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Abstract. We analyze the convergence of an extended Krylov subspace method for the approximation of
operator functions that appear in exponential integrators. For operators, the size of the polynomial part of the
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1. Introduction. Exponential integrators form an interesting class of numerical methods for
the time integration of evolution equations. The favorable properties of exponential integrators
are usually shown by studying exponential integrators for strongly continuous semigroups with
infinitesimal generator A. For finite-difference, pseudospectral, finite-element, or discontinuous
Galerkin discretizations of such operators, the operator A turns into a large matrix. The norm
of this matrix grows with finer space discretizations. However, the properties of exponential
integrators that hold true in the continuous case of an operator carry over to results that are
independent of the norm of the discretization matrix. These results are therefore independent of
the refinement of the space discretization. A review of exponential integrators and their properties
is given in [26] by Hochbruck and Ostermann.

For the application of these integrators, the computation of ϕ(A)v is required, where v is a
vector and ϕ is one of the so-called ϕ−functions. These operator functions are given by

ϕk(τA) :=

∫ 1

0

e(1−s)τA sk−1

(k − 1)!
ds =

1

τk

∫ τ

0

e(τ−s)A sk−1

(k − 1)!
ds , k ≥ 1 . (1.1)

With a suitable functional calculus, they can be seen as the operator A being inserted in the
functions defined by the recursion ϕ0(z) = ez,

ϕk+1(z) =
ϕk(z)− ϕk(0)

z
, ϕk(0) =

1

k!
, k ≥ 0 . (1.2)

The efficient and reliable computation of ϕ(A)v is an important ingredient in every exponential
integrator.

Recently, the use of rational Krylov subspaces for the approximation of f(A)v, where f is
a function defined for matrices and/or operators, has been studied by a number of papers (e.g.
[1–4, 7–11, 14, 15, 19–21, 27–31, 33, 34, 36]). A promising method is the extended Krylov subspace
method that has been suggested by Druskin and Knizhnerman in [7] to approximate matrix
functions for invertible matrices in the space

Kq,n
0 (A, v) = span{Aq−1v, . . . , Av, v, A−1v, . . . , A−n+1v} , n ≥ 1 , q ≥ 1 .

We will study a slight variation of this method for operators, in order to obtain error bounds for the
approximation of the ϕ−functions that are independent of the norm of the matrix of the discretized
operator A, uniformly over all possible grids in space. This is the crucial property to be preserved
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for a successful application of the extended Krylov subspace method in exponential integrators.
Without loss of generality, we study bounded strongly continuous semigroups on a Banach space
X in this paper. (The results for a general semigroup can be obtained via the common rescaling
procedure, e.g. page 60 in [12].) In contrast to matrices, the generator A of a C0−semigroup might
only be applicable to a dense subset D(A) of the Banach spaceX . With the definition D(A0) := X ,
where A0 := I, and the recursive definition D(An) :=

{
v ∈ D(An−1) | An−1v ∈ D(A)

}
for n ∈ N,

we define smoother and smoother spaces. It is clear, that the operator A can be applied at most q
times to vectors in D(Aq). The generators A of bounded semigroups are not invertible in general,
but the resolvent (γI −A)−1, with γ > 0, that is the inverse of the operator γI −A, exists and is
a bounded operator that pushes v ∈ X to (γI−A)−1v ∈ D(A). The iterated resolvent (γI−A)−n

can thus be applied to all vectors v ∈ X for all n ≥ 0. In short, the resolvent is a “smoothing”
operator in contrast to A. Therefore, we study the approximation of operator functions times a
vector v ∈ D(Aq) in the space

Kq,n
γ (A, v) = span

{
Aq−1v, . . . , Av, v, (γI −A)−1v, . . . , (γI −A)−n+1v

}
, n ≥ 1 , (1.3)

with γ > 0. The space could be extended by Aqv “to the left”, but the analysis shows that this
would give no improvement over our derived bounds despite the fact that v ∈ D(Aq) is used in
the error analysis.

In contrast to other applications of the extended Krylov subspace, our index q is fixed and
given by the abstract smoothness of the initial data. While for q, n ≥ 1, the meaning of the above
definition is clear, we also use

K0,n
γ (A, v) = span

{
(γI −A)−1v, . . . , (γI −A)−n+1v

}
, n ≥ 2 , (1.4)

where the superscript 0 that refers to the polynomial part of the Krylov space indicates that the
space is purely rational, and

Kq,0
γ (A, v) = span

{
Aq−1v, . . . , Av, v

}
, q ≥ 1 , (1.5)

designates the standard polynomial Krylov subspace.
Due to the well-known shift invariance of the standard Krylov subspace, the space (1.3) is

identical to the extended Krylov subspace with the shifted operator/matrix γI −A. We therefore
also call methods based on this subspace extended Krylov subspace methods. We will illustrate
that the concept of smoothness plays an important role for the discretized operators and that the
restriction of the polynomial part of (1.3) with respect to the smoothness of the initial data is well
considered.

The paper is organized as follows: After the introduction in this section, we motivate the use
of the extended Krylov subspace method and the importance of our continuous analysis for the
approximation of matrix functions for matrices stemming from discretized evolution operators in
Section 2. After some preliminaries in Section 3, we study the approximation of the semigroup
and the ϕ−functions in the extended Krylov subspace for infinitesimal generators of semigroups
in Banach spaces in Section 4. In Section 5, we present a good choice of the free parameter γ > 0
that rises the asymptotic convergence. The extended Krylov subspace approximation in Hilbert
spaces is studied in Section 6. We illustrate our analysis by numerical experiments in Section 7,
before giving a brief conclusion in Section 8.

2. Motivation. The main motivation to examine rational Krylov subspace methods is the
favorable property that the convergence of these methods does not deteriorate for matrices with
large norm in contrast to the standard Krylov subspace method (e.g. [16], [25]). Numerical evidence
that this is also true for the method discussed here is given in Section 7 on numerical experiments.
The purpose of this section is to motivate why and how the abstract smoothness of the value v can
be used to speed up the grid-independent approximation of operator functions, that is, to motivate
the special Krylov subspace (1.3). For the illustration, we use the one-dimensional wave equation
written as a first order system on the Hilbert space L2(0, 1) × L2(0, 1). This representation of
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the wave equation is equivalent to the more common representation as a first order system on the
Hilbert space H1

0 (0, 1)× L2(0, 1) equipped with its graph norm (cf. Theorem 5.5 in [13]).
We choose the operator Bu = −uxx on the interval Ω = (0, 1) for the Hilbert space H = L2(Ω)

with homogeneous Dirichlet boundary conditions. B is a positive, self-adjoint operator on H with
a compact resolvent, hence we have a complete orthonormal basis of eigenfunctions ek and positive
eigenvalues λk,

ek(x) =
√
2 sin(kπx) , λk = (kπ)2 , k = 1, 2, . . . .

For a function f bounded on [0,∞), one can define f(B)v as

f(B)v :=
∞∑

k=1

f(λk)µkek , v =
∞∑

k=1

µkek ∈ H .

