
Appeared in: Proceedings of the 7th Annual IEEE Conference on Structure in Complexity Theory, (1992), pp. 185-192.

A Purely Logical Characterization of Circuit Uniformity
(Extended Draft)

Steven Lindell †

Haverford College
Haverford, PA 19041-1392

Abstract

Utilizing the connection between uniform constant-

depth circuits and first-order logic with numerical predi-

cates, we are able to provide a purely logical characteri-

zation of uniformity based on the intrinsic properties of

these predicates. By requiring a numerical predicate R

to satisfy a natural extensibility condition — that it can be

translated to a polynomially magnified domain based on

tuple constructions — we show that R must already be el-

ementarily definable from < and bit (both of which satisfy

the extensibility condition). Our answer is motivated by,

and coincides with, DLOGTIME uniformity.

0. Introduction

This paper explores a purely logical description of cir-

cuit uniformity, justifying the resulting class of

DLOGTIME-uniform bounded-depth circuits. Relying

on results in [BIS], these will be the queries which are ex-

pressible in first-order logic on finite ordered structures

which contain the bit predicate, abbreviated FO(<, bit).

By equating uniform families of circuits with alternat-

ing Turing-machines, Ruzzo [Ruz], shows that logarith-

mic-depth circuits of bounded fan-in gates, NC
1
, are a

reasonable model of parallel computation, relatively in-

sensitive to various uniformity definitions.

Uniform families of bounded-depth circuits, AC
0
, and

their connection with first-order logic are explored in

[G&L]. As [Bar] notes, they observed that the equiva-

lence between bounded-depth circuits and first-order for-

mulas with auxiliary relations holds at virtually any uni-

formity level. Corollary 6 in [Bar] makes clear this corre-

spondence and refines their results to read:

“Let C be any class of functions containing the log-

time computable functions and closed under composition.

† email: S_LINDELL@acc.haverford.edu. Research completed

while the author was on leave in residence 1990-91, and also partially

supported by NSF grant CCR-9003356.

Then a language is in C-uniform AC
0
 iff it can be ex-

pressed by a first-order formula using numerical predi-

cates in C.”

The class of numerical predicates referred to indicates

precisely those relations whose interpretation is dependent

solely on the size of the input. In particular, if R is a nu-

merical predicate, then for every structure of size n, Rn is

equal to a fixed k-ary relation on {0, 1, …, n – 1}. The

proof of the quoted result relies on a fundamental result in

[BIS] connecting a very restrictive notion of circuit uni-

formity with first-order logic at an arguably very low

level.

Overview of paper

Section 1 provides a brief review of first-order logic,

mostly by examples. Included is the important concept of

viewing a binary string as a finite structure, and its aug-

mentation by the special bit predicate.

Section 2 explains how to view circuit uniformity from

a relational query perspective, by illustrating the equiva-

lence between DLOGTIME-uniform bounded-depth cir-

cuits and expressibility in first-order logic with < and bit.

This section also mentions how FO(<, bit) is equivalent to

constant-time computation on a parallel random-access

machine, the WRAM, where each processor is permitted a

special shift operation.

Further reasons to consider FO(<, bit) from a logical

query perspective are given in Section 3, in which the

isomorphism problem for binary string structures is dis-

cussed, along with structures which use arithmetic as their

auxiliary relations.

These motivational subjects are summarized in

Section 4, and the definition of a first-order translation is

explained in Section 5. Section 6 gives examples of ex-

tensibility for the relations +, <, and bit.

Section 7 gives the precise definition of what it means

for an auxiliary numerical predicate to be uniformly ex-

tensible, followed by the main result and sketch of its

proof in section 8. The paper’s conclusion, section 9, is

followed by open problems.

2

1. Brief review of first-order logic

First-order logic on finite structures provides a ma-

chine independent model of parallel complexity theory.

This approach views combinatorial problems as queries

on classes of finite structures. One of the most familiar

examples is the class of digraphs—all structures having a

binary edge relation E over a finite domain of vertices V:

G = V, E V = n E  V²

The problem of determining if a graph is simple (no

self-loops, all edges undirected) is an example of a graph

property, or Boolean query. Another example is the prob-

lem of determining if the edge relation constitutes a total

linear order of the vertices. Both of these properties are

expressible as first-order sentences. Simplicity is:

G = V, E is simple iff G   where

  (x)[E(x, x)]  (y)(z)[E(y, z)  E(z, y)]

The first part of  says that no vertex has an edge to itself,

and the second part says that if there is an edge from one

vertex to another, then there must be an edge going the

other direction. The term first-order refers to the fact that

the only allowable quantification is the binding of indi-

vidual variables which range over the domain.

