A variant of the F4 algorithm

Vanessa VITSE - Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

CT-RSA, February 18, 2011

Motivation

An example of algebraic cryptanalysis

Discrete logarithm problem over elliptic curves (ECDLP)

E elliptic curve over a finite field

Given $P \in E$ and $Q \in\langle P\rangle$, find x such that $Q=[x] P$

Motivation

An example of algebraic cryptanalysis

Discrete logarithm problem over elliptic curves (ECDLP)
E elliptic curve over a finite field Given $P \in E$ and $Q \in\langle P\rangle$, find x such that $Q=[x] P$

Basic outline of index calculus method for DLP
(1) define a factor base: $\mathcal{F}=\left\{P_{1}, \ldots, P_{N}\right\}$
(2) relation search: for random $\left(a_{i}, b_{i}\right)$, try to decompose $\left[a_{i}\right] P+\left[b_{i}\right] Q$ as sum of points in \mathcal{F}
(3) linear algebra step: once $k>N$ relations found, deduce with sparse algebra techniques the DL of Q

Motivation

Cryptanalysis of the DLP on $E\left(\mathbb{F}_{q^{n}}\right)$
Relation search on $E\left(\mathbb{F}_{q^{n}}\right)$ - [Gaudry,Diem]

- Factor base: $\mathcal{F}=\left\{(x, y) \in E\left(\mathbb{F}_{q^{n}}\right): x \in \mathbb{F}_{q}\right\}$
- Goal: find a least $\# \mathcal{F}$ decompositions of random combinations $R=[a] P+[b] Q$ into m points of $\mathcal{F}: R=P_{1}+\ldots+P_{m}$

Algebraic attack

- for each R, construct the corresponding polynomial system \mathcal{S}_{R}

Semaev's summation polynomials and symmetrization Weil restriction: write $\mathbb{F}_{q^{n}}$ as $\mathbb{F}_{q}[t] /(f(t))$

- $\mathcal{S}_{R}=\left\{f_{1}, \ldots, f_{n}\right\} \subset \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$
coefficients depend polynomially on x_{R}
each decomposition trial \leftrightarrow find the solutions of \mathcal{S}_{R} over \mathbb{F}_{q}

Polynomial system solving over finite fields

Difficult pb: how to compute $V(I)$ where $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle \subset \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$?

Gröbner bases: good representations for ideals

- Convenient generators g_{1}, \ldots, g_{s} of I capturing the main features of I
- $G \subset I$ is a Gröbner basis of I if $\langle L T(G)\rangle=L T(I)$

Polynomial system solving over finite fields

Difficult pb: how to compute $V(I)$ where $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle \subset \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$?
Gröbner bases: good representations for ideals

- Convenient generators g_{1}, \ldots, g_{s} of $/$ capturing the main features of I
- $G \subset I$ is a Gröbner basis of l if $\langle L T(G)\rangle=L T(I)$

Gröbner basis computation

- Basic operation: computation and reduction of critical pair $S\left(p_{1}, p_{2}\right)=u_{1} p_{1}-u_{2} p_{2}$ where $/ c m=L M\left(p_{1}\right) \vee L M\left(p_{2}\right), u_{i}=\frac{l c m}{L M\left(p_{i}\right)}$
- Buchberger's result: to compute a GB of I,
(1) start with $G=\left\{f_{1}, \ldots, f_{r}\right\}$
(2) iterate basic operation on all possible critical pairs of elements of G, add non-zero remainders to G

Techniques for resolution of polynomial systems

F4: efficient implementation of Buchberger's algorithm

- linear algebra to process several pairs simultaneously
- selection strategy (e.g. lowest total degree Icm)
- at each step construct a Macaulay-style matrix containing products $u_{i} p_{i}$ coming from the selected critical pairs polynomials from preprocessing phase

Techniques for resolution of polynomial systems

Standard Gröbner basis algorithms

(1) F4 algorithm (Faugère '99)
fast and complete reductions of critical pairs drawback: many reductions to zero
(2) F5 algorithm (Faugère '02)
elaborate criterion \rightarrow skip unnecessary reductions drawback: incomplete polynomial reductions

- multipurpose algorithms
- do not take advantage of the common shape of the systems
- knowledge of a prior computation
\rightarrow no more reduction to zero in F4 ?