Fractional powers Bα are defined on appropriate domains

D(Bα) := {v ∈ H | ‖Bαv‖ < ∞} .

Let now X = H ×H , and define A : D(A) → H ×H by

A =

[
0 B

1
2

−B
1
2 0

]
,

where the domain is given by D(A) = D(B
1
2 )×D(B

1
2 ), and the domains of the iterated operators

are D(Aq) = D(B
q
2 )×D(B

q
2 ), respectively. In our example, we are dealing with the Sobolev space

D(B
1
2 ) = H1

0 (0, 1). We now consider the evolution equation

y′(τ) =

[
q(τ)
p(τ)

]′
=

[
0 B

1
2

−B
1
2 0

] [
q(τ)
p(τ)

]
= Ay(τ) , y(0) = y0 =

[
q0
p0

]
. (2.1)

For q = 2, 4, 6, 8, we use four different initial values

yq0 =

[
qq0
pq0

]
, qq0 = 0 , pq0 =

p̃q0
‖p̃q0‖

, p̃q0 =

{
[0, 1] → R

p̃q0(x) = xq(1− x)q
.

With this choice, we have yq0 ∈ D(Aq) and yq0 6∈ D(Aq+1). That is, q might be called the maximal
index of smoothness for the initial values yq0 with respect to the operator A. The solution of the
initial value problem is

yq(τ) = eτAyq0 =

[
cos(τB

1
2 ) sin(τB

1
2 )

− sin(τB
1
2 ) cos(τB

1
2 )

] [
qq0
pq0

]
, q = 2, 4, 6, 8 .

Galerkin discretization with respect to the subspace VN = span{e1, . . . , eN} leads to the matrix

AN =

[
0 B

1
2

N

−B
1
2

N 0

]
, B

1
2

N = diag(π, 2π, . . . , Nπ) ,

and the initial condition

yq0,N =

[
qq0,N
pq0,N

]
, qq0,N = 0 , pq0,N = p̃q0,N ,

where p̃q0,N can be computed exactly by partial integration or approximated with the discrete sine
transform. The solution of the initial value problem is

yqN (τ) = eτANyq0,N =

[
cos(τB

1
2

N ) sin(τB
1
2

N )

− sin(τB
1
2

N ) cos(τB
1
2

N )

] [
qq0,N
pq0,N

]
, q = 2, 4, 6, 8 .
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In Figure 2.1, we show the errors of the approximation to eτANyq0,N in the three Krylov subspaces
versus the dimension n of these subspaces. More exactly, the subplots of Figure 2.1 refer to the
approximation of eτAN yq0,N , with q = 2, 4, 6, 8, from top left to bottom right with τ = 1/4 and

N = 255. The approximation in the standard Krylov subspace Kn,0
γ (AN , yq0,N) is marked by crosses

and a dash-dotted line, the approximation in the purely rational Krylov subspace K0,n
γ (AN , yq0,N ),

with γ = 1, by stars and a dashed line, and the approximation in the extended Krylov subspace
Kq,n−q

γ (AN , yq0,N), with γ = 1, by circles and a solid line. Errors are measured in the standard

Euclidean norm that corresponds to the L2−norm in this example.

A first thing to observe is that the methods approximate eτAN yq0,N the better the smoother

the original continuous initial value yq0 is, that is, the higher the number q with yq0 ∈ D(Aq) is.
Hence, the smoothness of the continuous initial data has a significant effect on the question how
well the matrix functions with the discretization matrix times the discretized initial value can
be approximated in the corresponding Krylov subspaces. While this is to be expected for very
fine space discretizations, it is surprising that it starts with very coarse space discretizations with
N = 255 and small matrices in our test problem.

The performance of the standard Krylov subspace method (cross-marked and dash-dotted
line) deteriorates exactly as soon as the space uses vectors Al

Nyq0,N with l ≥ q. The transition

from the standard Krylov subspace Kq,0
γ (AN , yq0,N ) that does not use Aq

Nyq0,N to Kq+1,0
γ (AN , yq0,N )

that does use Aq
Nyq0,N is marked by a vertical gray line. This behavior in our test problem perfectly

fits the theory presented later and motivates the proposed restriction of the polynomial part of
the extended Krylov subspace method.

The purely rational method (star-marked and dashed line) gives the steepest descent in the
error. However, the rational method requires the solution of a linear system with a large matrix
γI − AN in every step for general discretization matrices. While it is clear that this can pay off
for the “right of the gray line”, the standard Krylov method that only uses matrix multiplications
is clearly faster as long as the index is smaller than the smoothness of the data. It is therefore
reasonable to assume that the most effective method with respect to error versus numerical work
should use the polynomial subspace as long as possible and then switch to the rational method.
This is exactly what an approximation in the extended Krylov subspace (1.3) (circle-marked and
solid line) does.

Numerical examples, like the one just discussed, show that the smoothness of the initial data
is important for an effective approximation. The smoothness of the initial data should therefore
be taken into account. The fact that the discretized operators, mostly represented by matrices,
behave more and more like the continuous operator for finer space discretizations, motivates the
use and the study of the Krylov subspace (1.3). The discussion on the continuous operator level
guarantees that the obtained error bounds are independent of the space discretization.

3. Preliminaries. We briefly review a functional calculus that might be seen as a slightly
simpler version of the functional calculus of Hille and Phillips in [24]. More details about our
functional calculus can be found in [18].

The Lebesgue spaces of complex-valued functions defined on R are denoted by Lq(R) with
norm ‖ · ‖q. Besides

C(R) = {f : R → C | f is continuous on R} ,

let

M+ =
{
f ∈ C(R) | Ff ∈ L1(R) and supp(Ff) ⊆ [0,∞)

}
, (3.1)

where Ff is the Fourier transform of f , i.e.

Ff(s) =
1

2π

∫ ∞

−∞
e−ixsf(x) dx .
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Fig. 2.1. Plot of error vs. dimension of the Krylov space for the standard Krylov subspace Kn,0
γ (AN , y

q
0,N )

(cross-marked and dash-dotted line), the purely rational Krylov subspace K0,n
γ (AN , y

q
0,N ) (star-marked and dashed

line) and the extended Krylov subspace Kq,n−q
γ (AN , y

q
0,N ) (circle-marked and solid line) for N = 255 and initial

values y
q
0,N that are discretized initial values from smoother and smoother data y

q
0
∈ D(Aq), q = 2, 4, 6, 8, from

top left to bottom right.

For each function holomorphic in the left complex half-plane, we denote by f(0) : R → C the
restriction of f to Re z = 0, so that f(0)(ξ) = f(iξ), and define the algebra

M̃ :=
{
f holomorphic and bounded in Re z ≤ 0 | f(0) ∈ M+

}
.

Let now A generate a bounded strongly continuous semigroup on some Banach space X , that is
‖eτA‖ ≤ N . For functions f ∈ M̃, we define a functional calculus via

f(A) =

∫ ∞

0

esA Ff(0)(s) ds .