Using more suggestive notation for orderedness:

B = A, < is ordered iff B  

where we can express as the conjunction of the follow-

ing axioms (all variables universally quantified):

 (x < x) (irreflexivity)

 (x ≠ y)  [(x < y)  (y < x)] (totality)

 [(x < y)  (y < z)]  (x < z) (transitivity)

In general, a finite relational structure,

A = A, R1, …, Rk,

consists of a finite set A called the domain, together with

relations, each of a specified arity on A. Formulas in

first-order logic for these structures permit: individual

variables interpreted as ranging over the domain; predi-

cate symbols for each relation Ri and equality (=); the

Boolean connectives , , and ; and first-order quantifi-

cation of the variables. We denote the class of all such

first-order queries FO. For further background, see [End].

Binary string structures

The most important example, from a computational

point of view, is the class of binary string structures.

Each such structure is of the form B = B, <, U, where <

is a linear order on B, and U is a unary relation on B.

Interpreted as a binary string, < orders the positions in the

string from left to right, and U indicates the positions of

the 1's and 0's by true and false, respectively. For in-

stance, the binary string 1010 is represented by the struc-

ture {0, 1, 2, 3}, <, {0, 2}, with 0 < 1 < 2 < 3.

 < <  <

0 1 2 3

The closed circles indicate where U is true, and the open

circles where U is false.

Since on an ordered structure each element of the do-

main can be thought of as corresponding to a number

which is it’s distance from the smallest element, we will

henceforth use the set {0, 1, …, n – 1} for the domain of

an ordered structure, with the obvious intention that 0 <

1 < … < n – 1 under the ordering of the structure.

Adding bit to ordered structures

To directly express resource-bounded computation on

machine models, it is necessary to work on ordered struc-

tures — those which always include a total linear ordering

of the domain. Furthermore, a special binary predicate

called bit is useful in order to capture notions of constant-

time parallel computability. For a domain element i, we

will be able to determine the location of 1’s and 0’s in its

binary representation:

bit(i, j)



the jth position in the binary representation of i is a 1.

For instance, bit(5, 1) is false, since 5 = (101)2, and

there’s a 0 in the 1st position (the rightmost bit is treated

as the 0th position). Adding bit to the ordering results in

structures of the form

A, <, bit, R1, …, Rk

and we distinguish the augmented class of first-order

queries by the notation:

FO(<, bit).

3

2. Connections with parallel complexity

The central importance of bit lies in its connection with

parallel computation, both in terms of uniform families of

bounded-depth circuits and parallel random-access ma-

chines.

Uniform constant-depth circuits

Given a bounded-depth family of polynomial-size cir-

cuits Cn, n = 1, 2,…, with Cn ≤ n
d
 (unbounded fan-in,

AC
0
), consider the complexity of the map:

f

n  Cn



The inputs to Cn consist of binary strings of size n,

each bit in the string representing the value true or false.

We should imagine the nodes of the circuit as being num-

bered in some fashion from 1 to n
d
, each node having the

property that it is a certain kind of gate (and, or) or else a

leaf (one of the input bits or its negation). DLOGTIME

uniformity means that given a pair of nodes in Cn, we can

compute whether or not they are connected in time

O(log n) on a deterministic Turing-machine with a ran-

dom-access tape (and given a single node, we can tell

what kind of node it is — either its gate type or its loca-

tion relative to the input string). Since each node can be

described using d·log2 n symbols, we can think of this as

a kind of linear time uniformity in the actual size of the

input. This very restrictive notion of circuit uniformity

relates to first-order logic in a beautiful way [BIS]:

Theorem: DLOGTIME-uniform AC
0
 = FO(<, bit).

Parallel random-access machines

Another model of parallel computation is a machine

with polynomially many processors, each with simultane-

ous read/write random-access to a global memory (write

conflicts are resolved by giving priority to the lowest

numbered processor). The input is stored initially in the

first n positions of the memory, and each processor has a

special shift instruction allowing it move a local register

over by up to log2 n bits. In another beautiful result, con-

stant-time parallel computability on this model, denoted

WRAM(O(1), shift), is connected to first-order logic

[Im3]:

Theorem: WRAM(O(1), shift) = FO(<, bit).

