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Abstract—In the early stages of some retinal diseases, such as
glaucoma, loss of retinal activity may be difficult to detect with
current clinical instruments. Because current instruments require
unattainable levels of patient cooperation, high sensitivity and
specificity are difficult to attain. We have devised a new retinal
imaging system that detects intrinsic optical signals which reflect
functional changes in the retina and that do not require patient
cooperation. Measured changes in reflectance in response to the
visual stimulus are on the order of 0.1%-1% of the total reflected
intensity level, which makes the functional signal difficult to detect
by standard methods. The desired functional signal is masked by
other physiological signals and by imaging system noise. In this
paper, we quantify the limits of independent component analysis
(ICA) for detecting the low intensity functional signal and apply
ICA to 60 video sequences from experiments using an anesthetized
cat whose retina is presented with different patterned stimuli. The
results of the analysis show that using ICA, in principle, signal
levels of 0.1% can be detected. The study found that in 86 % of the
animal experiments the patterned stimuli effects on the retina can
be detected and extracted.

Index Terms—Functional imaging, independent component
analysis (ICA), retina, visual stimulation.

1. INTRODUCTION

N the field of ophthalmology, visual field testing (perimetry)
I is the gold standard for detection and monitoring progression
of diseases such as glaucoma. Perimetry is a functional test of
the patient’s vision intended to detect defects on the visual field
map. Unfortunately, perimetry remains a subjective test that re-
quires the patient to make important judgments during the test
that can be clouded by anxiety, fatigue, or lack of concentration.
As aresult, the sensitivity of this test is poor. Investigators have
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found that over fifty percent loss of ganglion cells is necessary
to detect loss of function with perimetry [1]. Low sensitivity
and poor repeatability are frequently observed in areas where
anatomical damage has occurred.

As early as 1949, Hill and Keynes linked the activity of the
nerve cells with changes in their optical properties [2]. In 1986,
Grinvald et al. showed that changes in the optical properties of
the tissue could be used to study the functional architecture of
the cortex [3]. Villringer and Chance used near-infrared light to
assess brain activity in humans noninvasively through the skull
[4]. We have reported on an optical imaging device of retina
function (OID-RF) that has been developed to improve the ob-
jectiveness and sensitivity of visual testing [5]—[8]. Kardon et al.
reported the first device to directly image the human retina by
recording changes in 700-nm light caused by retinal activation
in response to a 535-nm stimulus [5].

As with the visual cortex, in the retina, several factors may
affect spectral reflectance. For example, DeLint et al. [9]
measured spectral changes of the fovea due to dark adaptation.
They concluded that characteristics of the slow reflectance
changes suggest changes in the index of refraction between the
inter-photoreceptor matrix and photoreceptors as the source.
Functional changes in the optic disc and radial papillary cap-
illaries due to stimulus of the retina have been attributed as
changes in blood flow [10]. Riva et al. [10], [11] have inves-
tigated flicker-evoked responses of human optic nerve and
subfoveal choroidal blood flow. Although optical techniques
are mentioned, their approach is primarily based on laser blood
flow measurements. Because the retina is highly vascularized
and has a particularly high rate of oxidative metabolism, al-
tered hemodynamics can be observed as changes in reflection
and absorption cause by a stimulus. Previous studies, such as
Riva’s [10], [11], have demonstrated a visual stimulus-induced
change in blood flow and oxygenation [11]-[13]. The choroidal
circulation in the outer retina is known to have a very high flow
rate and a small arteriovenous oxygen saturation difference.
In contrast, the retinal circulation nourishing the inner retina,
including the ganglion cells has a much slower flow rate and a
high arteriovenous saturation difference [14]. This dichotomy
suggests that any optical signal due to oximetry will be dom-
inated by the retinal circulation component, and hence more
closely reflect the function of the inner retina activity which is
of most interest in clinical applications.

Bizheva et al. [15] used a high resolution functional optical
coherence tomography (fOCT) imager to measure in vitro local
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changes in tissue reflectivity due to physiological changes in
dark-adapted retinas as a result of light stimulation. fOCT scans
were acquired from these in vitro retinas synchronously with
electrical recordings before, during, and after light stimulation.
Their research clearly shows the stimulus-related changes in the
retinal reflectivity profile of the inner and outer segments of the
photoreceptor layer and the plexiform layers. This group con-
ducted experiments to show, through pharmacological inhibi-
tion of photoreceptor function, that the origin of the observed
optical changes is the altered physiological state of the retina
evoked by the light stimulus. These studies have shown conclu-
sively that reflectivity in the inner retina of a vertebrate does
result from light stimulation.