This defines a bounded linear operator f(A) satisfying

‖f(A)‖ ≤ N‖Ff(0)‖1 .
The functional calculus so far is suitable to treat the ϕk−functions for k ≥ 1. We will need another
extension in order to include the semigroup, i.e. the ϕ0−function. Let

M0 := {f holomorphic for Re z ≤ 0 | ∃n ∈ N0 :
f(z)

(1 − z)n
∈ M̃} .

For f ∈ M0, we now define

f(A) := (I −A)n
(

f(z)

(1 − z)n

)
(A) ,
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where n ∈ N0 is such that f(z)
(1−z)n ∈ M̃ . Note that the definition does not depend on the choice of

n. The definition results in a closed operator on X . Finally, we define

M̃ ⊆ M := {f ∈ M0 | f(A) : X → X is bounded} .

The following lemma can be found as Proposition 1.12 in [22].
Lemma 3.1. The mapping f → f(A) is a homomorphism of M into the algebra of bounded

linear operators on X.

With this definition of the functional calculus, the functions ϕk(z), k ≥ 0, used with the
functional calculus defined above coincide with the definition (1.1) of the bounded operators
ϕk(τA) given in the literature about exponential integrators (cf. Lemma 3.2 and Lemma 3.5
in [18]). Also, for f(z) = (z0 − z)−1 with Re z0 > 0, we have, by elementary semigroup theory,

(
1

z0 − z

)
(A) =

∫ ∞

0

esAe−sz0 ds = (z0I −A)−1 ,

that is, the definition coincides with the definition in terms of the resolvent. We will also need the
following lemma of Brenner and Thomée (cf. Lemma 4 in [5]).

Lemma 3.2. Let f and g be such that f, g ∈ M, and f(z) = zlg(z) for Re z ≤ 0 and some

l > 0. Then we have

f(A)v = g(A)Alv , for v ∈ D(Al) .

For all functions relevant to our discussion, the functional calculus coincides with the defini-
tions in semigroup theory. We therefore do not use different notations in the following and simply
write f(A) for a function f of an operator A with respect to our functional calculus. For a better
readability and for consistency, we will use 1

γ−A instead of the equivalent expression (γI − A)−1

at some places.

4. Extended Krylov subspace approximation. Let A be the infinitesimal generator of
a C0−semigroup on a Banach space. We consider the approximation of ϕk(τA)v, k ≥ 0, for
v ∈ D(Aq) in the extended Krylov subspace

Kq,n
γ (A, v) = span

{
Aq−1v, . . . , Av, v, (γI −A)−1v, . . . , (γI −A)−n+1v

}
,

with γ > 0. The following theorem shows that the convergence to ϕk(τA)v is the faster the higher
the index k of the ϕk−function and the smoother the initial data is.

Theorem 4.1. Let A generate a bounded C0−semigroup. Then, for v ∈ D(Aq) and an

arbitrary ϕk−function, k ≥ 0, we have

inf
z∈Kq,n

γ (A,v)
‖ϕk(A)v − z‖ ≤ C

1

n
q+k
2

‖Aqv‖ ,

where the constant C only depends on γ, q and k.
Without loss of generality, we state our theorems for τ = 1. If A is an infinitesimal generator of

a bounded C0−semigroup, then Ã = τA, for τ > 0, is an infinitesimal generator of a C0−semigroup
bounded by the same constants relevant to our analysis.
For the proof of our main theorem, we need the following lemma.

Lemma 4.2. Let A generate a bounded C0−semigroup. Then, for v ∈ D(Aq) and an arbitrary

ϕk−function, k ≥ 0, we have

inf
z∈Kq,n

γ (A,v)
‖ϕk(A)v − z‖ ≤ inf

y∈K0,n
γ (A,Aqv)

‖ϕq+k(A)A
qv − y‖ .

Proof. The statement directly follows from

{
‖ϕq+k(A)A

qv − y‖
∣∣ y ∈ K0,n

γ (A,Aqv)
}
⊆

{
‖ϕk(A)v − z‖

∣∣ z ∈ Kq,n
γ (A, v)

}
. (4.1)
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In order to show this inclusion, we have to show that we can find for any given b1, . . . , bn−1

coefficients ã0, . . . , ãq−1 and a1, . . . , an−1 such that

ϕq+k(A)A
qv −

n−1∑

l=1

bl
1

(γ −A)l
Aqv = ϕk(A)v −

q−1∑

l=0

ãlA
lv −

n−1∑

l=1

al
1

(γ −A)l
v . (4.2)

With the help of Lemma 3.2, we obtain by the definition of the ϕk−functions

ϕq+k(A)A
qv = ϕk(A)v −

q−1∑

l=0

1

(l + k)!
Alv . (4.3)

Now, we show that

n−1∑

l=1

bl
1

(γ −A)l
Aqv =

n−1∑

l=1

al
1

(γ −A)l
v + pq−1(A)v (4.4)

for a polynomial pq−1 of degree q − 1. Here, we assume that q ≤ n − 1 (otherwise, one proceeds
analogously). Then, we can split the left-hand side in the following way

n−1∑

l=1

bl
1

(γ −A)l
Aqv =

q∑

l=1

bl
1

(γ −A)l
Aqv +

n−1∑

l=q+1

bl
1

(γ −A)l
Aqv . (4.5)

For the case q < l, we can conclude with

Aq

(γ −A)l
=

(
γ

γ −A
− 1

)q
1

(γ −A)l−q
=

q∑

i=0

(
q

i

)(
γ

γ −A

)q−i

(−1)i
1

(γ −A)l−q

=

q∑

i=0

ci
1

(γ − A)l−i
, where ci =

(
q

i

)
γq−i(−1)i ,

(4.6)

that the second sum on the right-hand side of (4.5) has the form

n−1∑

l=q+1

bl
1

(γ −A)l
Aqv =

n−1∑

l=1

b̃l
1

(γ −A)l
v .

For the first sum on the right-hand side of (4.5), we have

q∑

l=1

bl
1

(γ −A)l
Aqv =

p2q−1(A)

(γ −A)q
v ,

where p2q−1 is a polynomial of degree 2q − 1. Using polynomial long division, we write this
expression in the divisor-quotient form

p2q−1(A)

(γ −A)q
v = pq−1(A)v +

p̃q−1(A)

(γ −A)q
v ,

where pq−1 and p̃q−1 are polynomials with deg(pq−1) = q−1 and deg(p̃q−1) ≤ q−1. With relation
(4.6), one can see in an analogous way as above that

p̃q−1(A)

(γ −A)q
v =

q∑

l=1

b̂l
1

(γ −A)l
v .

Altogether, this yields the validity of (4.4) with al = b̃l + b̂l for l ≤ q and al = b̃l for l > q. With
(4.3) and (4.4), we finally obtain (4.2).
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Proof. [of Theorem 4.1] With the help of Lemma 4.2, we have

inf
z∈Kq,n

γ (A,v)
‖ϕk(A)v − z‖ ≤ inf

y∈K0,n
γ (A,Aqv)

‖ϕq+k(A)A
qv − y‖ .