Specifically devised algorithms

Outline of our F4 variant

(1) F4Precomp: on the first system at each step, store the list of all involved polynomial multiples reduction to zero \rightarrow remove well-chosen multiple from the list
(2) F4Remake: for each subsequent system no queue of untreated pairs at each step, pick directly from the list the relevant multiples

Former works

- Gröbner basis over \mathbb{Q} using CRT and modular computations
- Traverso '88: analysis of Gröbner trace for rational Gröbner basis computations with Buchberger's algorithm

Analysis of F4Remake

"Similar" systems

- parametric family of systems: $\left\{F_{1}(y), \ldots, F_{r}(y)\right\}_{y \in \mathbb{K}^{\ell}}$ where $F_{1}, \ldots, F_{r} \in \mathbb{K}\left[Y_{1}, \ldots, Y_{\ell}\right]\left[X_{1}, \ldots, X_{n}\right]$
- $\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behaviour

(1) "compute" the GB of $\left\langle F_{1}, \ldots, F_{r}\right\rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F 4 algorithm
(2) f_{1}, \ldots, f_{r} behaves generically if during the GB computation with F4 same number of iterations at each step, same new leading monomials \rightarrow similar critical pairs

Analysis of F4Remake

"Similar" systems

- parametric family of systems: $\left\{F_{1}(y), \ldots, F_{r}(y)\right\}_{y \in \mathbb{K}^{\ell}}$ where $F_{1}, \ldots, F_{r} \in \mathbb{K}\left[Y_{1}, \ldots, Y_{\ell}\right]\left[X_{1}, \ldots, X_{n}\right]$
- $\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behaviour

(1) "compute" the GB of $\left\langle F_{1}, \ldots, F_{r}\right\rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F 4 algorithm
(2) f_{1}, \ldots, f_{r} behaves generically if during the GB computation with F4 same number of iterations at each step, same new leading monomials \rightarrow similar critical pairs

F4Remake computes successfully the GB of f_{1}, \ldots, f_{r} if the system behaves generically

Algebraic condition for generic behaviour

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the $(i-1)$-th step
(2) At step $i, \mathrm{~F} 4$ constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}

Algebraic condition for generic behaviour

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the $(i-1)$-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of M_{g} and M

$\left(\begin{array}{c|c}A_{0} & A_{1} \\ 0 & A_{2}\end{array}\right)$

Algebraic condition for generic behaviour

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the $(i-1)$-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of M_{g} and M
$\left(\begin{array}{c|c}I_{s} & B_{g, 1} \\ \hline 0 & B_{g, 2}\end{array}\right) \quad\left(\begin{array}{c|c}I_{s} & B_{1} \\ \hline 0 & B_{2}\end{array}\right)$

Algebraic condition for generic behaviour

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the ($i-1$)-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of M_{g} and M

Algebraic condition for generic behaviour

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the ($i-1$)-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of $M g$ and M
$\left(\begin{array}{c|c|c}I_{s} & 0 & C_{g, 1} \\ \hline 0 & I_{\ell} & C_{g, 2} \\ \hline 0 & 0 & 0\end{array}\right)$
$\left(\begin{array}{c|c|c}I_{s} & & B_{1}^{\prime} \\ \hline 0 & B & B_{2}^{\prime}\end{array}\right) ?$

Algebraic condition for generic behaviour

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the $(i-1)$-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of $M g$ and M
\(\left(\begin{array}{c|c|c}I_{s} \& 0 \& C_{g, 1}

\hline 0 \& I_{\ell} \& C_{g, 2}

\hline 0 \& 0 \& 0\end{array}\right) \quad\left(\right.\)| I_{s} | |
| :---: | :---: |
| B_{1}^{\prime} | |
| 0 | B |
| I_{2}^{\prime} | |$)$

f_{1}, \ldots, f_{r} behaves generically at step $i \Leftrightarrow B$ has full rank

Probability of success

Heuristic assumption

- The B matrices are uniformly random over $\mathcal{M}_{n, \ell}\left(\mathbb{F}_{q}\right)$
- The probabilities that the B matrices have full rank are independent

Probability estimates over \mathbb{F}_{q}

The probability that a system f_{1}, \ldots, f_{r} behaves generically is heuristically greater than $c(q)^{n_{\text {step }}}$ where

- $n_{\text {step }}$ is the number of steps during the F4 computation of the parametric system $F_{1}, \ldots, F_{r} \in \mathbb{K}(\underline{Y})[\underline{X}]$
- $c(q)=\prod_{i=1}^{\infty}\left(1-q^{-i}\right)=1-1 / q+\underset{q \rightarrow \infty}{O}\left(1 / q^{2}\right)$

Application to index calculus method for ECDLP

Joux-V. approach

ECDLP: $P \in E\left(\mathbb{F}_{q^{n}}\right), Q \in\langle P\rangle$, find x such that $Q=[x] P$

- find $\simeq q$ decompositions of random combination $R=[a] P+[b] Q$ into $n-1$ points of $\mathcal{F}=\left\{P \in E\left(\mathbb{F}_{q^{n}}\right): x_{P} \in \mathbb{F}_{q}\right\}$
- solve $\simeq q^{2}$ overdetermined systems of n eq. and $n-1$ var. over \mathbb{F}_{q}
- heuristic assumption makes sense

Experimental results on $E\left(\mathbb{F}_{p^{5}}\right)$, p odd (Joux-V.)

