
Finding the K Shortest Loopless Paths in a Network
Author(s): Jin Y. Yen
Source: Management Science, Vol. 17, No. 11, Theory Series (Jul., 1971), pp. 712-716
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/2629312
Accessed: 24/02/2009 12:23

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=informs.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Management Science.

http://www.jstor.org

http://www.jstor.org/stable/2629312?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=informs

MANAGEMENT SCIENCE
Vol. 17, No. 11, July, 1971

Printed in U.S.A.

FINDING THE K SHORTEST LOOPLESS PATHS
IN A NETWORK*

JIN Y. YENt

University of Santa Clara

This paper presents an algorithm for finding the K loopless paths that have the
shortest lengths from one node to another node in a network. The significance of the
new algorithm is that its computational upper bound increases only linearly with the
value of K. Consequently, in general, the new algorithm is extremely efficient as com-
pared with the algorithms proposed by Bock, Kantner, and Haynes [2], Pollack [7], [81,
Clarke, Krikorian, and Rausan [3], Sakarovitch [9] and others. This paper first reviews
the algorithms presently available for finding the K shortest loopless paths in terms of
the computational effort and memory addresses they require. This is followed by the
presentation of the new algorithm and its justification. Finally, the efficiency of the
new algorithm is examined and compared with that of other algorithms.

1. Introduction

There are two types of K-shortest-paths network problems. The first is to find K

paths from the origin to the sink that have the shortest lengths, in which loops are

allowed. The available algorithms for solving this type of problem are proposed by

Hoffman and Pavley [6], Bellman and Kalaba [1], Sakarovitch [9] and others. The

second type of problem is to find K paths from the origin to the sink that have. the

shortest lengths, in which no loops are allowed. The available algorithms for solving
this type of problem are proposed by Bock, Kantner, and Haynes [2], Pollack [7],

Clarke, Krikorian, and Rausan [3], Sakarovitch [9] and others.

The purpose of this paper is to present a new algorithm for solving the second type

of problem. The significance of the new algorithm is that the computational upper

bound of the algorithm increases linearly with the value of K. Consequently, in general,

the new algorithm is much more efficient than the other available algorithms.

In this paper, first the efficiencies of the available K-shortest-loopless-paths al-

gorithms are examined in terms of the computational effort and memory addresses

they require. This is followed by a presentation of the new algorithm with its justi-

fication. Finally, the efficiency of the new algorithm is examined and compared to that

of the other algorithms.

2. Review of Available Algorithms

There are several algorithms presently available for solving a K-shortest-loopless-

paths problem in an N-node network. The following is a brief review of these algorithms

and their efficiencies in terms of the computational effort and memory addresses they

require. Note that in the following, unless specified otherwise, "a network" means a

network without negative loops, "the K shortest paths" means K loopless paths from

the origin to the sink that have the shortest lengths, and "the Kth shortest path"

means the last of "the K shortest paths."
(1) In [21 Bock, Rantner, and Haynes introduce an enumeration procedure for finding

the K shortest paths in a network. Their procedure enumerates all possible paths from

the origin to the sink, then sorts from these the K paths that have the shortest lengths.

* Received November 1969; revised October 1970, December 1970.
t The author is very grateful to Professor C. West Churchman, Stuart E. Dreyfus, and the

author's wife Wendy for their discussions and moral support. The comments of the anonymous
referees are also greatly appreciated.

712

FINDING THE K SHORTEST LOOPLESS PATHS IN A NETWORK 713

This algorithm has two main disadvantages. One is that the algorithm requires very
large numbers of computations and memory addresses. The other is that the algorithm
requires as much effort to solve a problem in which K is small as to solve a problem
in which K is large. Therefore unless K is extremely large, e.g., K = (N - 1)!, the
use of this algorithm cannot be recommended.

(2) In [7] Pollack introduces a procedure for finding the Kth shortest path in a
network. To find the Kth shortest path this procedure first obtains K - 1 shortest
paths. Then the distance of each arc in each of the 1st, 2nd, * , (K - 1)st shortest
paths is set, in turn, to infinity. The shortest-path problem is solved for each such case.
The best of these resulting shortest paths is the desired Kth shortest path.

Pollack's algorithm can be considered the most applicable among the algorithms
reviewed in this section because it has the lowest computational upper bound when K
is not large (say, 5 or more, depending on the value of N). Unfortunately, the number
of computations required by this procedure increases exponentially with the value of
K-e.g., if the first K - 1 shortest paths each contains m arcs, this algorithm has to
solve mvKl shortest-path problems in order to find the Kth shortest path. Therefore,
unless K is small, Pollack's algorithm is computationally overburdening.