For an arbitrary

y =

n−1∑

l=1

bl
1

(γ −A)l
Aqv ∈ K0,n

γ (A,Aqv) ,

we can conclude that

‖ϕq+k(A)A
qv − y‖ =

∥∥∥∥∥ϕq+k(A)A
qv −

n−1∑

l=1

bl
1

(γ −A)l
Aqv

∥∥∥∥∥

≤
∥∥∥∥∥ϕq+k(A)−

n−1∑

l=1

bl
1

(γ −A)l

∥∥∥∥∥ ‖A
qv‖ ≤ C

1

n
q+k
2

‖Aqv‖

by Theorem 4.2 in [17]. This yields

inf
z∈Kq,n

γ (A,v)
‖ϕk(A)v − z‖ ≤ inf

y∈K0,n
γ (A,Aqv)

‖ϕq+k(A)A
qv − y‖ ≤ C

1

n
q+k
2

‖Aqv‖ , (4.7)

and our theorem is proved.

5. On the choice of γ. In Lemma 4.2, we have seen that the approximation of ϕk(A)v in
the extended Krylov subspace Kq,n

γ (A, v) is related to the approximation of ϕq+k(A)A
qv in the

purely rational Krylov space K0,n
γ (A,Aqv) via

inf
z∈Kq,n

γ (A,v)
‖ϕk(A)v − z‖ ≤ inf

y∈K0,n
γ (A,Aqv)

‖ϕq+k(A)A
qv − y‖ . (5.1)

As before, the index q is given by the smoothness of the initial vector v ∈ D(Aq). The relation
(5.1) implies that an improvement of the approximation of the ϕk−functions, k ≥ 0, in the purely
rational Krylov space by an appropriate choice of γ leads to an improvement for the extended
Krylov subspace method. To obtain a better upper bound for the approximation error, it thus
suffices to restrict our studies to the purely rational case. We will see that the convergence
rate for the best rational approximation of the ϕk−function in the so-called resolvent subspace
Rn := span{(γI −A)−1, (γI −A)−2, . . . , (γI −A)−n} which is of order (cf. [17])

inf
R∈Rn

‖ϕk(A)−R‖ = O
(

1

n
k
2

)

can be improved to

inf
R∈Rn

‖ϕk(A) −R‖ = O
(

1

n
k
2 (1+

r−k
r+k )

)
, r < n− 1 .

As an adequate measure for the convergence rate of the best approximation, moduli of smoothness
play a basic and important role in the area of approximation theory. For the improvement of the
rational approximation, we have to analyze, in our case, the so-called weighted φ−modulus of
smoothness ωr

φ. This modulus was introduced by De Bonis, Mastroianni and Viggiano in [6] for
the characterization of the K−functional of a function f by its structural properties.

With the Laguerre weight function w(x) = e−x, x > 0, we denote by L1
w the set of all functions

for which the relation

‖fw‖1 =
∫ ∞

0

|w(x)f(x)|dx < ∞
8



holds true. Let 0 < t ≤ 1, φ(x) =
√
x and set Irh = [4r2h2, 1

h2 ] with h > 0. Then, the main part
of the weighted φ−modulus of smoothness is defined by

Ωr
φ(f, t) := sup

0<h≤t
‖w∆r

hφf‖L1(Irh) ,

where ∆r
hφf designates the rth symmetric difference of a function f given by

∆r
hφf(x) =

r∑

j=0

(−1)j
(
r

j

)
f

(
x+

hφ(x)

2
(r − 2j)

)
.

The complete modulus ωr
φ(f, t) is now composed of three particular parts in the following way

ωr
φ(f, t) := Ωr

φ(f, t) + inf
P∈Pr−1

‖w(f − P )‖L1(0,4r2t2) + inf
Q∈Pr−1

‖w(f −Q)‖L1( 1

t2
,∞) ,

where 0 < t ≤ 1 and Pr−1 denotes the set of all algebraic polynomials of maximum degree r − 1.

Using this weighted φ−modulus of smoothness, De Bonis, Mastroianni and Viggiano (cf. [6])
could prove that for all n, r ∈ N and f ∈ L1

w there exists a constant C > 0, independent of n and
f , such that the best weighted polynomial approximation is bounded by

inf
P∈Pn

‖w(f − P )‖1 ≤ Cωr
φ

(
f,

1√
n

)
, r < n .

This result was used in [17] to obtain an upper bound for the best approximation of f(A), f ∈ M̃,
in the resolvent subspace Rn. For the ϕk−functions, k ≥ 1, this bound is

inf
R∈Rn

‖ϕk(A)−R‖ ≤ C

γ
ωr
φ

(
ϕ̃k,

1√
n− 1

)
= O

(
1

n
k
2

)
, r < n− 1 , (5.2)

where the generic constant C only depends on k and r, and

ϕ̃k(s) := esFϕk,(0)

(
s

γ

)
= es1[0,1]

(
s

γ

)
(1− s

γ )
k−1

(k − 1)!
∈ L1

w .

We now search for an optimal shift γ > 0 depending on the size n of the resolvent subspace Rn.

A slight modification of the occurring constants enables us to examine the modulus ωr
φ

(
ϕ̃k,

1√
n

)

instead of ωr
φ

(
ϕ̃k,

1√
n−1

)
. We set γ := nα with α ∈ R and estimate for arbitrary 0 < t ≤ 1

separately the three particular parts of the rth weighted φ−modulus of smoothness for ϕ̃k, that
is ωr

φ(ϕ̃k, t). If we finally set t = n−1/2 in order to get an upper bound for the three parts of

ωr
φ

(
ϕ̃k,

1√
n

)
, we obtain for r < n− 1 the following results

(i)
1

γ
inf

P∈Pr−1

‖w(ϕ̃k − P )‖L1(0,4r2t2) ≤
C1

nα+r+1
(5.3)

(ii)
1

γ
inf

Q∈Pr−1

‖w(ϕ̃k −Q)‖L1( 1

t2
,∞) = 0 for γ ≤ 1

t2
(5.4)

(iii)
1

γ
Ωr

φ(ϕ̃k, t) ≤
C2

n
k
2
(α+1)

+
C3

n
r
2
(1−α)

(5.5)

with constants C1, C2 and C3 that only depend on r and k. We will see below that with our
choice of γ the condition γ ≤ 1

t2 = 1
n in (5.4) is always fulfilled. In the following we sketch the

basic ideas to show (5.3)− (5.5):

9



(i) We choose P ∈ Pr−1 as the (r − 1)th Taylor polynomial Tr−1 of ϕ̂k(s) := es
(1− s

γ
)k−1

(k−1)! around

the point 0 such that

ϕ̂k(s)− Tr−1(s) =
ϕ̂
(r)
k (ξ)

r!
sr =

r+1∑

l=1

(
r

l − 1

)
1

(k − l)!