Our functional imaging device measures the effects of
changes in blood conditions (hemoglobin saturation and
volume). Using a functional magnetic resonance imaging
(fMRI) technique, blood oxygenation level-dependent (BOLD)
[16], Duong et al. [17] have measure deoxyhemoglobin changes
that are brought about by visual stimuli. Changes in regional
deoxyhemoglobin content can be visualized in BOLD images.
When the retina is stimulated, retinal blood flow increases
disproportionately to overcompensate for the stimulus-induced
lowering of the hemoglobin saturation resulting from the neural
activity. Duong showed convincingly that hemoglobin satura-
tion conditions do indeed result in a functional signal in the
retina. Unfortunately, fMRI is not a convenient clinical device
for ophthalmology.

These findings motivate the development of a functional im-
ager of the retina that can, using an instrument suitable for the
clinical environment, directly measure spatially resolved retina
function. The OID-RF measures the increase or decrease in
retinal reflectance due to changes in retinal metabolism thought
to be a result of blood oxygen uptake and capillary response due
to neural activity resulting from visual stimulation of the pho-
toreceptors in the human retina. The functional measurements
are stored as optical recordings (videos). The reflectance mea-
surements recorded in these videos are a mixture of the signal
that reflects the neuronal activity (functional signal) and signals
related to background unknown sources and noise. Given that
measured functional changes in intensity due to visual stimulus
are on the order of 0.1%—1% of the background signals, it
is difficult to extract the functional response using standard
methods, such as first frame subtraction and averaging. Our
goal is to extract the functional signal that is masked by other
signals present during the process of retinal stimulation. Var-
ious approaches have been used to improve the signal-to-noise
ratio (SNR) characteristics of the functional signal, such as
integrating several sets of measurements to improve the SNR.
For humans, it is difficult to collect a large number of data sets
requiring an hour or more of imaging. So, it is important to
know what the limits of the SNR are that will still allow one to
detect the functional signal. To find those limits, a numerical
experiment using independent component analysis (ICA) [18]
has been devised that integrates experimental data from a cat’s
retina.

In recent years, ICA has been applied to many biological
related problems such as electroencephalography (EEG) data
analysis [19], [20], and electrocardiogram (ECG) data analysis
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[21]. Schiessl et al. applied ICA techniques to isolate changes
on the brain cortex of a macaque monkey due to visual stimula-
tion [22], [23]. ICA has been applied extensively to detect func-
tional brain activation in fMRI experiments [24]. Park ez al. [25]
have applied ICA to model the role of the visual cortex to locate
salient areas in an image. They found that ICA was useful in re-
ducing the redundancy of data or signals from the retina to the
visual cortex. They defined the signals based on traditional tech-
niques which use color opponent coding and edge detection to
model the output from the retina. The authors of this paper have
previously reported on the application of ICA techniques to iso-
late the changes produced in the retina due to visual stimulation
[71, [26]-[28].

The functional signal in response to visual stimulus is
localized and, therefore, has a super Gaussian spatial distri-
bution, while the noise and other underlying signals are more
evenly distributed throughout the image and therefore have
a sub-Gaussian distribution. The validity of the basic ICA
assumptions in fMRI has been discussed in [24], [29], and [30]
and was found to be applicable to our problem.

In this paper, we demonstrate the application of ICA to a set
of in vivo data collected in our animal study using the OID-RF
instrument to extract the functional signal due to retinal stimula-
tion. In our animal study, we expect the major contributors to the
signals will be due to cardiac function, the respiratory cycle, and
the evoked response. We note that these components correspond
to independent physiological processes that should yield inde-
pendent signals that are appropriate for ICA. Before attempting
to extract the functional signal in the cat, we sought to learn
the performance for some of the most popular ICA algorithms,
Infomax, Fast-ICA, joint approximate diagonalization of eigen-
matrices (JADE), second-order blind identification (SOBI), and
extended spatial decorrelation (ESD). To achieve this goal, a set
of 2-D spatiotemporal synthetic simulations were generated and
processed by these algorithms. After the quantitative analysis
of the performance of the ICA algorithms, we choose the three
methods that gave the best performance and apply them on data
collected in in vivo cat experiments [8].

This paper is organized as follows. Section II contains a de-
scription of the optical imaging device and how the data set
was collected. Section III shows the methods used in the anal-
ysis of the synthetically generated data and the live cat data.
Section IV describes the performance measurements and syn-
thetic simulation methods used to validate the use of ICA in the
data. Section V shows the results obtained by applying the ICA
techniques in anesthetized cat data. Discussion of the results and
conclusions are given in the last two sections.