3. Connections with query definability

We wish to bring to the reader’s attention two further

facts that indicate the importance of the bit predicate from

a query definability point of view.

The isomorphism problem for binary strings

One connection with first-order query definability

comes from examining the structure isomorphism prob-

lem, discussed extensively in [Lin]. Essentially, the iso-

morphism query asks if two given structures (of the same

type) are isomorphic. In the case of graphs, we can for-

mulate this question as a Boolean query ISO which corre-

sponds to graph isomorphism:

V, E, E'  ISO



V, E  V, E'

 In the case of binary string structures, this becomes:

B, <, U, <', U'  ISO



B, <, U  B, <', U'

where we tacitly assume that both < and <' are total linear

orders of the same underlying domain. The following

theorems are proved in [Lin]:

Theorem: The isomorphism problem for binary strings is

not first-order definable.

On the other hand, if we add a bit predicate to each of

the orders in a corresponding fashion, we obtain what es-

sentially looks like the same problem:

B, <, bit, U, <', bit', U'  ISO



B, <, bit, U  B, <', bit', U'



B, <, U  B, <', U'

Except that in this case, the following is actually true

[Lin]:

Theorem: The isomorphism problem for binary strings

with a bit predicate is first-order definable.

This result can be seen as showing that string isomor-

phism (with bit) is the simplest possible non-trivial struc-

ture isomorphism problem (but it should be noted that its

proof is far from trivial).

4

Arithmetic on finite structures

An appealing correspondence between the relatively

obscure bit predicate and the comparatively more familiar

functions of ordinary arithmetic can be made. Although

bit is apparently a way to encode/decode numbers in bi-

nary based on their position in an ordering, and hence

seems to be intimately connected with binary representa-

tion, it is a surprising but little-known fact that elementary

definability with {<, bit} is equivalent (i.e. up to a first-

order factor) to elementary definability with the arithmeti-

cal partial functions {+, *, ^}.

Consider the usual operations of arithmetic given by

the ternary relations

 Plus(a, b, c)  a + b = c (addition)

 Times(a, b, c)  a * b = c (multiplication)

 Exp(a, b, c)  a ^ b = c (exponentiation)

restricted so that a, b, c range over a finite domain

{0, 1, …, n – 1}. Not only are the arguments required to

range over the domain, but the functions are not permitted

to overflow. Define an arithmetical finite structure as one

of the form:

{0, 1, …, n – 1}, +, *, ^, R1, …, Rk

where we assume +, *, ^ satisfy the usual axioms of

arithmetic, and let

FO(+, *, ^)

denote the class of first-order queries augmented by these

arithmetical predicates. We claim that FO(+, *, ^)

essentially coincides with FO(<, bit).

Theorem: On arithmetical finite structures,

FO(<, bit) = FO(+, *, ^)

where the numerical predicates <, bit, +, *, ^ are all as-

sumed to satisfy their standard axioms over the domain.

One direction of this equivalence, that < and bit are el-

ementarily definable from +, *, and ^, is quite easy. The

ordering can be redefined from addition:

i < j  i ≠ j  (k)[i + k = j]

The additive and multiplicative identities define zero

and one:

 (a)[a + 0 = a] defines zero

 (a)[a * 1 = a] defines one

Mixed fraction representation of i / j, given by

i = k * j + l with 0 ≤ l < j defines integer division. So

 i div j = k the quotient of i / j

 i mod j = l the remainder of i / j

define the div and mod functions as quotient and remain-

der, respectively. Combined with the important definition

of two, 1 + 1 = 2, we get

bit(i, j)  (i div 2^j) mod 2 = 1

where (i div 2^j) removes the j least significant bits of i,

and mod 2 examines the remaining least significant bit. If

2^j doesn't exist (i.e. overflows the domain of the struc-

ture), then the formula fails to be satisfied and bit(i, j) = 0

as expected.

The reverse direction, of defining +, *, and ^ from <

and bit, is substantially harder. In this extended draft, we

will simply confine our remarks to mention that the key

idea in the proof consists of converting the arguments into

binary (using bit) and then performing some fairly com-

plicated algorithms for (log n)-bit binary arithmetic.

4. What is so special about bit?

To summarize, we have shown the reader three com-

pelling extrinsic reasons for including the numerical pred-

icates < and bit in first-order definability on finite struc-

tures.