(−1)l−1

γl−1
eξ

(
1− ξ

γ

)k−l
sr

r!
,

where ξ ∈ [0, s]. If we substitute this expression in the integral representation of the norm
‖w(ϕ̃k − P )‖L1(0,4r2t2) and use ξ ≤ s ≤ 4r2t2, we obtain the desired estimate.

(ii) For γ ≤ 1
t2 the intersection of supp{ϕ̃k} = [0, γ] and the interval

(
1
t2 ,∞

)
of integration is

empty. This yields

inf
Q∈Pr−1

‖w(ϕ̃k −Q)‖L1( 1

t2
,∞)

Q=0

≤ ‖wϕ̃k‖L1( 1

t2
,∞) = 0 .

(iii) The tedious procedure to estimate the main part of the φ−modulus is as follows. First, one
has to consider which s fulfill the condition of the occurring indicator function, that is

1

γ

(
s+

h
√
s

2
(r − 2j)

)
∈ [0, 1] , j ∈ {0, 1, . . . , r} .

Then, one can split the integral in Ωr
φ in a suitable way and bound the different parts separately.

Looking at the upper bounds in (5.3), (5.4) and (5.5), we notice that the two summands in the
last equation are the most restrictive. Hence, we can conclude that a well-chosen γ = nα should
fulfill the condition

k

2
(α+ 1) =

r

2
(1− α) ⇐⇒ α =

r − k

r + k

in order to get a shift that is as optimal as possible. This choice of γ leads to a convergence rate
of order

O
(

1

n
k
2 (1+

r−k
r+k )

)
= O

(
1

n
rk

r+k

)
. (5.6)

By way of illustration, let us consider the following simple example: If we want to approx-
imate the ϕ1−function in the resolvent subspace Rn and choose for instance r = 3, we obtain

infR∈Rn
‖ϕ1(A)−R‖ = O

(
n− 3

4

)
instead of O

(
n− 1

2

)
predicted in (5.2).

On the one hand, (5.6) shows that the convergence is getting faster and faster for larger values
of r. Keep in mind that by assumption the condition r < n − 1 must be fulfilled, cf. (5.2). On
the other hand, one can calculate that large values of r result unfortunately in ever increasing
constants C1, C2 and C3 in (5.3) and (5.5).

As described at the beginning of this section, the transition to the extended Krylov space
requires a modification of our shift γ depending on the maximal index q of smoothness for the
initial value. In the extended case the parameter α in the exponent of γ = nα should therefore be
chosen as

α =
r − (q + k)

r + (q + k)
.

6. Extended Krylov subspace method. Let A be the operator on a Hilbert space with
inner product ( · , · ). Assume that

Re (Av, v) ≤ 0 , ∀ v ∈ D(A) , (6.1)

and that Range(λI − A) = H for some λ with Reλ > 0. Then, A is the generator of a
C0−semigroup with

‖eτA‖ ≤ 1 , ∀ τ ≥ 0 ,

10



that is N = 1 in Section 3. The theory of the previous sections applies and we consider the
approximation of the semigroup eτA in the extended Krylov subspace (1.3)

Kq,n
γ (A, v) = span

{
Aq−1v, . . . , Av, v, (γI −A)−1v, . . . , (γI −A)−n+1v

}
,

with γ > 0 as before and v ∈ D(Aq). Since we are in a Hilbert space, we designate by Pn the
orthogonal projection to Kq,n

γ (A, v) and by An := PnAPn the restriction of A to this subspace.
Then, An also satisfies

Re (Anx, x) ≤ 0 , ∀ x ∈ Kq,n
γ (A, v) , (6.2)

and therefore generates a C0−semigroup with the same constantN = 1 as above and our functional
calculus can be applied again. Since we can now make sense to the operator functions with A and
An, the following theorem describes the relation between the two.

Theorem 6.1. Let An = PnAPn, where Pn is the orthogonal projection onto the extended

Krylov subspace (1.3). For v ∈ D(Aq) and a function ϕk, k ≥ 0, we then have

‖ϕk(A)v − ϕk(An)v‖ ≤ C
1

n
q+k
2

‖Aqv‖ ,

where C only depends on γ, q and k.
Proof. Let k be arbitrarily chosen but fixed. Under our assumptions, we have

p((γI −A)−1)v = p((γI −An)
−1)v , ∀ p ∈ Pn−1 ,

and therefore, for arbitrary al, l = 1, . . . , n− 1,

n−1∑

l=1

al
1

(γ −A)l
v =

n−1∑

l=1

al
1

(γ −An)l
v .

It is easy to see that

Alv = Al
nv for 0 ≤ l ≤ q − 1 ,

so that altogether the equation

q−1∑

l=0

ãlA
lv +

n−1∑

l=1

al
1

(γ −A)l
v =

q−1∑

l=0

ãlA
l
nv +

n−1∑

l=1

al
1

(γ −An)l
v

can be obtained. Since a1, . . . , an−1 and ã0, . . . , ãq−1, have been chosen arbitrarily, we have

Kq,n
γ (An, v) = Kq,n

γ (A, v) .

Let now y ∈ Kq,n
γ (An, v) = Kq,n

γ (A, v) be arbitrary such that b1, . . . , bn−1 exist with

ϕk(A)v − y = ϕq+k(A)A
qv −

n−1∑

l=1

bl
1

(γ −A)l
Aqv ,

cf. (4.2). We then have

‖ϕk(A)v − ϕk(An)v‖ ≤ ‖ϕk(A)v − y‖+ ‖ϕk(An)v − y‖

=

∥∥∥∥∥ϕq+k(A)A
qv −

n−1∑

l=1

bl
1

(γ −A)l
Aqv

∥∥∥∥∥+

∥∥∥∥∥ϕq+k(An)A
q
nv −

n−1∑

l=1

bl
1

(γ −An)l
Aq

nv

∥∥∥∥∥

≤
∥∥∥∥∥ϕq+k(A)−

n−1∑

l=1

bl
1

(γ −A)l

∥∥∥∥∥ ‖A
qv‖+

∥∥∥∥∥ϕq+k(An)−
n−1∑

l=1

bl
1

(γ −An)l

∥∥∥∥∥ ‖A
q
nv‖ .
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If we use the fact that the rational Krylov subspace K0,n
γ (A, v) can also be written as

K0,n
γ (A, v) = span

{
1

γ −A
v,

A

(γ −A)2
v, . . . ,

An−2

(γ −A)n−1
v

}
,

and proceed similar as in the proof of Theorem 4.1 in [17], one can turn the two problems of
approximating ϕq+k(A) and ϕq+k(An) in the corresponding resolvent subspaces into one single
approximation problem in the L1−norm. By using our functional calculus, we obtain

‖ϕq+k(A)− sn−1(A)‖ ≤ ‖F(ϕq+k,(0) − sn−1,(0))‖1

and

‖ϕq+k(An)− sn−1(An)‖ ≤ ‖F(ϕq+k,(0) − sn−1,(0))‖1 ,

with

sn−1(z) =

n−1∑

l=1

cl
zl−1

(γ − z)l
, F(sn−1,(0))(s) =

n−1∑

l=1

cl(−1)l−1e−γsLl−1(γs) , s ≥ 0 ,

where Ll−1 denotes the standard Laguerre polynomial of degree l − 1. If we choose y from above
such that the infimum of the L1−problem is attained, which is possible due to (4.2), we get by
using Theorem 4.2 in [17]

‖ϕk(A)v − ϕk(An)v‖ ≤ C
1

n
q+k
2

‖Aqv‖+ C
1

n
q+k
2

‖Aq
nv‖ .

