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Abstract 
 

Utilizing the connection between uniform constant-

depth circuits and first-order logic with numerical predi-

cates, we are able to provide a purely logical characteri-

zation of uniformity based on the intrinsic properties of 

these predicates.  By requiring a numerical predicate R 

to satisfy a natural extensibility condition — that it can be 

translated to a polynomially magnified domain based on 

tuple constructions — we show that R must already be el-

ementarily definable from < and bit (both of which satisfy 

the extensibility condition).  Our answer is motivated by, 

and coincides with, DLOGTIME uniformity.  

 

0.  Introduction 
 

This paper explores a purely logical description of cir-

cuit uniformity, justifying the resulting class of 

DLOGTIME-uniform bounded-depth circuits.  Relying 

on results in [BIS], these will be the queries which are ex-

pressible in first-order logic on finite ordered structures 

which contain the bit predicate, abbreviated FO(<, bit). 

By equating uniform families of circuits with alternat-

ing Turing-machines, Ruzzo [Ruz], shows that logarith-

mic-depth circuits of bounded fan-in gates, NC
1
, are a 

reasonable model of parallel computation, relatively in-

sensitive to various uniformity definitions. 

Uniform families of bounded-depth circuits, AC
0
, and 

their connection with first-order logic are explored in 

[G&L].  As [Bar] notes, they observed that the equiva-

lence between bounded-depth circuits and first-order for-

mulas with auxiliary relations holds at virtually any uni-

formity level. Corollary 6 in [Bar] makes clear this corre-

spondence and refines their results to read: 

“Let C be any class of functions containing the log-

time computable functions and closed under composition.  
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Then a language is in C-uniform AC
0
 iff it can be ex-

pressed by a first-order formula using numerical predi-

cates in C.” 

The class of numerical predicates referred to indicates 

precisely those relations whose interpretation is dependent 

solely on the size of the input.  In particular, if R is a nu-

merical predicate, then for every structure of size n, Rn is 

equal to a fixed k-ary relation on {0, 1, …, n – 1}.  The 

proof of the quoted result relies on a fundamental result in 

[BIS] connecting a very restrictive notion of circuit uni-

formity with first-order logic at an arguably very low 

level. 

 

Overview of paper 

 

Section 1 provides a brief review of first-order logic, 

mostly by examples. Included is the important concept of 

viewing a binary string as a finite structure, and its aug-

mentation by the special bit predicate. 

Section 2 explains how to view circuit uniformity from 

a relational query perspective, by illustrating the equiva-

lence between DLOGTIME-uniform bounded-depth cir-

cuits and expressibility in first-order logic with < and bit.  

This section also mentions how FO(<, bit) is equivalent to 

constant-time computation on a parallel random-access 

machine, the WRAM, where each processor is permitted a 

special shift operation. 

Further reasons to consider FO(<, bit) from a logical 

query perspective are given in Section 3, in which the 

isomorphism problem for binary string structures is dis-

cussed, along with structures which use arithmetic as their 

auxiliary relations. 

These motivational subjects are summarized in 

Section 4, and the definition of a first-order translation is 

explained in Section 5.  Section 6 gives examples of ex-

tensibility for the relations +, <, and bit. 

Section 7 gives the precise definition of what it means 

for an auxiliary numerical predicate to be uniformly ex-

tensible, followed by the main result and sketch of its 

proof in section 8.  The paper’s conclusion, section 9, is 

followed by open problems. 
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1.  Brief review of first-order logic 
 

First-order logic on finite structures provides a ma-

chine independent model of parallel complexity theory.  

This approach views combinatorial problems as queries 

on classes of finite structures.  One of the most familiar 

examples is the class of digraphs—all structures having a 

binary edge relation E over a finite domain of vertices V: 

 

G = V, E    V = n    E  V² 

 

The problem of determining if a graph is simple (no 

self-loops, all edges undirected) is an example of a graph 

property, or Boolean query. Another example is the prob-

lem of determining if the edge relation constitutes a total 

linear order of the vertices.  Both of these properties are 

expressible as first-order sentences.  Simplicity is: 

 

G = V, E is simple iff G      where 

 

  (x)[E(x, x)]  (y)(z)[E(y, z)  E(z, y)] 

 

The first part of  says that no vertex has an edge to itself, 

and the second part says that if there is an edge from one 

vertex to another, then there must be an edge going the 

other direction. The term first-order refers to the fact that 

the only allowable quantification is the binding of indi-

vidual variables which range over the domain. 