(3) In [3] Clarke, Krikorian, and Rausan introduce a branch-and-bound procedure
for finding the K shortest paths in a network. Their procedure first finds the shortest
path, then finds the K shortest paths from all paths that "branch" out from the
shortest path.

The efficiency of this algorithm depends on the particular network. If it so happens
that the second shortest path "branches immediately" from the first shortest path,
the third shortest path "branches immediately" from the second shortest path, etc.,
this procedure can determine all K shortest paths very quickly. However, in general,
this algorithm is likely to require a tremendous number of computations and memory
addresses. Therefore the efficiency of this procedure is difficult to determine.

(4) In [9] Sakarovitch introduces a K-shortest-path algorithm. His algorithm first
finds H, H > K, shortest paths that may contain loops by a procedure similar to
(but less efficient than) Hoffman and Pavley's algorithm [6]. Then the H paths are
scanned for the K shortest paths that contain no loops.

The efficiency of this algorithm depends on the particular network. If it so happens
that the H shortest paths obtained by Hoffman and Pavley's algorithm are loopless,
Sakarovitch's algorithm can determine the K-shortest-loopless paths very quickly.
However, it is difficult to specify a computational upper bound for this algorithm-
e.g., if all the distances of the arcs in a network are extremely large except that the
distances of the two direct arcs going back and forth between the origin and the sink
are extremely small, the H shortest paths found by Hoffman and Pavley's algorithm
consist of only the loops that go around the origin and the sink; consequently, it is
difficult to specify a computational bound within which the K shortest loopless paths
must be determined.

3. Notation and Definitions

In an N-node network, let
(i), i = 1, 2, ... , N, be the nodes where (1) is the origin and (N) is the sink;
(1)-(i)- * .*(j), i 5 j ... * 1, be the path from (1) to (j), passing through

dij >0, i $ j, be the distance of the direct arc from (i) to (j)-if this arc exists,

dij is a finite number, otherwise, dij is considered equal to infinity;
Ak = (I) (21)-(3k) * (Qkk) - (N), k = 1, 2, ... , K, be the kth shortest

714 JIN Y. YEN

path from (1) to (N) where (2k), (3k), * * , (Q:k) are respectively the 2nd, 3rd, ...
Qkth node of the kth shortest path;

Ajk, i = 1, 2, ***, Qk, be. a set of "deviations from Ak-l at (i) "-a "deviation
from Ak-l at (i) " is the shortest of the paths that coincide with Ak-l from (1) to the
ith node on the path and then deviate to a node that is different from any of the (i +
1)st nodes of those A', j = 1, 2, ... * i - 1, that have the same paths from (1) to
the ith node as does Ak-l; and finally reaches (N) by a shortest subpath without passing
any node that is already included in the first part of the path. Note that the A,k is loop-
less and contains the same node no more than once;

R,k be the root of Aik-the root of A k is the subpath of A,k that coincides with Ak-l,
i.e, () (k) * (i*) in A k;

Si' be the spur of A iklthe spur of A,k is the last part of A ; that has only one node
coinciding with Ak-l, i.e., (ik) ->.. -(N) in Ahk.

4. The New Algorithm and Its Justification

The new algorithm that finds the K shortest path is as follows:

Iteration 1. To determine A'.

Determine A1 by aln efficient shortest-path algorithm-by Yen's algorithm [12] if

dij 0 O; by Yen's algorithm [11] if dij 0. (Remark. Yen's algorithm [12] is a newly
developed algorithm which finds the lengths of all shortest paths from a fixed node to
all other nodes in an N-node nonnegative-distance network. This new procedure re-
quires only 2N2 additions and N2 comparisons-which is less than the number of opera-
tions required by other available algorithms. See [12] for details.)

Note that when there are negative loops in the network (which is detected by Yen's
algorithm 111]), this K-shortest-path algorithm has to be terminated. This is because
there is no satisfactory algorithm presently available for finding the shortest-loopless
paths in a network with negative loops, consequently, this K-shortest-paths algorithm
is no longer applicable for solving the problem.

However, when there are no negative loops in the network, we should have obtained
at least one path that has the shortest length. If we have K or more such paths, we are
done. If we have less than K and more than one paths, we assign any arbitrary one of
these paths to be Al and store it in List A (the list of k-shortest paths); the rest of these
paths are stored in List B (the list of candidates for (k + 1)st shortest paths). Other-
wise, if we have only one such path, it is Al which is to be stored in List A.