- system of 5 eq / 4 var over \mathbb{F}_{p}, total degree 8
- Precomputation done in $8.963 \mathrm{sec}, 29 \mathrm{steps}, d_{\text {reg }}=19$

size of p	est. failure proba.	F4Remake 1	F4 1	F4/F4Remake	F4 Magma 2
8 bits	0.11	2.844	5.903	2.1	9.660
16 bits	4.4×10^{-4}	3.990	9.758	2.4	9.870
25 bits	2.4×10^{-6}	4.942	16.77	3.4	118.8
32 bits	5.8×10^{-9}	8.444	24.56	2.9	1046

Step	degree	F4Remake matrix sizes	F4 matrix sizes	ratio
14	17	1062×3072	1597×3207	1.6
15	16	1048×2798	1853×2999	1.9
16	15	992×2462	2001×2711	2.2
17	14	903×2093	2019×2369	2.5
18	13	794×1720	1930×2000	2.8

[^0]
Results in characteristic 2

The IPSEC Oakley key determination protocol 'Well Known Group' 3 curve

The Oakley curve: an interesting target

$$
\begin{aligned}
& \mathbb{F}_{2^{155}}=\mathbb{F}_{2}[u] /\left(u^{155}+u^{62}+1\right) \\
& E: y^{2}+x y=x^{3}+\left(u^{18}+u^{17}+u^{16}+u^{13}+u^{12}+u^{9}+u^{8}+u^{7}+u^{3}+u^{2}+u+1\right) \\
& G=E\left(\mathbb{F}_{2^{155}}\right) \\
& \# G=12 * 3805993847215893016155463826195386266397436443
\end{aligned}
$$

Remarks

- this curve is known to be theoretically weaker than curves over comparable size prime fields (GHS)
- we show that an actual attack on this curve is feasible.

Attack of Oracle-assisted Static Diffie-Hellman Problem

 Granger-Joux-V.
Oracle-assisted SDHP

G finite group and d secret integer

- Initial learning phase: the attacker has access to an oracle which outputs [d] Y for any $Y \in G$
- After a number of oracle queries, the attacker has to compute $[d] X$ for a previously unseen challenge X

Attack of Oracle-assisted Static Diffie-Hellman Problem

 Granger-Joux-V.
Oracle-assisted SDHP

G finite group and d secret integer

- Initial learning phase: the attacker has access to an oracle which outputs [d] Y for any $Y \in G$
- After a number of oracle queries, the attacker has to compute $[d] X$ for a previously unseen challenge X

Attack on the Oakley curve

- learning phase: ask the oracle $Q=[d] P$ for each $P \in \mathcal{F}$ where $\mathcal{F}=\left\{P \in E\left(\mathbb{F}_{2^{155}}\right): P=\left(x_{P}, y_{P}\right), x_{P} \in \mathbb{F}_{2^{31}}\right\}$
- find a decomposition of $[r] X(r$ random $)$ in a sum of 4 points in \mathcal{F} \leftrightarrow solve $\simeq 5.10^{10}$ systems of $5 \mathrm{eq} / 4$ var over $\mathbb{F}_{2^{31}}$, total deg 8

Results for the 'Well Known Group' 3 Oakley curve

Timings

- Magma (V2.15-15): each decomposition trial takes about 1 sec
- F4Variant + dedicated optimizations of arithmetic and linear algebra \rightarrow only 22.95 ms per test on a 2.93 GHz Intel Xeon processor
$\rightarrow \simeq 400 \times$ faster than results in odd characteristic

Feasible attack : oracle-assisted SDHP solvable in ≤ 2 weeks with 1000 processors after a learning phase of 2^{30} oracle queries

Limits of the heuristic assumption

Specific case

Parametric polynomials with highest degree homogeneous part in $\mathbb{K}[\underline{X}]$

- heuristic assumption not valid
- but generic behaviour until the first fall of degree occurs

Limits of the heuristic assumption

Specific case

Parametric polynomials with highest degree homogeneous part in $\mathbb{K}[\underline{X}]$

- heuristic assumption not valid
- but generic behaviour until the first fall of degree occurs