II. MATERIALS AND DATA COLLECTION

The OID-RF is a noninvasive imaging device that measures
changes in retinal reflectance that result from changes in the
blood oxygen saturation and blood volume when patterned
stimuli is applied to the subject’s retina [5]. The hypothesis is
that a visual stimulus causes the retina to alter its level of blood
volume and the ratio of oxygenated hemoglobin (HbO) to
deoxygenated hemoglobin (Hb). This has the effect of altering
the spectral reflectance characteristics of the retina and in turn
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Fig. 2. (a) Prestimulated retina in the interrogation spectral band. (b) Stimulus pattern and response of a live experiment using a cat. (c) Signals for a region
within the dark stimulated area (between pixels 21-40 in the x axis) and within the bright stimulated area (between pixels 41-60 in the z axis).

results in a change in the reflected intensity of the image in the
stimulated area.

Fig. 1 illustrates the operation the OID-RF. A continuous in-
terrogation light with wavelength in the red-near infrared wave-
lengths (780-850 nm) is projected onto the subject’s retina. Si-
multaneously, a stimulus pattern at a green wavelength (550 nm)
is projected onto the subject’s retina. The reflected energy from
the retina is then filtered by the beam splitter, which only al-
lows only the interrogation light to be transmitted to the digital
recording camera. Kardon et al. have previously presented a de-
tailed description of the system [5].

The experimental data were collected from a cat. To avoid ar-
tifacts due to eye movements, the cat is anesthetized and immo-
bilized prior to the experiments. A single experiment (epoch)
consists of 20 frames of 144 by 192 pixels each, at a frame
rate of 2 Hz for a total recording time of 10 s. The stimulus
paradigm consists of a checkered pattern with alternating po-

larity (counter-flickering at 1-20 Hz). Each experiment starts
with a baseline (prestimulus) measurement where for the first
2 s the stimulus is turned off. This is followed by a 3 s period of
stimulation and 5 s of recovery (poststimulus). The bar-shaped,
counter-flickering, checkered stimulus can be applied to a ver-
tical or horizontal region of the retina. Fig. 2(a) is an image of
the prestimulated (baseline) retina as measured in the interro-
gation band (near infrared). Fig. 2(b) shows a vertical counter-
flickering stimulus bar with the corresponding measured re-
flectance of the infrared signal during the maximum functional
response signal (about the tenth frame). Fig. 2(c) presents the
time plot of the functional response for the stimulated region.
The region, which is in the dark response area of Fig. 2(b), is
approximately at the second white stimulus box from the top.
To the right of the same box another region is sampled that
shows a negative response (white region) just outside the stim-
ulated region.
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The measured signals in Fig. 2(a) and (c) form the basis of
the numerical experiment and simulation. The baseline signal
in Fig. 2(a) allows one to estimate the spatial background signal
from the prestimulated retina. This signal contains physiolog-
ical and device noise. The response signal in Fig. 2(c) gives a
model of the retinal functional response to the stimulus. A posi-
tive or negative gain is applied to this functional response-based
model to simulate an experiment with a human subject where
the signal has been found to be substantially less than that of the
cat. The numerical experiments to be presented in the Section IV
are used to establish the detection limits using various signal
processing techniques and will aid in defining the experimental
protocol for the future human experiments.

III. METHODS

Let X = [z1(t)z2(t) ... 2,(t)] be a set of observed random
variables and assume that they come from the linear mixture of
the components S = [s1(t)s2(t) ... s,(t)] by a linear mixing
matrix A, as in

X = AS. (D

Then ICA consists of estimating both A and S using only the
observations X and the assumption that the source signals are
statistically independent [18]. The statistical independence of
the sources means that their joint probability can be factorized
as

p(S) = Hp(a-) 2)

where p(s;) is the individual probability density function (pdf)
of each of the sources and NV is the number of sources.

Research in the ICA community has led to the develop-
ment of a large amount of algorithms, each based on different
approaches for maximizing statistical independence of the
sources. It is our intention to select a few of the most widely
used ICA algorithms and quantify their performances through
a series of controlled experiments.

For this study, we selected five different ICA algorithms: In-
fomax [31], JADE [32], fast-ICA [33], SOBI [34], and ESD
[22]. A brief description of how these algorithms work follows.