Using more suggestive notation for orderedness: 

 

B = A, < is ordered iff B   

 

where we can express as the conjunction of the follow-

ing axioms (all variables universally quantified): 

 

 (x < x) (irreflexivity) 

 (x ≠ y)  [(x < y)  (y < x)] (totality) 

 [(x < y)  (y < z)]  (x < z) (transitivity) 

 

In general, a finite relational structure, 

 

A = A, R1, …, Rk, 

 

consists of a finite set A called the domain, together with 

relations, each of a specified arity on A.  Formulas in 

first-order logic for these structures permit: individual 

variables interpreted as ranging over the domain; predi-

cate symbols for each relation Ri and equality (=); the 

Boolean connectives , , and ; and first-order quantifi-

cation of the variables.  We denote the class of all such 

first-order queries FO. For further background, see [End]. 

Binary string structures 
 

The most important example, from a computational 

point of view, is the class of binary string structures.  

Each such structure is of the form B = B, <, U, where < 

is a linear order on B, and U is a unary relation on B.  

Interpreted as a binary string, < orders the positions in the 

string from left to right, and U indicates the positions of 

the 1's and 0's by true and false, respectively.  For in-

stance, the binary string 1010 is represented by the struc-

ture {0, 1, 2, 3}, <, {0, 2}, with 0 < 1 < 2 < 3. 

 

 <  <  <  

0  1  2  3 

 

The closed circles indicate where U is true, and the open 

circles where U is false. 

Since on an ordered structure each element of the do-

main can be thought of as corresponding to a number 

which is it’s distance from the smallest element, we will 

henceforth use the set {0, 1, …, n – 1} for the domain of 

an ordered structure, with the obvious intention that 0 < 

1 < … <  n – 1 under the ordering of the structure. 

 

Adding bit to ordered structures 
 

To directly express resource-bounded computation on 

machine models, it is necessary to work on ordered struc-

tures — those which always include a total linear ordering 

of the domain.  Furthermore, a special binary predicate 

called bit is useful in order to capture notions of constant-

time parallel computability.  For a domain element i, we 

will be able to determine the location of 1’s and 0’s in its 

binary representation: 

 

bit(i, j) 

 

the jth position in the binary representation of i is a 1. 

 

For instance, bit(5, 1) is false, since 5 = (101)2, and 

there’s a 0 in the 1st position (the rightmost bit is treated 

as the 0th position).  Adding bit to the ordering results in 

structures of the form 

 

A, <, bit, R1, …, Rk 

 

and we distinguish the augmented class of first-order 

queries by the notation: 

 

FO(<, bit). 
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2.  Connections with parallel complexity  
 

The central importance of bit lies in its connection with 

parallel computation, both in terms of uniform families of 

bounded-depth circuits and parallel random-access ma-

chines. 

 

Uniform constant-depth circuits 
 

Given a bounded-depth family of polynomial-size cir-

cuits Cn, n = 1, 2,…, with Cn ≤ n
d
 (unbounded fan-in, 

AC
0
), consider the complexity of the map: 

 

f 

n    Cn 



The inputs to Cn consist of binary strings of size n, 

each bit in the string representing the value true or false.  

We should imagine the nodes of the circuit as being num-

bered in some fashion from 1 to n
d
, each node having the 

property that it is a certain kind of gate (and, or) or else a 

leaf (one of the input bits or its negation).  DLOGTIME 

uniformity means that given a pair of nodes in Cn, we can 

compute whether or not they are connected in time 

O(log n) on a deterministic Turing-machine with a ran-

dom-access tape (and given a single node, we can tell 

what kind of node it is — either its gate type or its loca-

tion relative to the input string).  Since each node can be 

described using d·log2 n symbols, we can think of this as  

a kind of linear time uniformity in the actual size of the 

input.  This very restrictive notion of circuit uniformity 

relates to first-order logic in a beautiful way [BIS]: 

 

Theorem:  DLOGTIME-uniform AC
0
 = FO(<, bit). 