Iteration k (k = 2, 3, * K). To determine Ak.

In order to find Ak, the shortest paths A1, A2, * , A-1 must have been previously
determined. Ak is then found as follows:

I. For each of i = 1, 2, * * *, Qk-l, do the following:
(a) Check if the subpath consisting of the first i nodes of Ak-1 in sequence coincide

with the subpath consisting of the first i nodes of A' in sequence for j = 1, 2, ...
k - 1. If so, set di, = oo-where (q) is the (i + 1)st node of A'; otherwise, make no
changes. Then go to Step (b).

Note that diq's are set to oo for computations in iteration k only. They should be re-
placed by their original values before iteration k + 1 starts.

(b) Apply a shortest-path algorithm to find the shortest path from (i) to (N), al-
lowing it to pass through those nodes that are not yet included in the path. Note that
the subpath from (1) to (i) is R,k, the root of Aik; and the subpath from (i) to (N) is

FINDING THE K SHORTEST LOOPLESS PATHS IN A NETWORK 715

Stk, the spur of Ask. Note also if there are more than one subpaths from (i) to (N) that
have the minimum length, take any arbitrary one of them and denote it by S;.

(c) Find Aik by joining Ri and S,k. Then add Akt to List B.
Note that it is necessary to store only the K - k + 1 shortest Aik s in List B.
II. Find from List B the path(s) that have the minimum length.
If the path(s) found plus the path(s) already in List A exceed K, we are done.

Otherwise, denote this path (or an arbitrary one, if there are more than one such paths)
by Ak and move it from List B to List A-leaving alone the rest of the paths in List B.
Then go to iteration k + 1.

Note that the above algorithm is developed from an obvious fact [3], [5] that Ak is a
deviation from A', j = 1, 2, * * *, k - 1. More precisely, Ak must coincide with A',
j = 1, 2, * *, k - 1, for the first m > 1 node(s) then deviates to a different node and
finally arrives at the sink without passing each node more than once. Therefore to ob-
tain Ak it is only necessary to look for all shortest deviations from the A"s, then scan
from these deviations the one that has the shortest length.

As shown in ?4, in iteration k, Step I(a) of the algorithm sets diq's equal to oc to
force Ak-1 to deviate at each node on the path-without allowing the deviations to take
any path that have a length shorter than Ak-l. This is followed by Steps I(a) and I(c)
which find the shortest deviations of Akl that are different from A', j = 1, 2, ...

k - 1. Finally in Step II the Ak is selected from all possible candidates in List B. There-
fore the A , j = 1, 2, ... , K, thus obtained by the iterative procedure are the K
shortest-loopless paths from the origin to the sink.

5. The Efficiency of the New Algorithm

The efficiency of an algorithm can be represented by the number of operations and
the number of memory addresses required by the algorithm to solve the problem. The
major operations and the memory addresses required by the new algorithm are as
follows.

Number of operations

As shown above, in iteration k, the algorithm requires approximately the folowing
major operations:

Step I(a). qKN, 0 < q _ 1, comparisons, which is negligible as compared to opera-
tions required in Step I(b).

Step I(b). A. When dj > 0: I (N-1)2 + (N - 2)2 + * *- qN3 additions,
and (N - 1)2 + (N - 2)2 + *. .* * _ qN3 comparisons.

B. When dij > 0: (N-1)3 + (N - 2)3 + * * * - qN4 additions and com-

parisons.
Steps I(c) and II. Negligible number of operations as compared with Steps I(a)

and I(b).
Therefore up to iteration K, the algorithm requires approximately a total of qKN3

additions and .qKN3 comparisons, if d,j > 0; and Tjw.qKN4 additions and -.qKN4
comparions, if d

>
0. These totals are very small when compared with the number

of operations required by other algorithms.

Number of memory addresses

The algorithm requires approximately N2 + KN addresses to store the d,j's, List A,
List B, and some negligible number of intermediate data.

716 JIN Y. YEN

TABLE 1.

Comparisons of the efficiencies of K-shortest-paths algorithms

Approximate Number of Necessary Ratio of Other
Type_______of____Approximate

Up per Algo's Upper
Agoritb Typetwofk Bound of Necessary Bound to Yen's

Additions Comparisons Memory Operations Upper Bound Addresses

Yen's
dii

j 0 6 qKN3
-IqKN3

Na + KN -KN3 1

dij < 0 1 qKN4
11

qKN4 N2 + KN 8KN4 1

Pollack's dij 0 !qNKx1 qNK+l N3 + KN
INK+I

0 qN2 qNK+ N2 + KN 2NK+ 3NK-2/K

dj<O4qN+ 4qNK+2 N2 + KN JNK+2 R-/

Bock, Xantner d,j <-0 Z-12 (N-i) EN-1 (i!) N2 + KN D-12 [(Ni) Very large
and Haynes' *i! *log2 ti) + log2 (i !)] i !