• FO(<, bit) captures two equivalent notions of uniform

constant-time parallel computability:

FO(<, bit) = WRAM(O(1), shift)

FO(<, bit) = DLOGTIME-uniform AC
0
.

• The isomorphism problem for binary string structures

with the bit predicate is first-order definable.

B, <, bit, U  B, <', bit', U'



B, <, bit, U, <', bit', U'  ISO

where

ISO  FO

• First-order definability with < and bit is the same as

first-order definability with arithmetic:

FO(<, bit) = FO(+, *, ^)

5

These correspondences tell us that bit is special, but

from a purely logical viewpoint don’t tell us what is spe-

cial about it. In particular, one might wonder if there are

further predicates to be discovered that could augment

first-order definability:

FO(<, bit, ?)

The aim of this paper is to show that there is nothing

else! That is, no numerical predicate which satisfies a cer-

tain kind of uniform extensibility condition provides a

proper extension of FO(<, bit) on finite structures. The

precise answer comes from a close examination of the

logically intrinsic properties of < and bit. And to do this,

we turn to logical reductions between problems.

5. First-order translations

Reductions have been a key tool in understanding re-

source-bounded computation. Many well-studied com-

plexity classes with nice closure properties, such as

PSPACE, NP, P, NL, L, and ALOGTIME all contain prob-

lems which are demonstrably hardest in the sense that all

other problems in their class can be reduced to them via

some very simple sort of conversion process, such as one

using logspace transducers. These hardest problems are

called complete, and the phenomenon of completeness has

played an important role in understanding the relative

complexity of combinatorial problems.

To pick just one example, GAP, the graph accessibility

problem of determining if there is a directed path from a

to b in a graph, is complete for NL (= co-NL [Im1]) under

first-order reductions [Im2]. These are much stricter than

the usual logspace reductions and furthermore are prov-

ably weaker.

First-order reductions correspond to the logical notion

of translating a structure in a certain vocabulary to an-

other structure in a potentially different vocabulary. For

example, to translate binary strings into graphs, one could

use the following idea:



B, <, U  V, E

and write it formally as the formulas:

 x  true (defines V)

 Ey, z  (y < z)  [(y = z)  U(y)] (defines E)

That is to say, the image of a binary string under this

translation is the graph whose vertex set is the same as the

positions of the string, and whose edge relation lies be-

tween a strict and non-strict linear order (in a set-theoretic

sense)

(<)  E  (≤)

such that E has a self-loop at x iff the position correspond-

ing to x had a 1 located there. Curiously enough, the in-

verse problem of converting an arbitrary graph into a bi-

nary string

V, E  B, <, U

is the graph canonization problem, which appears to be

very difficult (it is in the polynomial-hierarchy, PH, but

not known to be in P).

To fully qualify as a combinatorial reducibility for

complexity theory (in order to retain the existence of

complete problems), we must provide a mechanism for al-

lowing translations to effect a polynomial increase in

problem size (as measured by the cardinality of the do-

main). A simple and natural way to do this syntactically

in logic is via tuple constructions, in which a fixed num-

ber of elements are combined into a vector of length m.

If the original domain had n elements, the set of all possi-

ble m-vectors forming the new domain has n
m
 elements.

The other relations in the translation are defined on this

set of m-tuples. The precise generalization is:

Definition: Given signatures composed of predicate

symbols  = {S1, …, Sk} and  = {T1, …, Tl}, let  be the

set of all finite structures of type  and let  be the set of

all finite structures of type . A function :    is

called a first-order translation if  can be expressed by a

sequence of first-order formulas in the signature 

 = (x), T1(x1, …, xb1), …, Tk(x1, …, xbk)

where boldface x = x1, …, xm is an m-tuple, m is called

the magnification factor, and bi is the arity of Ti, 1 ≤ i ≤ k.

So given a structure A of type , (A) will be a struc-

ture of type , with domain [(x)]A (typically (x) is

just the always true formula, making the domain of the

image to be all m-tuples from the domain of A). Each re-

lation, Ti, of (A) is given by evaluating the correspond-

ing formula [Ti(x1, …, xbi)]
A. This is a direct general-

ization of the classical notion of an interpretation as de-

fined in [End] — translations in which the magnification

factor is absent (i.e. 1). But on finite structures it becomes

necessary to include arbitrarily large magnification fac-

tors to permit a polynomial size increase in domain cardi-

nality.