 

Parallel random-access machines 
 
Another model of parallel computation is a machine 

with polynomially many processors, each with simultane-

ous read/write random-access to a global memory (write 

conflicts are resolved by giving priority to the lowest 

numbered processor).  The input is stored initially in the 

first n positions of the memory, and each processor has a 

special shift instruction allowing it move a local register 

over by up to log2 n bits. In another beautiful result, con-

stant-time parallel computability on this model, denoted 

WRAM(O(1), shift), is connected to first-order logic 

[Im3]: 

 

Theorem:  WRAM(O(1), shift) = FO(<, bit). 

 

3.  Connections with query definability  
 
We wish to bring to the reader’s attention two further 

facts that indicate the importance of the bit predicate from 

a query definability point of view. 

 

The isomorphism problem for binary strings 
 
One connection with first-order query definability 

comes from examining the structure isomorphism prob-

lem, discussed extensively in [Lin].  Essentially, the iso-

morphism query asks if two given structures (of the same 

type) are isomorphic.  In the case of graphs, we can for-

mulate this question as a Boolean query ISO which corre-

sponds to graph isomorphism: 

 

V, E, E'  ISO 



V, E  V, E'

 

 In the case of binary string structures, this becomes: 

 

B, <, U, <', U'  ISO 



B, <, U  B, <', U'

 

where we tacitly assume that both < and <' are total linear 

orders of the same underlying domain.  The following 

theorems are proved in [Lin]: 

 

Theorem: The isomorphism problem for binary strings is 

not first-order definable. 

 

On the other hand, if we add a bit predicate to each of 

the orders in a corresponding fashion, we obtain what es-

sentially looks like the same problem: 

 

B, <, bit, U, <', bit', U'  ISO 



B, <, bit, U  B, <', bit', U'



B, <, U  B, <', U'

 

Except that in this case, the following is actually true 

[Lin]: 

 

Theorem:  The isomorphism problem for binary strings 

with a bit predicate is first-order definable. 

 

This result can be seen as showing that string isomor-

phism (with bit) is the simplest possible non-trivial struc-

ture isomorphism problem (but it should be noted that its 

proof is far from trivial). 
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Arithmetic on finite structures 
 
An appealing correspondence between the relatively 

obscure bit predicate and the comparatively more familiar 

functions of ordinary arithmetic can be made.  Although 

bit is apparently a way to encode/decode numbers in bi-

nary based on their position in an ordering, and hence 

seems to be intimately connected with binary representa-

tion, it is a surprising but little-known fact that elementary 

definability with {<, bit} is equivalent (i.e. up to a first-

order factor) to elementary definability with the arithmeti-

cal partial functions {+, *, ^}. 

Consider the usual operations of arithmetic given by 

the ternary relations 

 

 Plus(a, b, c)    a + b = c (addition) 

 Times(a, b, c)    a * b = c (multiplication) 

 Exp(a, b, c)    a ^ b = c (exponentiation) 

 

restricted so that a, b, c range over a finite domain 

{0, 1, …, n – 1}.  Not only are the arguments required to 

range over the domain, but the functions are not permitted 

to overflow. Define an arithmetical finite structure as one 

of the form: 

 

{0, 1, …, n – 1}, +, *, ^, R1, …, Rk 

  

where we assume +, *, ^ satisfy the usual axioms of 

arithmetic, and let 

 

FO(+, *, ^) 

 

denote the class of first-order queries augmented by these 

arithmetical predicates.  We claim that FO(+, *, ^) 

essentially coincides with FO(<, bit). 

 

Theorem:  On arithmetical finite structures, 

 

FO(<, bit) = FO(+, *, ^) 

 

where the numerical predicates <, bit, +, *, ^ are all as-

sumed to satisfy their standard axioms over the domain. 

 

One direction of this equivalence, that < and bit are el-

ementarily definable from +, *, and ^, is quite easy.  The 

ordering can be redefined from addition: 

 

i < j     i ≠ j    (k)[i + k = j] 

 

The additive and multiplicative identities define zero 

and one: 

 

 (a)[a + 0 = a] defines zero 

 (a)[a * 1 = a] defines one 

 

Mixed fraction representation of i / j, given by 

i = k * j + l with 0 ≤ l < j defines integer division.  So 

 

 i div j = k the quotient of i / j 

 i mod j = l the remainder of i / j 

 

define the div and mod functions as quotient and remain-

der, respectively. Combined with the important definition 

of two, 1 + 1 = 2, we get 

 

bit(i, j)    (i div 2^j) mod 2 = 1 

 

where (i div 2^j) removes the j least significant bits of i, 

and mod 2 examines the remaining least significant bit. If 

2^j doesn't exist (i.e. overflows the domain of the struc-

ture), then the formula fails to be satisfied and bit(i, j) = 0 

as expected. 