A. Infomax

The Infomax ICA algorithm was first proposed by Bell and
Sejnowski [31] and is a generalization of the Infomax principle
applied to ICA. The objective of the Infomax ICA algorithm is
to reduce the redundancy between the sources. It is well known
from information theory that when a set of signals are statisti-
cally independent, their mutual information is zero. As detailed
in [35], the mutual information of the sources I(.9) is related to
the joint entropy H(g(S)) of the sources passed through a set
of sigmoidal nonlinear functions g;, as in

1(8) = —H (g(S)) + E {Zlog |gi(si)] } 3)

pi(si)
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where p;(s;) are the pdf of the sources. F{ } denotes expected
value. Some of the most common sigmoidal functions used are
the hyperbolic tangent and the cubic power.

If the absolute values of the slopes of the sigmoid functions
lgi(s;)| are the same as the independent components pdfs,
pi(s;) then Infomax (maximization of the joint entropy of the
g(S) vector) is the same as ICA (minimization of the mutual
information).

Bell and Sejnowski derived a stochastic rule that maximizes
the entropy of ¢g(.S) using

AW oc (W HT 4 f(s)aT )

where W is the estimated inverse of the mixing matrix, oc means
proportionality, and the vector function f has elements

17
filsi) = 5~ Ingi(si). )

When g¢/(s;) = pi(s:), the ICA algorithm is exact. Of course
this leaves the problem that we need to know the pdf of the
sources, which in most of the cases is unknown, but a rough
approximation of the pdf is sufficient. For a more thorough dis-
cussion of how this affects the Infomax algorithm, refer to [20]
and [31].

B. JADE

JADE was proposed by Cardoso and Souloumiac in [32] and
is based on the joint orthogonalization of the cumulant tensors.
The cumulant tensor is defined as a 4-D array whose entries are
given by the fourth-order crosscumulants of the data as in

Qx:{Cum(xiaxj7$k7xl)|lSi7j7k7l§n}' (6)

The cumulant matrix F;; (M) associated with any n x n ma-
trix M (later assumed to be an eigenmatrix) is defined as

F;(M) = Z mpcum(z;, T, T, ;) @)
kl

where my,; are the elements of the matrix M. We work with the
case that the data follow the ICA model with whitened data

r=VAs=WTs (8)

where the whitened matrix is denoted by W7 . Eigenvalue de-
composition (EVD) can be viewed as a diagonalization, when
the JADE algorithm takes a set of matrices M;,: = 1,...,m,
and estimates the matrices C = W F'(M;)W as diagonal as pos-
sible. The contrast function to measure the diagonality of the
matrix C is

d3apE(W) = Z [diag (WEM)WT)|”. 9

After some manipulations [32], the contrast function can be
expressed as

$iape(W) = lcum(ys, yj, Y, yz)|2 (10)

>

i k,l=1,...n
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where y; = Wax,;. Maximization of ¢jspg is one method of
joint diagonalization of F'(M;).

C. Fast-ICA

The Fast-ICA algorithm was developed by Hyvarinen and Oja
in [33] and is based on the minimization of gaussianity based
on the negentropy concept. To define negentropy, we use the
concept of differential entropy, defined as
where S is the differential entropy of the random vector X with

probability density function p,. Then, the negentropy is defined
as

where ¢, is the Gaussian density with the same mean and vari-
ance as p,. The Fast-ICA algorithm then uses a fixed point al-
gorithm to maximize negentropy.

The algorithm then computes the demixing matrix W in an
iterative fashion, computing one row at a time using

wi(j+1)=F (y (wZT(J)y)g) — 3w;(j)

12)

13)

where w;(j + 1) is the ith row for the (j + 1)-th iteration and y
is the whitened version of the data.

D. SOBI

Our data set contains a temporal structure given by the
stimulus and sinusoids. When the independent components are
time signals, they may contain much more structure than simple
random variables. Some algorithms, like SOBI and ESD try to
take advantage of the temporal structure of the data.

A form of the time structure is given by the time-lagged co-
variance matrix

Cf =E{z(t)z(t—7)}. (14)

When 7 = 0, we have the zero-lagged covariance matrix,
which only contains second-order information and it is not suf-
ficient for estimating the independent components. Since the
sources are assumed to be statistically independent, we know
that the lagged covariances are also zero. Thus, we need to es-
timate a matrix B such that the covariance of y(t) = Bx(t)
satisfy

FE {yi(t)yj(t — T)T} = 07

Based on this principle, the algorithm for multiple unknown
source extraction (AMUSE) [36] was developed. This algorithm
is simple and fast to compute but it only works if all the eigen-
values of the time-lagged correlation matrix are different. An ex-
tension of the AMUSE algorithm considers different time lags
7 instead of just one. The idea is to simultaneously diagonalize
all the lagged covariance matrices. A way of measuring the di-
agonality of a matrix M is to use the operator

off (M) =" m?;

i#]

Vi, j, 7,0 # J. 15)

(16)
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which gives the sum of the squares of the off-diagonal elements
of M. What we want is to minimize the sum of the off-diag-
onal elements of several lagged covariances. For this we use
the whitening matrix W and the symmetric version 63 of the
lagged covariance matrix. Denoting by S the set of lags 7, we
can write the objective function

JW) =3 off (W@ﬁWT) . (17)
TES

Minimizing .J under the constraint that W is orthogonal gives
us the estimation method. The SOBI algorithm [34] is based on
this principle.