Clarke, >
Krikorian and dij = 0 Difficult to specify
and Rausan's

Sakarovitch's di1 i 0 Difficult to specify

Note. 0 < q : 1.

The following is a table of comparisons of the efficiency of the new algorithm with
the other algorithms available for solving the problem.

References

1. BELLMAN, R. AND ;KALABA, R. "On kth Best Policies," J. of SIAM, Vol. 8, No. 4 (December
1960), pp. 582-588.

2. BOCK, F., KANTNER, H. AND HAYNES, J., An Algorithm (The rh Best Path Algorithm) for Find-
inq and Ranking Paths Through a Network, Research Report, Armour Research Foundation,
Chicago, Illinois, November 15, 1957.

3. CLARKE, S., KRIKORIAN, A. AND RAUSAN, J., "Computing the N Best Loopless Paths in a Net-
work," J. of SIAM, Vol. 11, No. 4 (December 1963), pp. 1096-1102.

4. DIJKSTRA, E. W., "A Note on Two Problems in Connexion with Graphs," Numerische Mathe-
matik, Vol. 1 (1959), pp. 269-271.

5. DREYFUS, S . E., "An Appraisal of Some Shortest-Path Algorithms," Opns. Res ., Vol. 17, No. 3
(May-June 1969), pp. 395-412.

6. HOFFMAN, W. AND PAVLEY, R., "A Method for the Solution of the Nth Best Problem," J. of
ACM, Vol. 6, No. 4 (October 1959), pp. 506-514.

7. POLLACK, M., "The kth Best Route Through a Network," Opns. Res., Vol. 9, No. 4 (1961),
pp. 578.

8. , "Solutions of the kc Best Route Through a Network-A Review," J. of Math. Anal. and
Appl., Vol. 13, No. 3 (August-December 1961), pp. 547-559.

9. SAKAROVITCH, M., The k Shortest Routes and the k Shortest Chains in a Graph, Opns. Res.
Center, University of California, Berkeley, Report ORC-32, October 1966.

10. YEN, J. Y., "An Algorithm for Finding Shortest Routes from All Source Nodes to a Given
Destination in General Networks," Quart. of Applied Math., Vol. 27, No. 4 (January 1970),
pp. 526-530.

11. , A Shortest Path Algorithm, Ph.D. dissertation, University of California, Berkeley, 1970.
12. , "Finding All Shortest Paths from a Fixed Node in Non-Negative-Distance Networks,"

submitted to J. of ACM.

	Article Contents
	p. 712
	p. 713
	p. 714
	p. 715
	p. 716

	Issue Table of Contents
	Management Science, Vol. 17, No. 11, Theory Series (Jul., 1971), pp. 661-793
	Volume Information [pp. 789 - 793]
	Front Matter
	Towards a System of Systems Concepts [pp. 661 - 671]
	A Study of Lexicographic Expected Utility [pp. 672 - 678]
	Optimal Management of a Research and Development Project [pp. 679 - 697]
	On Quadratic Programming [pp. 698 - 711]
	Finding the K Shortest Loopless Paths in a Network [pp. 712 - 716]
	A Statistical Theory for Pert in Which Completion Times of Activities are Inter-Dependent [pp. 717 - 723]
	Production Smoothing with Stochastic Demand II: Infinite Horizon Case [pp. 724 - 735]
	Constructing Sets of Uniformly Tighter Linear Approximations for a Chance Constraint [pp. 736 - 749]
	Equipment Replacement under Uncertainty [pp. 750 - 758]
	An Algorithm for Separable Nonconvex Programming Problems II: Nonconvex Constraints [pp. 759 - 773]
	Notes
	An Addendum to "A Model of Rational Competitive Bidding" [pp. 774 - 777]
	Note Regarding "A New Approach to Discrete Mathematical Programming" [pp. 777 - 778]
	Comment on a Précis by Shanno and Weil [pp. 778 - 780]
	On Marginal Allocation in Single Constraint Min-Max Problems [pp. 780 - 783]
	A Note on the Bergstrom-Smith Multi-Item Production Planning Model [pp. 783 - 785]

	Optimal Sale of a Commodity Stockpile (Errata) [p. 786]
	Back Matter [pp. 787 - 788]