The calculation

Aq
nv = PnAPnA

q−1
n v = PnAPn Aq−1v︸ ︷︷ ︸

∈Kq,n
γ (A,v)

= PnAA
q−1v = PnA

qv

yields

‖Aq
nv‖ = ‖PnA

qv‖ ≤ ‖Aqv‖ ,

and therefore

‖ϕk(A)v − ϕk(An)v‖ ≤ C
2

n
q+k
2

‖Aqv‖ .

In contrast to the unknown best approximation in the general case, the approximation ϕk(An)v
to ϕk(A)v in the extended Krylov subspace Kq,n

γ (A, v) can be efficiently computed. For this
purpose, we first determine an orthonormal basis with the following algorithm. Thereby, the
algorithm is given in a good human readable form. Obvious improvements with respect to stability

12



and efficiency should be performed.

v ∈ D(Aq), compute β =
√
(v, v) = ‖v‖

v1 = v/β
for m = 1, 2, . . . do

if m < q do

for j = 1, . . . ,m do

hj,m = (Avm, vj)
end for

ṽm+1 = Avm −
∑m

j=1 hj,mvj
hm+1,m = ‖ṽm+1‖
vm+1 = ṽm+1/hm+1,m

else

for j = 1, . . . ,m do

hj,m =
(
(γI −A)−1vm, vj

)

end for

ṽm+1 = (γI −A)−1vm −∑m
j=1 hj,mvj

hm+1,m = ‖ṽm+1‖
vm+1 = ṽm+1/hm+1,m

end if

end for

(6.3)

Note that the algorithm first computes a basis of the polynomial part. However, it is easy to see
that the vectors v1, . . . , vm form an orthonormal basis of Kq,n

γ (A, v) for m = q + n− 1.
When an orthonormal basis is known, the subspace projection operator and the approximation

of an operator function via subspace projection can be formulated conveniently with the help of
quasi-matrices (cf. Lecture 5, [35]). In our case, we consider the quasi-matrix

Vn := [ v1 v2 · · · vq+n−1 ]

whose entries form an orthonormal basis of Kq,n
γ (A, b). According to the definitions in [35], we

can write our projection operator as Pn = VnV
H
n and we have

Pnv = VnV
H
n v = Vn




(v, v1)
...

(v, vq+n+1)


 =

q+n−1∑

j=0

(v, vj)vj

for an arbitrary vector v ∈ H . The approximation to f(A)v is given by

f(An)v = f(PnAPn)v = f(VnV
H
n AVnV

H
n )v = Vnf(V

H
n AVn)V

H
n v = Vnf(Sn)V

H
n v,

(as in the case of matrices), where

Sn =




(Av1, v1) · · · (Avm, v1)
...

...
(Av1, vm) · · · (Avm, vm)


 ∈ C

m×m and V H
n v =




(v, v1)
...

(v, vm)


 ∈ C

m

is a matrix and a vector, respectively, and m = q + n − 1. Hence, after computing the matrix
function f(Sn) for the small matrix Sn multiplied by the vector V H

n v, i.e.

gn = f(Sn)V
H
n v,

we can compute our approximation as

f(An)v = Vnf(Sn)V
H
n v = Vngn =

q+n−1∑

j=0

gjvj ∈ H.

13



Fig. 7.1. Regular mesh.

7. Numerical experiments. In this section, we illustrate our analysis with different approx-
imations of evolution equations. In our first experiment, we use a finite-difference discretization on
the unit square that is equivalent to a regular triangulation with linear finite elements and mass
lumping. This educational example shows the important fact that the rational Krylov subspace
method can be more efficient, despite the fact that the polynomial Krylov method only uses sparse
matrix multiplications and the rational Krylov method needs to solve linear systems in every step.
Furthermore, the experiments with this approximation are easy to understand and to repeat. In
our second experiment, we consider discontinuous Galerkin approximations to Maxwell’s equations
on a more complex domain. Both experiments clearly show that a grid-independent convergence
can be obtained.

7.1. Finite-difference discretization and finite-element discretization. We refer to
our motivation in Section 2, but this time we consider the (real) Schrödinger equation on the unit
square Ω = (0, 1)2 with homogeneous Dirichlet boundary conditions. This leads to the operator

A =

[
0 B

−B 0

]
,

with H = L2(Ω) × L2(Ω) and Bu = −△u. The domain is given by D(A) = D(B) × D(B) with
D(B) = H1

0 (Ω) ∩ H2(Ω), and the domains of iterated operators are D(Aq) = D(Bq) × D(Bq),
respectively.

We consider the evolution equation

y′(τ) = Ay(τ) , y(0) = y0 =

[
q0
p0

]
,

where we use initial values yq0, q = 2, 4, with

yq0 =

[
qq0
pq0

]
, qq0 = pq0 =

p̃q0
‖p̃q0‖

, p̃q0 =

{
[0, 1]2 → R

p̃q0(x, y) = x2q(1− x)2qy2q(1− y)2q
.

With this choice, we have yq0 ∈ D(Aq) and yq0 6∈ D(Aq+1). Discretization with finite differences on
the standard grid (ih, jh), i, j = 1, . . . , d, with h = 1

d+1 for a fixed integer d, leads with N = d2 to
the 2N × 2N−matrix

AN =

[
0 BN

−BN 0

]
, BN =

1

h2
(T ⊗ IN + IN ⊗ T ) , T = tridiag(−1, 2,−1) ,

where ⊗ is the Kronecker product. BN is the standard discretization with the five-point stencil for
the negative Laplacian. The inner product is (u, v) = h2vHu, u, v ∈ CN , and the norm therefore
‖u‖h = h‖u‖2, where ‖ · ‖2 is the standard Euclidean norm. The discretized initial values yq0,N are
just the functions evaluated at the grid points.

The same discretization arises from a regular triangulation with linear finite elements and
mass lumping. We will briefly explain how one can see this. We use a regular triangulation with
the same nodes as the grid in the finite-difference approximation as shown in Figure 7.1. Then,
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one uses the standard N2 linear ansatz functions. This leads to the system of ordinary differential
equations

MNy′(τ) = ÃNy(τ) , y(0) = y0 =

[
q0
p0

]
, (7.1)

where MN is the mass matrix and ÃN is the stiffness matrix. The idea of mass lumping is not
to use the standard inner product, but a discrete one that arises by replacing the integrals over a
triangle K by the quadrature formula

∫

K

f(x) dx =
1

3
|K| (f(P1) + f(P2) + f(P3)) ,

where |K| designates the area of the triangle and Pi, i = 1, 2, 3, are the corners of the triangle.
With respect to this inner product, the linear ansatz functions are orthogonal and we have the
mass matrix

MN = h2 · I2N2 , I2N2 identity matrix of dimension 2N2,

and the stiffness matrix

ÃN =

[
0 B̃N

−B̃N 0

]
, B̃N = (T ⊗ IN + IN ⊗ T ) , T = tridiag(−1, 2,−1) .