1010


6

6. Examples of auxiliary relations

Now, if we take literally the fact that each and every

relation on (A), including equality, must have a first-or-

der definition in the translation, we are led to the in-

evitable conclusion that if  contains a symbol for a nu-

merical predicate R, then  must contain a formula R

which defines it. If we want to translate binary string

problems — the standard vocabulary for computational

complexity — then we must find a way to define = and <

(and bit) on polynomially magnified domains. The re-

mainder of this section is devoted to demonstrating how

simple the required formulas are, and in doing so motivate

the definition in the next section of what it means for a

numerical predicate to be uniformly extensible.

Equality

In defining the structure (A) in terms of tuples from

A, it is easy to see that equality of the resulting elements

is quite simple to determine. For instance, if m = 2:

x1, x2 = y1, y2  x1 = y1  x2 = y2

The cases m > 2 are obvious too. In particular, the for-

mula for =(x, y) is always propositional.

Ordering

Now, let us consider translations among finite ordered

structures. This means that there is a binary predicate

symbol < which is both a member of  and  and whose

interpretation always satisfies the axioms for a strict linear

order. In particular, there must be a formula <(x, y)

which defines a strict linear order on m-tuples. Clearly,

< will depend on the order of individual elements, and

nothing else. In fact, lexicographic order is an obvious

choice. For m = 2, this means that <(x, y) defines:

x1, x2 < y1, y2  x1 < y1  x1 = y1  x2 < y2

For m > 2 use the same standard technique. Notice that

this expression still only requires propositional logic, and

that the number of occurrences of < in the formula for <

is m. So we see that the ordering relation also satisfies a

very simple sort of polynomial extensibility. For conve-

nience from now on, we will assume that further numeri-

cal predicates will “sit” on the ordered domain whose ele-

ments are named {0, 1, …, n – 1}.

Bit

In expressing polynomial extensions of the bit predi-

cate, we proceed by a sequence of constructions. Begin

by defining addition as the quintary predicate:

Add(a, b, ci, s, co)  a + b + ci = s + co

where a, b, s  {0, 1, …, n – 1} are the addends and the

sum respectively, and ci, co  {0, 1} are the carry in and

carry out, respectively. Then for m = 2, (it is not neces-

sary to pair the carry in or carry out) we can have Add

express the addition problem:

 c ci

 a1, a2

  b1, b2

 

 = cos1, s2







[Add(a2, b2, ci, s2, 0)  Add(a1, b1, 0, s1, co)] 

[Add(a2, b2, ci, s2, 1)  Add(a1, b1, 1, s1, co)]

which covers the two cases for the intermediate carry c =

0, 1. Notice that we have allowed a constant (0 or 1) to be

substituted for some of the arguments. This is because 0

and 1 are constants, elementarily definable from <, which

was previously shown to be uniformly extensible (the pre-

cise definition appears in the next section). Addition on

tuples of length m > 2 are also definable in the same man-

ner, by taking into account all possible intermediate car-

ries. Again, only propositional logic is required.

Next, for n = 2
k
, let us show that the constant log2 n is

logically uniform for m = 2:

z1, z2 = log2 n²  z1 = 0  z2 = 2·log2 n

This just says that the logarithm of the magnified do-

main of pairs, which has size n², is twice the logarithm of

the original domain of size n. Note that we permit an el-

ementary function (in this case twice) defined in terms of

a previously extensible relation (Add) to appear (as

2·log2 n).

Finally, to express extensions the bit predicate, con-

sider only powers of 2, n = 2
k
 for simplicity:

bit(x1, x2, 0, y2)



[(y2 < log2 n)  bit(x2, y2)]



[(y2 ≥ log2 n)  bit(x1, y2 – log2 n)]

Since we are dealing with exact powers of 2, this formula

just says that the binary expansion of a pair is the con-

7

catenation of the binary expansions of the individual ele-

ments. Notice again that we make use of a previously de-

finable function, in this case log2 n, and subtraction

(which is elementarily definable in terms of addition). It

should be clear how to extend this definition to cover

when m > 2, provided n is still a power of two. For arbi-

trary n, it would probably be easier to simply show that +,

*, and ^ are uniformly extensible, and then derive the ex-

tension of bit from that.