E. ESD

The ESD algorithm was proposed by Schiessl et al. [22] and
is an extension of the AMUSE algorithm (described in Section
II-D) for 2-D spatial structures.

ESD minimized the following expression:

EwW) =Y ((WC(AT)WT)M)Z (18)
Ar i
where
Cij(Ar) = (yi(r)y;(r + Ar)),.. (19)

ESD was applied by Schiessl to optical imaging recordings
from the brain cortex of the macaque monkey. Their work in-
cluded synthetic simulations in two dimensions, but not syn-
thetic video simulations as the one presented in this work.

IV. PERFORMANCE MEASURE ON SYNTHETIC
DATA SIMULATIONS

In our initial experiments, as well as those of other researchers
[4], the amplitude of the reflected signal due to the functional
response has been measured to be on the order of 0.1%—-1%
of the total reflected infrared interrogation light. According to
these previous measurements, we have designed a series of ex-
periments to quantify the performance of ICA algorithms in re-
covering the functional signal. The first experiment consists on
synthetic videos generated to assess the capabilities of spatial
and temporal estimation of the ICA algorithms. In the second
experiment, a hybrid simulation using live data recordings and
a synthetically generated stimulus is used to simulate the algo-
rithms’ performance under realistic conditions.

Following the approach by Chen and Yao [29], who used
cross correlation to select the appropriate independent compo-
nent, we compare the performance of the ICA algorithms using
normalized cross correlation (NCC) as the measure. The criteria
for using cross correlation over other performance measures is
that since we have both temporal and spatial structure in our data
which is well defined in the controlled experiments, correlating
the estimated signals with the known original signals gives us
an accurate quantification of the performance of the ICA algo-
rithms. It is worth noting that other performance measures [37]
were tried, but none of them would asses the accuracy of the
spatiotemporal reconstruction of the data. Those performance
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Fig. 3. Signals that form the synthetic video simulation.

measures that are based on the accuracy of the reconstruction of
the mixing matrix are not suitable for spatiotemporal datasets.
The NCC of two signals is defined as

Ry, = n)y 2.0y .0

,\/[nzxz — ()] [n Ty - (C)]

Since NCC is invariant to scaling, the ambiguity problem of
ICA does not affect the results when recovering the indepen-
dent components. We calculated the NCC for all the combina-
tion of reference and estimated signals and pick the highest NCC
values. This process will make the order in which the compo-
nents are extracted not relevant.

A. Synthetic Video Simulation

In the synthetic simulation a video is generated by mixing
three images (sources) with a mixing matrix that contains
the temporal structures of two sinusoids and a smoothed step
function. These sinusoid synthetic signals could represent
signals induced by the cardiac cycle and the respiratory cycle.
The smoothed step function is generated to simulate an effect
similar to the one due to the response to optical stimulation.
The step signal amplitude is varied from 10% to 1% of the
peak-to-peak amplitude of the other simulated sinusoidal phys-
iological signals. In Fig. 3 we have the representation of the
sources, mixing matrix and measurements (video). The images
contain 256 pixels each (16 x 16), the mixing matrix is 3 x 40
and the mixture results on a video with 40 frames, each with 256
pixels. Note how the white squares in the Fig. 3 were designed
to overlap spatially; thus the mixture had regions where there
was only one signal, regions with spatiotemporal mixtures of
two signals and a region with spatiotemporal mixtures of all
the three signals.

We added Gaussian noise to the mixture with an SNR ranging
from 40 to 0 dB. By calculating the variance of the original
mixture, we generate the appropriate noise level by varying its
variance such that

SNR(dB) = 10log;,

2
0g
2

O—]V

21

where 0% is the variance of the original mixture and o is the
variance of the Gaussian noise.

After applying the ICA algorithms to this new mixture (the
original video plus the noise), we compared the estimated

S (Sources)
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X (Mixture)

A=

Source #2

sources and mixing matrix with the originals using the abso-
lute NCC value at zero lag. The sources comparison tells us
how accurate the spatial localization is, whereas the mixing
matrix comparison establishes the accuracy of the temporal
reconstruction.