The reverse direction, of defining +, *, and ^ from < 

and bit, is substantially harder. In this extended draft, we 

will simply confine our remarks to mention that the key 

idea in the proof consists of converting the arguments into 

binary (using bit) and then performing some fairly com-

plicated algorithms for (log n)-bit binary arithmetic. 

 

4.  What is so special about bit? 
 

To summarize, we have shown the reader three com-

pelling extrinsic reasons for including the numerical pred-

icates < and bit in first-order definability on finite struc-

tures. 

 

•  FO(<, bit) captures two equivalent notions of uniform 

constant-time parallel computability: 

 

FO(<, bit) = WRAM(O(1), shift) 

FO(<, bit) = DLOGTIME-uniform AC
0
. 

 

•  The isomorphism problem for binary string structures 

with the bit predicate is first-order definable. 

 

B, <, bit, U  B, <', bit', U'

 

B, <, bit, U, <', bit', U'  ISO 

where 

ISO  FO

 

•  First-order definability with < and bit is the same as 

first-order definability with arithmetic: 

 

FO(<, bit) = FO(+, *, ^) 
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These correspondences tell us that bit is special, but 

from a purely logical viewpoint don’t tell us what is spe-

cial about it.  In particular, one might wonder if there are 

further predicates to be discovered that could augment 

first-order definability: 

 

FO(<, bit, ?) 

 

The aim of this paper is to show that there is nothing 

else! That is, no numerical predicate which satisfies a cer-

tain kind of uniform extensibility condition provides a 

proper extension of FO(<, bit) on finite structures.  The 

precise answer comes from a close examination of the 

logically intrinsic properties of < and bit. And to do this, 

we turn to logical reductions between problems. 

 

5.  First-order translations 
 

Reductions have been a key tool in understanding re-

source-bounded computation.  Many well-studied com-

plexity classes with nice closure properties, such as 

PSPACE, NP, P, NL, L, and ALOGTIME all contain prob-

lems which are demonstrably hardest in the sense that all 

other problems in their class can be reduced to them via 

some very simple sort of conversion process, such as one 

using logspace transducers.  These hardest problems are 

called complete, and the phenomenon of completeness has 

played an important role in understanding the relative 

complexity of combinatorial problems. 

To pick just one example, GAP, the graph accessibility 

problem of determining if there is a directed path from a 

to b in a graph, is complete for NL (= co-NL [Im1]) under 

first-order reductions [Im2]. These are much stricter than 

the usual logspace reductions and furthermore are prov-

ably weaker. 

First-order reductions correspond to the logical notion 

of translating a structure in a certain vocabulary to an-

other structure in a potentially different vocabulary.  For 

example, to translate binary strings into graphs, one could 

use the following idea: 

 

 
 

B, <, U    V, E 

 

and write it formally as the formulas: 

 

 x  true (defines V) 

 Ey, z  (y < z)  [(y = z)  U(y)] (defines E) 

 

That is to say, the image of a binary string under this 

translation is the graph whose vertex set is the same as the 

positions of the string, and whose edge relation lies be-

tween a strict and non-strict linear order (in a set-theoretic 

sense) 

(<)  E  (≤) 

 

such that E has a self-loop at x iff the position correspond-

ing to x had a 1 located there.  Curiously enough, the in-

verse problem of converting an arbitrary graph into a bi-

nary string 

 

V, E    B, <, U 

 

is the graph canonization problem, which appears to be 

very difficult (it is in the polynomial-hierarchy, PH, but 

not known to be in P). 

To fully qualify as a combinatorial reducibility for 

complexity theory (in order to retain the existence of 

complete problems), we must provide a mechanism for al-

lowing translations to effect a polynomial increase in 

problem size (as measured by the cardinality of the do-

main).  A simple and natural way to do this syntactically 

in logic is via tuple constructions, in which a fixed num-

ber of elements are combined into a vector of length m.  

If the original domain had n elements, the set of all possi-

ble m-vectors forming the new domain has n
m
 elements.  