7. Uniform extensibility of predicates

With our motivational sketches now complete, we turn

to actually define what a uniformly extensible predicate

is, consistent with our previous examples of =, <, and bit.

Definition: The numerical predicate R(y1,…, yk) is said

to be uniformly extensible, if for m > 1, there exists a first-

order formula  such that

R(y1,1,…, y1,m, …,yk,1,…, yk,m)



(R; {yi,j : i = 1,…, k; j = 1, …, m}).

Letting boldface variables represent m-tuples, e.g. x =

x1,…, xm, we can abbreviate this as:

R(y1,…, yk)  (R; {yi,j : i = 1,… k; j = 1,… m})

Furthermore, every occurrence of R in  is required to be

of the form

R(f1,…, fk),

where each argument f is an elementary function defined

by a first-order formula ,

f({yij : i = 1,…, k; j = 1, …, m}) = z



({yij : i = 1,…, k; j = 1, …, m}, z).

In addition,  (and hence any ) may include other rela-

tions already known to be uniformly extensible (see prior

examples), but  is not permitted to contain R.

In simple terms, the most important feature of our def-

inition is that it requires Rnm to be definable using only

finitely many recursive calls to Rn with non-recursive ar-

guments. The  allowed in our definition seems to be a

generalization of a first-order projection translation [Im2,

see also I&L, Def. 3.7].

8. Main result

Theorem: If R is a uniformly extensible numerical predi-

cate, then R is elementarily definable from < and bit. I.e.

there exists a first-order formula  in the signature of {=,

<, bit} such that:

R(x1,…, xk)  (=, <, bit; x1,…, xk)

N.B.  does not contain R (cf.  in prior definition).

Proof (sketch): Technically the proof is by induction,

where we assume that any relations already known to be

uniformly extensible satisfy the theorem, and hence are in

FO(<, bit). We sketch the idea here for m = 2, though the

proof scales to larger m.

In [BIS], it is shown that acceptance of a bounded-al-

ternation logarithmic-time random-access Turing-machine

is equivalent to first-order definability with < and bit. So

it suffices to show that for any given set of arguments

x1,…, xk to R, we can calculate the truth or falsity of

R(x1,…, xk) in LH, the logtime hierarchy. This will di-

rectly imply that R is expressible in FO(<, bit).

Suppose we are given the arguments x1,…, xk to Rn in

binary. Each argument xi has bit size log2 n (for simplic-

ity, assume that n is an exact power of 2). Our solution is

presented as an LH algorithm for the Boolean evaluation

of Rn (x1,…, xk).

1. Unfold the recursion: By uniform extensibility, Rn

has a definition given by  in terms of a fixed number of

recursive calls to Rn. The number of calls, l, is a syntac-

tical property equal to the number of occurrences of R in

. If we unfold this recursion entirely we obtain an l-ary

tree of depth log2 log2 n and size about (log2 n)
(log

2 l)

with root R(x1,…, xk) and leaves of the form

R2(b1,…, bk), where the bi are 1-bit arguments. An inter-

nal node of the tree looks like Rn'(y1,…, yk) where each

argument yi is log2 n' bits long. It is parent to l children,

each of which look like Rn'(f1,…, fk), where the fi are

log2 n' = (½)log2 n' bits long, and each may depend on

the 2k arguments yi = yi,1 , yi,2, 1 ≤ i ≤ k, given by liter-

ally chopping each yi in half. The argument dependen-

cies from parent to child are given by the particular ’s in

a first-order computable way, and the Boolean depen-

dency of the parent on its children is first-order com-

putable via .

2. Top-down Boolean evaluation: Evaluate the tree in

log2 l phases by breaking it top-down into trees of strictly

logarithmic size. Guess the Boolean values of the top

log2 n nodes, and verify correctness locally by checking

that each node follows from its children via  (see the

next step for details). Then, decide which of the O(log n)

leaves of this sub-tree to isolate (with universal alterna-

8

tion), and using it as a new root repeat this process until

reaching the bottom. This uses a bounded number of al-

ternations O(log2 l) precisely because the sub-trees are in-

dependent. At the leaves, it is necessary to have a (finite)

table for checking R2, which acts like a basis for the re-

cursion.

3. Bottom-up argument determination: To verify that

a parent’s value follows from its children’s values in-

volves checking a first-order formula () which may also

contain other (first-order) relations. Those relations may

depend on particular arguments, and so the problem re-

mains to compute the arguments that appear at each node.