Fig. 4(a)—(c) show the spatial correlation to a simulated func-
tional response that is modeled as a step source with three dif-
ferent amplitudes, 10%, 5%, and 1% of the total intensity of
the images. JADE is the algorithm with the best performance.
Even under the most stressing conditions when the functional
signal magnitude was only 1% of the other two signals, its spa-
tial correlation never went below 0.8. The Infomax and ESD
were clearly the worse performers when measured by NCC.
Fig. 4(d)—(f) present the temporal correlations. JADE shows a
high correlation value for: SNR greater than 10 dB and a step
amplitude of 10%, SNR greater than 20 dB and a step ampli-
tude of 5% and SNR greater than 30 dB and a step amplitude of
1%. The other four algorithms present less than satisfactory re-
sults with NCC values of less than 0.5 under all conditions. The
Fast-ICA algorithm was used with both deflationary and sym-
metric decorrelation approaches, but no improvement in the per-
formance was found. The choice of nonlinearity (cubic, hyper-
bolic tangent, and Gaussian) did not improve its performance.

B. Live Data With Synthetic Stimulus Simulation

The second synthetic simulation involved the mixture of live
cat data with a synthetic stimulation. The simulated videos are
generated from a live cat experiment where no stimulus was
applied, referred to as the baseline video [8]. This baseline
video is altered by adding a synthetically generated functional
response that is based on the model of an actual response shown
in Fig. 2(c). A single video frame during the peak of the func-
tional response in a live cat experiment is shown in Fig. 5(a)
and the resulting frames have similar spatial characteristics.
Using the baseline video, the model of the functional response
is applied. The result is presented in Fig. 5(b). The amplitude
of functional response that is added to the baseline video is
defined by its stimulus-to-background ratio (SBR)

0.2
SBR(dB) = 10log,, —-

2
Op

(22)

where 0% is the variance of the functional signal and o% is the
variance of the background.
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Five videos were synthesized starting with the SBR ranging
from 0 dB to —40 db at —10 dB intervals. Note that the more
negative the SBR value, the lower the amplitude of the func-
tional signal. A 0 dB SBR indicates that the variance of the
functional signal is equal to the variance of the video, whereas
a —30 dB SBR means that the variance of the functional signal
is 0.1% of the variance of the video.

The ICA model is now defined as

X20x27648 = A20x353x27648 (23)
where the dimensions of the observations X correspond to 20
frames (images) of 144 by 192 pixels each (27648 total pixels).
We arbitrarily choose the number of estimated sources to be
three, since we are interested in finding two temporal responses

and need an extra one to represent any other underlying pro-
cesses and noise. The analysis was repeated for different number
of independent components, but results were similar. Therefore,
the estimated mixing matrix A will have three column vectors of
20 points each, which will represent the time courses of the in-
dependent components. The estimated sources matrix S is com-
posed of three row vectors, each of which will generate a 144
x 192 pixels image. These images are the ones that will give us
the spatial distribution of the functional response.

Specifically, the results of the ICA algorithms were compared
in the temporal and spatial domains. For the spatial domain, we
correlated the sources as estimated by the ICA algorithm with
a “reference frame,” which is an image artificially generated by
using a frame of prestimulated retina and the artificial stimulus
on top, as seen in Fig. 5(b). For the temporal comparison, each
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1 [from Fig. 2(c)]. (b) Temporal correlation results using the temporal reference 2 [from Fig. 2(c)]. (c) Spatial correlation results using the reference frame [from

Fig. 5(b)].

row of the estimated mixing matrix A was correlated with the
modeled functional responses shown previously in Fig. 2(c). A
high correlation means that the estimated mixing matrix is fol-
lowing the time trace of the functional response expected due to
visual stimulation.

Fig. 6 shows the maximum absolute correlation values at
zero lag for (a) temporal reference signal 1 in Fig. 2(c), i.e., the
functional response as measured in the bright area of the retina,
(b) temporal reference signal 2 in Fig. 2(c), i.e., the functional
response as measured in the dark are of the retina, and (c)
reference frame Fig. 5(b). From the plots on Fig. 6(a) and (b),
one can see that Infomax performs the best for temporal cor-

relation to reference signal 1, whereas JADE and SOBI have
the best performance for temporal reference signal 2. ESD and
Fast-ICA have performances inferior to the rest, as was the
case for the synthetic video simulations. The spatial correlation
results shown in Fig. 6(c) show how all the algorithms except
Fast-ICA achieve good localization of the stimulus signal, with
correlation values between 0.8 and 1 for the different SBR
values.