The other relations in the translation are defined on this 

set of m-tuples.  The precise generalization is: 

 

Definition:  Given signatures composed of predicate 

symbols  = {S1, …, Sk} and  = {T1, …, Tl}, let  be the 

set of all finite structures of type  and let  be the set of 

all finite structures of type .  A function :    is 

called a first-order translation if  can be expressed by a 

sequence of first-order formulas in the signature  

 

 = (x), T1(x1, …, xb1), …, Tk(x1, …, xbk)

 

where boldface x = x1, …, xm is an m-tuple, m is called 

the magnification factor, and bi is the arity of Ti, 1 ≤ i ≤ k. 

So given a structure A of type , (A) will be a struc-

ture of type , with domain [(x)]A (typically (x) is 

just the always true formula, making the domain of the 

image to be all m-tuples from the domain of A). Each re-

lation, Ti, of (A) is given by evaluating the correspond-

ing formula [Ti(x1, …, xbi)]
A.  This is a direct general-

ization of the classical notion of an interpretation as de-

fined in [End] — translations in which the magnification 

factor is absent (i.e. 1). But on finite structures it becomes 

necessary to include arbitrarily large magnification fac-

tors to permit a polynomial size increase in domain cardi-

nality. 

1010 
 
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6.  Examples of auxiliary relations 
 

Now, if we take literally the fact that each and every 

relation on (A), including equality, must have a first-or-

der definition in the translation, we are led to the in-

evitable conclusion that if  contains a symbol for a nu-

merical predicate R, then  must contain a formula R 

which defines it.  If we want to translate binary string 

problems — the standard vocabulary for computational 

complexity — then we must find a way to define = and < 

(and bit) on polynomially magnified domains.  The re-

mainder of this section is devoted to demonstrating how 

simple the required formulas are, and in doing so motivate 

the definition in the next section of what it means for a 

numerical predicate to be uniformly extensible. 

 

Equality 
 

In defining the structure (A) in terms of tuples from 

A, it is easy to see that equality of the resulting elements 

is quite simple to determine.  For instance, if m = 2: 

 

x1, x2 = y1, y2      x1 = y1    x2 = y2 
 

The cases m > 2 are obvious too.  In particular, the for-

mula for =(x, y) is always propositional. 

 

Ordering 
 

Now, let us consider translations among finite ordered 

structures.  This means that there is a binary predicate 

symbol < which is both a member of  and  and whose 

interpretation always satisfies the axioms for a strict linear 

order.  In particular, there must be a formula <(x, y) 

which defines a strict linear order on m-tuples.  Clearly, 

< will depend on the order of individual elements, and 

nothing else.  In fact, lexicographic order is an obvious 

choice.  For m = 2, this means that <(x, y) defines: 

 

x1, x2 < y1, y2      x1 < y1    x1 = y1    x2 < y2 
 

For m > 2 use the same standard technique.  Notice that 

this expression still only requires propositional logic, and 

that the number of occurrences of < in the formula for < 

is m.  So we see that the ordering relation also satisfies a 

very simple sort of polynomial extensibility.  For conve-

nience from now on, we will assume that further numeri-

cal predicates will “sit” on the ordered domain whose ele-

ments are named {0, 1, …, n – 1}. 

 

Bit 
 

In expressing polynomial extensions of the bit predi-

cate, we proceed by a sequence of constructions.  Begin 

by defining addition as the quintary predicate: 

 

Add(a, b, ci, s, co)      a + b + ci = s + co 

 

where a, b, s  {0, 1, …, n – 1} are the addends and the 

sum respectively, and ci,  co  {0, 1} are the carry in and 

carry out, respectively.  Then for m = 2, (it is not neces-

sary to pair the carry in or carry out) we can have Add  

express the addition problem: 

 

 c     ci  

 a1, a2

  b1, b2

 

 =  cos1, s2







[Add(a2, b2, ci, s2, 0)  Add(a1, b1, 0, s1, co)]  

[Add(a2, b2, ci, s2, 1)  Add(a1, b1, 1, s1, co)]      

 

which covers the two cases for the intermediate carry c = 

0, 1. Notice that we have allowed a constant (0 or 1) to be 

substituted for some of the arguments.  This is because 0 

and 1 are constants, elementarily definable from <, which 

was previously shown to be uniformly extensible (the pre-

cise definition appears in the next section).  Addition on 

tuples of length m > 2 are also definable in the same man-

ner, by taking into account all possible intermediate car-

ries.  Again, only propositional logic is required. 