Unbalanced Oil and Vinegar scheme
Security based on problem of solving multivariate quadratic systems Recommended parameters: 16 eq., 32 (or 48) variables over $\mathbb{K}=\mathbb{F}_{2^{4}}$

$$
P_{k}=\sum_{i, j=1}^{48} a_{i j}^{k} x_{i} x_{j}+\sum_{i=1}^{48} b_{i}^{k} x_{i}+c^{k}, \quad k=1 \ldots 16
$$

Limits of the heuristic assumption

Specific case

Parametric polynomials with highest degree homogeneous part in $\mathbb{K}[\underline{X}]$

- heuristic assumption not valid
- but generic behaviour until the first fall of degree occurs

Unbalanced Oil and Vinegar scheme

Recommended parameters : $m=16$ eq, $n=32$ (or 48) var over $\mathbb{K}=\mathbb{F}_{2^{4}}$ Hybrid approach [Bettale, Faugère, Perret]:

- fix $m-n$ variables and find a solution of the system with 16 eq / var
- exhaustive search over 3 more variables (overdetermined system)

$$
P_{k}=\sum_{i, j=1}^{13} a_{i j}^{k} x_{i} x_{j}+\sum_{i=1}^{13}\left(b_{i}^{k}+\sum_{j=14}^{16} a_{i j}^{k} x_{j}\right) x_{i}+\left(\sum_{i, j=14}^{16} a_{i j}^{k} x_{i} x_{j}+\sum_{i=14}^{16} b_{i}^{k} x_{i}+c^{k}\right)
$$

UOV and Hybrid approach example

Goal : compute GB of systems $S_{x_{14}, x_{15}, x_{16}}=\left\{P_{1}, \ldots, P_{16}\right\}$ for all $\left(x_{14}, x_{15}, x_{16}\right) \in \mathbb{F}_{2^{4}}^{3}$ where
$P_{k}=\sum_{i, j=1}^{13} a_{i j}^{k} x_{i} x_{j}+\sum_{i=1}^{13}\left(b_{i}^{k}+\sum_{j=14}^{16} a_{i j}^{k} x_{j}\right) x_{i}+\left(\sum_{i, j=14}^{16} a_{i j}^{k} x_{i} x_{j}+\sum_{i=14}^{16} b_{i}^{k} x_{i}+c^{k}\right)$

Resolution with F4Remake

- 6 steps, first fall of degree observed at step 5
$\operatorname{Proba}\left(S_{x_{14}, x_{15}, x_{16}}\right.$ behaves generically $) \geq c(16)^{2} \simeq 0.87$
- exhaustive search: the probability observed on different examples is about 90\%

UOV and Hybrid approach example

	F4Remake 1	F4 1	F4 Magma 2	F4/F4Remake
Timing (sec)	5.04	16.77	120.6	3.3
Largest matrix	5913×7005	10022×8329	10245×8552	2.0

- precomputation done in 32.3 sec
- to be compared to the 9.41 sec of F^{3} mentioned by Faugère et al.
- generically the GB is $\langle 1\rangle$
\rightarrow solutions to be found among the non generic systems

[^1]
A variant of the F4 algorithm

Vanessa VITSE - Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

CT-RSA, February 18, 2011

Addendum: What about non genericity?

(1) When the precomputation is correct:

- correctness of F4Remake easy to detect: non generic behaviour as soon as we encounter a reduction to zero or a polynomial with smaller LT than excepted
- when F4Remake fails, continue the computation with classical F4
(2) The precomputation is incorrect if:
- F4Remake produces a leading monomial greater than the one obtained by F4Precomp during the same step
- other possibility: execute F4Precomp on several systems and compare the lists of leading monomials

Addendum: Comparison with F5

Common features:

- elimination of the reductions to zero
- same upper bound for the theoretical complexity:

$$
\tilde{O}\left(\binom{d_{r e g}+n}{n}^{\omega}\right)
$$

In practice, for the system on $E\left(\mathbb{F}_{p^{5}}\right)$:

- F5 generates many redundant polynomials (F5 criterion) : 17249 polynomials in the GB before minimization
- F4 creates only 2789 polynomials
\rightarrow better behavior, independent of the implementation

[^0]: ${ }^{1} 2.93 \mathrm{GHz}$ Intel Xeon processor
 ${ }^{2}$ V2.15-15

[^1]: ${ }^{1} 2.6 \mathrm{GHz}$ Intel Core 2 duo
 ${ }^{2}$ V2.16-12
 ${ }^{3} 2.4 \mathrm{GHz}$ Bi-pro Xeon