V. In Vivo CAT DATA ANALYSIS

In the application of ICA algorithms to real data, it is impor-
tant to address the problem of how to set the number of compo-
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Fig. 7. Invivo cat data ICA analysis. (a) Vertical stimulus as estimated by JADE. Overlaid box shows the dark response region (left) and the bright response region
(right.) (b) Vertical stimulus estimated by SOBI. (c¢) Vertical stimulus estimated by Infomax. (d) Time courses of the retinal response to the stimulus estimated
by JADE, SOBI, and Infomax. (e)-(h) Horizontal stimulus responses as estimated by JADE, SOBI, and Infomax. (i)—(1) Spot stimulus responses. Note the lower

triangular dark response region and the upper triangular bright response region.

nents. For addressing this issue, we run the algorithms for com-
binations from two to nine components. We then visually in-
spected all the extracted components for components that were
correlated with the stimulus, the unstimulated retinal video im-
ages and any other signal pattern that may be due to other phys-
iological effects. Consistently, we found that all algorithms ap-
peared to extract three meaningful components that met these
expectations.

Using the results of the synthetic simulations, we narrow the
number of ICA algorithms to test on the cat data recordings to
three: JADE, Infomax, and SOBI. A single anesthetized cat was
used to collect 60 sets of data. Of the 60 data sets, 18 were a
vertical stimulus [Fig. 7(a)—(c)], 18 were a horizontal stimulus
[Fig. 7(e)—(g)], three were a spot stimulus [Fig. 7(i)-(k)], three
were a full field stimulus, and 18 are unstimulated. We success-
fully extract the stimulus signals in 36 out of the 42 stimulated
videos (86%).

Fig. 7 shows a comparison of how the three algorithms extract
the stimulus signal spatially and temporally for three different
types of stimulation. Fig. 7(a)—(c) show how the ICA algorithms
locate the functional response to the vertical stimulus. Fig. 7(d)
shows the timelines of these estimated components, as given by
the estimated mixing matrices. Note how all three algorithms
show a decrease in the reflectance when the stimulus is applied
(around frame #5). The decreased reflectance is due to the de-
crease in blood saturation, which has a larger extinction coef-
ficient that saturated hemoglobin. The decreased reflectance is
also a result of increased blood volume in the area being stim-
ulated. The evoked response peaks after 2-2.5 s after the start
of the stimulation (frames 10 or 11). After reaching this nega-
tive peak, the reflectance starts to increase again eventually re-

turning to its original level. The results for the horizontal and
spot stimuli in Fig. 7(e)—(h) and Fig. 7(i)—(1) show the same be-
havior as when the vertical stimulation is applied to the cat’s
retina.

Fig. 7(a) marks the region where the stimulus was applied.
The rectangular box drawn on top of the cat’s retinal image has
been divided in two halves; in the leftmost one, a dark response
to the stimulus is noted (reference signal 1), and the rightmost
box has a bright response (reference signal 2).

The images in Fig. 7 clearly depict the response to counter
flickering checkerboard stimulation. Regardless of the shape of
the stimuli and their location on the retina, an evoked response
was observed (Fig. 7). Interestingly, the stimuli evoked both ac-
tivation (dark) and inhibition (white). These observations in-
dicate that the retina does not process the incoming complex
visual information in a simple manner. The reason for the in-
hibitory response has not been determined.

VI. DISCUSSION

For the cat experiments, it is clear that, no matter which stimu-
lation condition occurred, visual stimulation evoked a very sim-
ilar time course in the activated area. The signal changes started
immediately after stimulus presentation and reached their peak
in about 5 s.

The synthetic stimulus simulations have provided a means to
assess the feasibility of extracting a low amplitude functional
signal in noisy reflectance images. The results, as presented in
Fig. 4, of the spatial correlation of the estimated sources with
the reference frame show that the Infomax, JADE and SOBI al-
gorithms achieve the highest correlation values. At the lowest
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amplitude of the functional signal [1% in Fig. 4(c)], JADE con-
sistently reproduces the signal at NCC values greater than 0.8.
Fast ICA and ESD produce poor results for all magnitudes of
the functional signal.