If a parent has arguments of bit size b, then each of its l

children will have arguments of bit size b/2 (for a magni-

fication factor of m = 2). The arguments at any node are

determined by guessing all the arguments on the path

from the desired node to the root, which a quick computa-

tion reveals is no more than 2k·log2 n bits. Verify this

guess by checking that the arguments of a child follow

from the arguments of its parent via the appropriate 

formulas, and make sure that the guess is consistent with

the original group of arguments at the root, x1,…, xk.

There is a lot of bookkeeping going on here, especially in

deciding which  to choose at a given node, based on its

position in the tree.

9. Conclusions

We have given a purely logical definition of circuit

uniformity based solely on tuples and relations. A predi-

cate was called uniformly extensible if it could be

“passed-through” a translation in a very simple way. This

is a natural requirement for studying reducibilities among

queries on finite structures which include these predicates.

It was construed to permit only those relations which

when interpreted on tuples, can be defined in terms of

themselves (on the individual elements) using a slight

generalization of first-order projective translations. We

have demonstrated that first-order logic augmented by all

uniformly extensible relations captures FO(<, bit) defin-

ability exactly, which is equivalent to DLOGTIME-uni-

form constant-depth circuits.

10. Open Problems

A. Can the main result be extended to a functional (as

opposed to relational) setting? [I can get O(log* n)-time

computability, but not O(1)]. How about allowing arbi-

trary first-order translations for  (repealing the finite call

condition)? [It is at most O(log log n)-time, which is just

the depth of the tree].

B. Even though there cannot be any complete problems

for FO(<, bit), due to the strict depth hierarchy in [Sip], is

there any other way to formalize the notion of a “hardest”

problem for FO(<, bit)? The binary string canonization

query (cf. the isomorphism query in section 4) discussed

in [Lin] is intuitively “hard” yet elusive in its comparison

with other problems.

C. Is modular exponentiation a uniformly extensible rela-

tion under even the more lenient requirement of a first-or-

der translation (see above)? [mexp(a, b, c, d) iff

(a ^ b  c) mod d]. This would have important conse-

quences in analyzing the uniformity of NC
1
 circuits for

binary division [I&L].

Acknowledgments

Special thanks to Eric Allender for helping me to un-

derstand DLOGTIME uniformity. Also, discussions with

Neil Immerman, Dave Barrington, Howard Straubing,

Greg McColm, and Larry Ruzzo were much appreciated

and very helpful. Thanks to Scott Weinstein for suggest-

ing the philosopher’s terminology of “uniformly extensi-

ble”. Particular appreciation goes to my wife, Suzanne,

for her patience.

References

[Bar] D.A.M. Barrington, “Extensions of an Idea of Mc-

Naughton,” Math. Systems Theory 23, 147-164
(1990).

[BIS] D.A.M. Barrington, N. Immerman, H. Straubing, “On
Uniformity within NC1,” Journal of Computer and
System Sciences, vol. 41, no. 3 (Dec. 1990) 274-306.

[End] H.B. Enderton, A Mathematical Introduction to Logic,
Academic Press, 1972.

[G&L] Y. Gurevich, H.R. Lewis, “A Logic for Constant-
Depth Circuits,” Information and Control 61, 65-74
(1984).

[Im1] N. Immerman, “Nondeterministic Space is Closed un-
der Complementation,” SIAM J. of Computing 17:5
(Oct. 1988), 935-938.

[Im2] N. Immerman, “Languages that Capture Complexity
Classes,” SIAM J. of Computing, vol. 16, 1987, pp.
760-778.

[Im3] N. Immerman, “Expressibility and Parallel Complex-
ity,” SIAM Journal of Computing, vol. 18 no. 3, June
1989, pp. 625-638.

[I&L] N. Immerman, S. Landau, “The Complexity of Iterated
Multiplication,” Fourth Annual Structure in Com-
plexity Theory Symp. (1989), 104-111.

[Lin] S. Lindell, “The Invariant Problem for Binary String
Structures and the Parallel Complexity Theory of
Queries,” to appear in The Journal of Computer and
System Sciences, 1992.

[Ruz] W.L. Ruzzo “On Uniform Circuit Complexity,” J.
Comp. Sys. Sci., 21:2 (1981) 365-383.

[Sip] M. Sipser, “Borel Sets and Circuit Complexity,”
STOC 1983, 61-69.