The mass matrix determines the inner product with (u, v)MN
= vHMNu = h2vHu, u, v ∈ CN , that

is, exactly the same inner product as for the finite-difference approximation. By multiplication
from the left-hand side with the mass matrix, the ordinary differential equation (7.1) turns to

y′(τ) = M−1
N ÃNy(τ) , y(0) = y0 =

[
q0
p0

]
, M−1

N ÃN = AN ,

where AN is the matrix for the finite differences. Generally, in the case (7.1), the algorithm (6.3)
reads

β = ‖v‖MN
, v1 = v/β

for m = 1, 2, . . . do

if m < q do

for j = 1, . . . ,m do

hj,m =
(
M−1

N ÃNvm, vj

)
MN

= vHj ÃNvm

end for

ṽm+1 = M−1
N ÃNvm −∑m

j=1 hj,mvj
hm+1,m = ‖ṽm+1‖MN

vm+1 = ṽm+1/hm+1,m

else

for j = 1, . . . ,m do

hj,m =
(
(γI −M−1

N ÃN )−1vm, vj

)
MN

end for

ṽm+1 = (γI −M−1
N ÃN )−1vm −∑m

j=1 hj,mvj
hm+1,m = ‖ṽm+1‖MN

vm+1 = ṽm+1/hm+1,m

end if

end for

The algorithm is presented in a good human readable form. And, apart from using modified Gram-
Schmidt orthogonalization, we implemented the algorithm as given above. For a general purpose
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application of the algorithm, a reorthogonalization might be necessary for large dimensions of
the Krylov subspaces and several further improvements with respect to robustness and efficiency
should be performed.

The projection Pn = VnV
H
n MN to the extended Krylov subspace Kq,n

γ (M−1
N ÃN , v) with inner

product (u, v)MN
= vHMNu yields

An = PnM
−1
N ÃNPn = VnSnV

H
n MN ,

where Sn = V H
n ÃNVn and Vn is the matrix that contains the computed orthonormal basis of

Kq,n
γ (M−1

N ÃN , v). Then, the extended Krylov approximation is given by

ϕk(An)v = ‖v‖MN
Vnϕk(Sn)e1 ,

where e1 is the first unit vector.
As a first experiment, we check, whether the smoothness of the initial data also plays such an

important role for finer discretizations than in our motivation example in Section 2. We choose
the initial values yq0 ∈ D(Aq) and yq0 6∈ D(Aq+1) for q = 2, 4, as defined above, and plot the error of
the Krylov methods versus the dimension of the Krylov subspaces for step size τ = 0.005, γ = 1,
and N = 1 046 529, that is AN is a 2 093 058× 2 093 058−matrix. In Figure 7.2, one can see that
the standard Krylov method is useful according to the smoothness of the initial data. The gray
line indicates, as before, the point where the standard Krylov method starts to use approximations
to Alyq0 terms with l ≥ q. The smoothness seems to play exactly the same important role. The
starting polynomial Krylov steps in the extended Krylov method might not lead to progress if
τq‖Aqyq0‖ is of order O(1). The quality of the polynomial approximation is mainly measured via
Taylor expansion with this term in the remainder. But if τq‖Aqyq0‖ is sufficiently small, that
is sufficiently small for the continuous data, then the polynomial part in the extended Krylov
subspace method can save computation time independent of the space discretization.

The choice of γ can significantly improve the approximation of the exponential in the ra-
tional and extended Krylov subspaces. This is illustrated in Figure 7.3, where one can see the
improvement of the rational Krylov subspace method with γ = 11

1
3 (diamond-marked and dashed

line) over the rational Krylov subspace method with γ = 1 (star-marked and dashed line) on the
left-hand side of Figure 7.3. The shift γ has been chosen according to Section 5 with the highest
possible rate for 15 steps and r = 2q for q = 4 according to the smoothness of the initial data.
Remember that the theory in Section 5 gives results for the purely rational method as well as
the extended method. The improvement for the extended method is also significant, what can
be seen on the right-hand side of Figure 7.3, where the square-marked and solid line represents
the extended Krylov method with γ = 11

1
3 and the circle-marked and solid line represents the

extended Krylov method with γ = 1.
We choose this discretization, because the polynomial Krylov subspace method only needs

multiplications with a sparse matrix and is computationally cheap compared to one step of the
rational method where a linear system needs to be solved. If one would use linear finite elements
without mass lumping, the application of the polynomial Krylov method would also require the
solution of a linear system with the mass matrix. Then, the polynomial and rational Krylov
subspace method need comparable numerical work in every step. For higher-order finite elements,
when no good mass lumping is known, this is anyway true. If the rational variants can be faster
in overall computing time for our discretization that favors the polynomial Krylov method, one
can dare to say that this will be true for many large systems of discretized partial differential
equations that fit into the presented framework.

In Figure 7.4, we compare the performance of the three Krylov methods with respect to error
versus computing time. The computation has been conducted in the software environment Matlab,
Release R2012a, under Ubuntu, Release 10.4, on a dual core processor with frequency 3GH on a
desktop machine. In this example, one step of the polynomial Krylov method is just multiplication
with the sparse matrix AN and this is much cheaper than the computation of (γI − AN )−1 in
the rational and the extended Krylov method. (γI −AN )−1 has been computed with a multigrid
method without further preconditioning. Nevertheless, the rational and the extended Krylov
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Fig. 7.2. Plot of error vs. dimension of the Krylov space for the standard Krylov subspace Kn,0
γ (AN , y

q
0,N )

(cross-marked and dash-dotted line), the purely rational Krylov subspace K0,n
γ (AN , y

q
0,N ) (star-marked and dashed

line) and the extended Krylov subspace Kq,n−q
γ (AN , y

q
0,N

) (circle-marked and solid line) for N = 1046 529 and

initial values y
q
0,N that are discretized initial values of data y

q
0
∈ D(Aq) but y

q
0
6∈ D(Aq+1) for q = 2, 4.

method are more efficient for the computation of the matrix exponential. As already mentioned,
the performance of the standard Krylov method can be estimated with a simple Taylor expansion
as long as the smoothness of the initial data allows. If τ becomes larger, then the polynomial part
of the extended Krylov method might not lead to a gain in computing time. This is illustrated in
Figure 7.5. On the left-hand side of Figure 7.5, the Krylov methods are compared for N = 65 026,
γ = 1 fixed as before, y60 ∈ D(A6) and τ = 0.001. The step size is smaller and the Taylor expansion
suggests a better approximation in the first six polynomial Krylov steps what can be seen in the
figure. On the right-hand side, we use the same data but τ = 10. For this τ the remainder in the
Taylor expansion is of order O(1) and it can be clearly observed that the standard Krylov method
and the starting procedure in the extended Krylov method make no progress. Since we did not
adapt γ, the performance of the rational method is also significantly slower. In the theoretical
estimate a term τ6 = 106 appears. This experiment also demonstrates that the analysis that we
conducted and which essentially plays the convergence of the extended Krylov subspace method
back to the purely rational Krylov subspace method is not an artefact of the analysis. There
might be no gain in the first few polynomial Krylov steps. But these steps are cheap and for
more realistic (large) time steps, as on the left-hand side of Figure 7.5, the polynomial Krylov
part according to the smoothness of the initial data clearly pays off.