The temporal correlations using cat data and simulated re-
sponse and physiological signals were given in Fig. 6. This
figure shows how well all the algorithms except Fast ICA es-
timate the functional signals in the dark (reference signal 1)
and bright (reference signal 2) response regions where the func-
tional response is located. The functional responses for these
two regions are slightly different, with the dark response re-
gion peaking negatively very fast and the bright response re-
gion increasing its reflectance for about one second to then show
a decrease in reflectance similar to the one in the dark region.
The correlation results show that Infomax is the algorithm that
achieves the best results for the reference signal 1, which was
taken from the dark response region Fig. 6(a). For SBR levels
higher than —10 dB, JADE and SOBI also achieve high cor-
relation values, but then those values sharply decrease when
the SBR is lower than —20 dB. In contrast, when we compare
the results of the reconstruction of the bright response region
Fig. 6(b), SOBI and JADE outperform Infomax, although not
by much. We can hypothesize that SOBI performs better in this
case because the reference signal has a more deterministic time
structure, and since SOBI takes advantage of the time structure
of the components it achieves those high correlation values. It
is unclear why JADE performs better in this case, but we have
observed that JADE is very consistent on the correlation values
obtained, continually having high enough values for detection
of the functional signals. In the temporal experiment, we again
noted marginal performance by ESD and poor performance by
Fast-ICA, which might be due to poor convergence for these
specific types of signals or because of the dimensionality of the
problem.

When analyzing the live cat data recordings we note several
interesting results. First, it is clear how, as a result of the stim-
ulation, two adjacent regions of contrasting reflectance are cre-
ated. In the case of the vertical stimulation, the dark response
region is left to the bright response region. When there is hor-
izontal stimulation, the bright response region is on top of the
dark response region. Most interestingly, when there is a spot
stimulation (small square), the left/bottom part of the square
(lower triangle) forms the dark response region and the right/
upper part of the square (upper triangle) forms the bright re-
gion, as if the responses of the vertical and horizontal stimu-
lations were additive. Another interesting result is the way the
functional response changes the reflectance through time [see
Fig. 7(i) and (j)]. At first when the stimulus is applied (frame
5), there is a slight increase in reflectance but then immediately
it starts to decrease, to reach its negative peak between frames
10-12 (2-3 s after the start of stimulation). After this negative
peak the signal goes back up to higher levels than the original
ones to finally come back to the original state after the stimulus
is turned off. These results are consistent with other hemody-
namical processes observed in the brain using techniques such
as fMRI and functional near infrared imaging (fNIR).
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VII. CONCLUSION

We have demonstrated that noninvasive optical imaging of
intrinsic signals in the retina reveals a spatial distribution of ac-
tivity-dependent signals that is highly correlated with the pat-
tern of visual stimulus presented to the retina. Our experimental
data indicate that there are several different signals that differ in
amplitude, time course, sign, and spatial distribution. The most
prominent signal has properties similar to the hemodynamic sig-
nals that we and others have previously reported in stimulus ac-
tivated mammalian sensory cortex. In particular, these signals
have a rise time of 1-3 s, an amplitude of 0.01%-0.1%, and are
negative in sign (representing a reflectance decrease). Further
research will be required to determine the source and anatomic
origins of these signals.

The experiments preformed by applying a synthetically gen-
erated functional response on top of an image of an unstimu-
lated cat retina have provided us with information of the limits
of detection achievable by the ICA algorithms. Our goal was to
detect functional responses on the order of 0.1% (—30 dB SBR)
of the total reflected signal. Our results show how three ICA al-
gorithms: JADE, Infomax, and SOBI produce estimates of the
functional signals that are highly correlated with our references.
This study will be more useful when analyzing data from human
experiments, since in the human case the functional response is
much lower than in the cat; because of more noise sources such
as movement (the cat is anesthetized during the experiments, the
human is not), lack of focus (the human subject cannot with-
stand long periods of stimulation), and the complexity of the
human retina.

The analysis of the cat data recordings corroborate the
findings of the synthetic simulations, and also shows some
interesting results such as the generation of a dark/bright
contrasting response regions where the retina is stimulated
and a time response that follows the same pattern as well
known neurophysiological processes studied with fMRI [10],
[16], [17]. Our study shows conclusively that even signals as
low as 1% or the total reflected near infrared energy can be
detected through judicious application of ICA techniques. Our
research has set the stage for collecting and analyzing human
subject data to measure directly the neurovascular coupling
in the human retina. Our observations of the cat data support
other studies that suggest an effect of retinal neural activity on
hemodyanmics in the retina. Putative mediators underlying this
neurovascular response is not within the purview of this paper,
but the imaging system and associated ICA methodology will
enable the study of these factors.

In conclusion, the OID-RF has been demonstrated to produce
a functional response in the cat retina due to visual stimulation.
The analysis of the synthetic experiments has given us useful
information in determining the threshold of stimulation that can
be detected using the ICA algorithms. The analysis of these
experiments should also be applicable to any area where we
have spatiotemporal responses. It is our intention to apply the
results of this study in data from human experiments obtained
by a new prototype of the OID-RF device [6].
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