Next, for n = 2
k
, let us show that the constant log2 n is 

logically uniform for m = 2: 

 

z1, z2 = log2 n²      z1 = 0    z2 = 2·log2 n 

 

This just says that the logarithm of the magnified do-

main of pairs, which has size n², is twice the logarithm of 

the original domain of size n.  Note that we permit an el-

ementary function (in this case twice) defined in terms of 

a previously extensible relation (Add) to appear (as 

2·log2 n). 

Finally, to express extensions the bit predicate, con-

sider only powers of 2, n = 2
k
 for simplicity: 

 

bit(x1, x2, 0, y2)  

 

[(y2 < log2 n)    bit(x2, y2)] 



[(y2 ≥ log2 n)    bit(x1, y2 – log2 n)] 

 

Since we are dealing with exact powers of 2, this formula 

just says that the binary expansion of a pair is the con-
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catenation of the binary expansions of the individual ele-

ments. Notice again that we make use of a previously de-

finable function, in this case log2 n, and subtraction 

(which is elementarily definable in terms of addition).  It 

should be clear how to extend this definition to cover 

when m > 2, provided n is still a power of two.  For arbi-

trary n, it would probably be easier to simply show that +, 

*, and ^ are uniformly extensible, and then derive the ex-

tension of bit from that.  

 

7.  Uniform extensibility of predicates 
 

With our motivational sketches now complete, we turn 

to actually define what a uniformly extensible predicate 

is, consistent with our previous examples of =, <, and bit. 

 

Definition:  The numerical predicate R(y1,…, yk) is said 

to be uniformly extensible, if for m > 1, there exists a first-

order formula  such that 

 

R(y1,1,…, y1,m, …,yk,1,…, yk,m) 

 

(R; {yi,j : i = 1,…, k; j = 1, …, m}). 

 

Letting boldface variables represent m-tuples, e.g. x = 

x1,…, xm, we can abbreviate this as: 

 

R(y1,…, yk)    (R; {yi,j : i = 1,… k; j = 1,… m}) 

 

Furthermore, every occurrence of R in  is required to be 

of the form 

 

R(f1,…, fk), 

 

where each argument f is an elementary function defined 

by a first-order formula , 

 

f({yij : i = 1,…, k; j = 1, …, m}) = z 

 

({yij : i = 1,…, k; j = 1, …, m}, z). 

 

In addition,  (and hence any ) may include other rela-

tions already known to be uniformly extensible (see prior 

examples), but  is not permitted to contain R. 

In simple terms, the most important feature of our def-

inition is that it requires Rnm to be definable using only 

finitely many recursive calls to Rn with non-recursive ar-

guments.  The  allowed in our definition seems to be a 

generalization of a first-order projection translation [Im2, 

see also I&L, Def. 3.7]. 

 

8.  Main result 
 

Theorem: If R is a uniformly extensible numerical predi-

cate, then R is elementarily definable from < and bit. I.e. 

there exists a first-order formula  in the signature of {=, 

<, bit} such that: 

 

R(x1,…, xk)    (=, <, bit;  x1,…, xk) 

 

N.B.  does not contain R (cf.  in prior definition). 

 

Proof (sketch):  Technically the proof is by induction, 

where we assume that any relations already known to be 

uniformly extensible satisfy the theorem, and hence are in 

FO(<, bit). We sketch the idea here for m = 2, though the 

proof scales to larger m. 

In [BIS], it is shown that acceptance of a bounded-al-

ternation logarithmic-time random-access Turing-machine 

is equivalent to first-order definability with < and bit. So 

it suffices to show that for any given set of arguments 

x1,…, xk to R, we can calculate the truth or falsity of 

R(x1,…, xk) in LH, the logtime hierarchy.  This will di-

rectly imply that R is expressible in FO(<, bit). 

Suppose we are given the arguments x1,…, xk to Rn in 

binary.  Each argument xi has bit size log2 n (for simplic-

ity, assume that n is an exact power of 2). Our solution is 

presented as an LH algorithm for the Boolean evaluation 

of Rn (x1,…, xk). 

