticated result about matroids shown in [21]. With
Lemmas 7, 8, and 9, we can prove the following main result of this paper.

Theorem 4. Consider a matroid graphical congestion game with homogenous
resources with N players and R resources. A Nash equilibrium can be reached
from any initial strategy profile within R(3N2 − N) asynchronous lazy best re-
sponse updates.

Sketch of Proof. Since each beneficial pickup, drop, or swap decreases the
temperature function Θ by at least one (Lemmas 2, 3, and 6) and each lazy best
response update can be decomposed into beneficial pickups, drops, or swaps (as
can be proved inductively using Lemmas 7, 8, and 9), we have that each lazy
best response update decreases the temperature function by at least one. Since
the temperature function is bounded above by RN2 and below by R(N − 2N2)
(Lemma 4), no more than RN2−(R(N−2N2)) = R(3N2−N) lazy best response
updates can be performed starting from any strategy profile. When no more lazy
best response update can be performed, we reach a pure Nash equilibrium. �

By considering Theorem 4 in conjunction with Theorem 1, we can see an interest-
ing separation between the dynamics that always reach a pure Nash equilibrium
and the dynamics which sometimes do not. Theorem 1 implies the existence of
matroid graphical congestion games with homogenous resources that will never
converge to pure Nash equilibria when the players do better response updates.
However, Theorem 4 implies that when the players restrict themselves to lazy
best response updates (which are more accurate and rational), they are guaran-
teed to reach a pure Nash equilibrium in polynomial time.

4 Conclusion

We have derived many results which are useful for understanding when graphical
congestion games converge to pure Nash equilibria. Theorem 1 is quite negative,
because it implies the existence of games with simple features (players that can
use any combination of resources, and resources are homogenous) which cannot
be guaranteed to converge to pure Nash equilibria under generic better response
updating. However, Theorems 2 and 4 imply that in many cases (powerset games,
or matroid games with homogenous resources) the players do converge to pure
Nash equilibria under lazy best response updating. These results are very en-
couraging, because they imply that spatially distributed individuals will quickly
be able to organize themselves into a pure Nash equilibrium in a wide range of
scenarios. Just so long as the players are rational enough to restrict themselves
to lazy best response updates. We obtained our convergence results by breaking
better response updates into more elementary operations, and observing how
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these operations alter the value of the temperature function we defined. In the
future, we will use these results to study the convergence dynamics of more
general games, where players have generic collections of available resource sets.
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