In a last experiment, we answer the question, whether one could detect the index of smoothness
q automatically in our experiment. We use yq0 ∈ D(Aq) and yq0 6∈ D(Aq+1), q = 2, 4, as initial
value and plot the error of approximation of the matrix exponential for step size τ = 0.005 and
N = 1 046 529 versus the dimension of the standard Krylov subspace in Figure 7.6. This is the
same initial data as used in Figure 7.2. Besides this, we show

‖eτAnyq0,N − eτAn−1yq0,N‖MN

versus n ≥ 2, the number of standard Krylov steps taken, as a simple heuristic method to detect
the smoothness of the vector. One can clearly see, that this simple idea would have allowed us to
detect the index of smoothness of the initial data without prior knowledge of the smoothness of
the initial data at the cost of few additional matrix-vector multiplications.
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Fig. 7.3. Plot of error vs. dimension of the Krylov space for the standard Krylov subspace Kn,0
γ (AN , y4

0,N )

(cross-marked and dash-dotted line), the purely rational Krylov subspace K0,n
γ (AN , y4

0,N ) with γ = 1 (star-marked

and dashed line) and the purely rational Krylov subspace K0,n
γ (AN , y4

0,N ) with γ = 11
1
3 (diamond-marked and

dashed line) on the left-hand side and the extended Krylov subspace K4,n−4
γ (AN , y4

0,N ) with γ = 1 (circle-marked

and solid line) and the extended Krylov subspace K4,n−4
γ (AN , y4

0,N ) with γ = 11
1
3 (square-marked and solid line)

on the right-hand side for N = 1 046 529 and initial value y4
0,N .
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Fig. 7.4. Plot of error vs. time for the standard Krylov subspace Kn,0
γ (AN , y

q
0,N ) (cross-marked and dash-

dotted line), the purely rational Krylov subspace K0,n
γ (AN , y

q
0,N ) (star-marked and dashed line) and the extended

Krylov subspace Kq,n−q
γ (AN , y

q
0,N ) (circle-marked and solid line) for N = 1046 529 and initial values y

q
0,N that

are discretized initial values of data y
q
0
∈ D(Aq) but y

q
0
6∈ D(Aq+1) for q = 2, 4.

7.2. Discontinuous Galerkin discretization. To check the relevance of our analysis for
less regular domains, we use normalized Maxwell’s equations in transverse magnetic form

∂Hx

∂t
= −∂Ez

∂y

∂Hy

∂t
=

∂Ez

∂x
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
,

as used in Hesthaven and Warburton [23] on the domain Ω shown in Figure 7.7 with a perfectly
electrically conducting boundary. We follow the presentation in [23] closely and use the free
Matlab-codes that accompany the book in order to build the stiffness matrix ÃN and the mass
matrix MN in equation (7.1) for our experiment. Since we use the central flux in the discontinuous
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Fig. 7.5. Plot of error vs. time for the standard Krylov subspace Kn,0
γ (AN , y

q
0,N ) (cross-marked and dash-

dotted line), the purely rational Krylov subspace K0,n
γ (AN , y

q
0,N ) (star-marked and dashed line) and the extended

Krylov subspace Kq,n−q
γ (AN , y

q
0,N ) (circle-marked and solid line) for N = 65 025 and initial value y6

0,N which is

the discretized initial value of data y60 ∈ D(A6) but y60 6∈ D(A7) for τ = 0.001 on the left-hand side and τ = 10 on
the right-hand side.
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Fig. 7.6. Plot of error vs. dimension of the Krylov space for the standard Krylov subspace Kn,0
γ (AN , y

q
0,N )

(cross-marked and dash-dotted line) and of ‖eτAny
q
0,N − eτAn−1y

q
0,N‖MN

(square-marked and solid line) as an

indicator of smoothness in the standard Krylov subspace method for N = 1046 529 and initial values y
q
0,N

that are

discretized initial values of data y
q
0
∈ D(Aq) but y

q
0
6∈ D(Aq+1) for q = 2, 4.

Galerkin discretization, the eigenvalues of the stiffness matrix are on the imaginary axis, reflecting
the hyperbolic nature of the problem. As initial condition, we use a peak in a square in the domain
Ω for Ez and zero for Hx and Hy that we evolve with scaled time 1 with the equations and that
leads to the initial values shown in Figure 7.8. The chosen peak is in D(A3) for the semigroup.
Now, we use three grids, one coarser (66 nodes) as the grid shown in Figure 7.7 with 211 nodes
and one finer as the grid shown in Figure 7.7 with 935 nodes. The meshes have been generated by
DistMesh (cf. [32]). We also use higher order elements on the finer grids. More exactly, first order
elements on the coarsest grid, fourth order elements on the second grid, and six order elements
on the third and finest grid. As a reference solution, we have used the solution provided by the
codes of Hesthaven and Warburton for a small step size. In Figure 7.9, we show the error of our
three Krylov subspace methods for the coarsest and the finest grid for a time step τ = 0.1. For
the small discretization matrix that belongs to the coarsest grid, the superlinear convergence of
the standard Krylov method can be clearly seen and the smoothness of the data does not seem
to be important. On the finest grid where the matrix is a 139 956 × 139 956−matrix, and for
the time-evolved initial value in D(A3) on a non-standard domain, the methods behave exactly
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Fig. 7.7. Second mesh with 211 nodes.

Fig. 7.8. Initial values Hx (top left), Hy (top right), and Ez (bottom).

according to the theory described in this work.

8. Conclusion. We have analyzed the convergence of approximations to the ϕ−functions
by the extended Krylov subspace method, where the size of the polynomial part of the extended
Krylov subspace is restricted according to the smoothness of the initial data. We could prove a
sublinear convergence rate of the extended Krylov subspace method for the continuous operator.
The convergence rate depends on the smoothness of the initial data. The analysis also shows a
grid-independent convergence for the discretized operator. Furthermore, we suggested possible
choices of the parameter γ that improve the convergence rate for the extended Krylov subspace as
well as for the purely rational Krylov subspace. The relevance of the analysis has been illustrated
by several evolution equations and for different discretizations.
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[20] S. Güttel. Rational Krylov Methods for Operator Functions, PhD thesis, TU Bergakademie Freiberg, Ger-
many, 2010.
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