1.  Unfold the recursion:  By uniform extensibility, Rn 

has a definition given by  in terms of a fixed number of 

recursive calls to Rn.  The number of calls, l, is a syntac-

tical property equal to the number of occurrences of R in 

.  If we unfold this recursion entirely we obtain an l-ary 

tree of depth log2 log2 n and size about (log2 n)
(log

2 l)   

with root R(x1,…, xk) and leaves of the form  

R2(b1,…, bk), where the bi are 1-bit arguments.  An inter-

nal node of the tree looks like Rn'(y1,…, yk) where each 

argument yi is log2 n' bits long.  It is parent to l children, 

each of which look like Rn'(f1,…, fk), where the fi are 

log2 n' = (½)log2 n' bits long, and each may depend on 

the 2k arguments yi = yi,1 , yi,2, 1 ≤ i ≤ k, given by liter-

ally chopping each yi in half.  The argument dependen-

cies from parent to child are given by the particular ’s in 

a first-order computable way, and the Boolean depen-

dency of the parent on its children is first-order com-

putable via . 

2.  Top-down Boolean evaluation:  Evaluate the tree in 

log2 l phases by breaking it top-down into trees of strictly 

logarithmic size.  Guess the Boolean values of the top 

log2 n nodes, and verify correctness locally by checking 

that each node follows from its children via  (see the 

next step for details). Then, decide which of the O(log n) 

leaves of this sub-tree to isolate (with universal alterna-
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tion), and using it as a new root repeat this process until 

reaching the bottom.  This uses a bounded number of al-

ternations O(log2 l) precisely because the sub-trees are in-

dependent. At the leaves, it is necessary to have a (finite) 

table for checking R2, which acts like a basis for the re-

cursion. 

3.  Bottom-up argument determination:  To verify that 

a parent’s value follows from its children’s values in-

volves checking a first-order formula () which may also 

contain other (first-order) relations.  Those relations may 

depend on particular arguments, and so the problem re-

mains to compute the arguments that appear at each node.  

If a parent has arguments of bit size b, then each of its l 

children will have arguments of bit size b/2 (for a magni-

fication factor of m = 2).  The arguments at any node are 

determined by guessing all the arguments on the path 

from the desired node to the root, which a quick computa-

tion reveals is no more than 2k·log2 n bits. Verify this 

guess by checking that the arguments of a child follow 

from the arguments of its parent via the appropriate  

formulas, and make sure that the guess is consistent with 

the original group of arguments at the root, x1,…, xk.   

There is a lot of bookkeeping going on here, especially in 

deciding which  to choose at a given node, based on its 

position in the tree. 

 

9.  Conclusions 
 

We have given a purely logical definition of circuit 

uniformity based solely on tuples and relations.  A predi-

cate was called uniformly extensible if it could be 

“passed-through” a translation in a very simple way. This 

is a natural requirement for studying reducibilities among 

queries on finite structures which include these predicates.  

It was construed to permit only those relations which 

when interpreted on tuples, can be defined in terms of 

themselves (on the individual elements) using a slight 

generalization of first-order projective translations.  We 

have demonstrated that first-order logic augmented by all 

uniformly extensible relations captures FO(<, bit) defin-

ability exactly, which is equivalent to DLOGTIME-uni-

form constant-depth circuits. 

 

10.  Open Problems 
 

A.  Can the main result be extended to a functional (as 

opposed to relational) setting?  [I can get O(log* n)-time 

computability, but not O(1)].  How about allowing arbi-

trary first-order translations for  (repealing the finite call 

condition)? [It is at most O(log log n)-time, which is just 

the depth of the tree]. 

 

B.  Even though there cannot be any complete problems 

for FO(<, bit), due to the strict depth hierarchy in [Sip], is 

there any other way to formalize the notion of a “hardest” 

problem for FO(<, bit)?  The binary string canonization 

query (cf. the isomorphism query in section 4) discussed 

in [Lin] is intuitively “hard” yet elusive in its comparison 

with other problems. 

 

C.  Is modular exponentiation a uniformly extensible rela-

tion under even the more lenient requirement of a first-or-

der translation (see above)? [mexp(a, b, c, d) iff  

(a ^ b  c) mod d].  This would have important conse-

quences in analyzing the uniformity of NC
1
 circuits for 

binary division [I&L]. 
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