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Abstract Bayesian models are currently a dominant frame-
work for describing human information processing. However,
it is not clear yet how major tenets of this framework can be
translated to brain processes. In this study, we addressed the
neural underpinning of prior probability and its effect on an-
ticipatory activity in category-specific areas. Before fMRI
scanning, participants were trained in two behavioral sessions
to learn the prior probability and correct order of visual events
within a sequence. The events of each sequence included two
different presentations of a geometric shape and one picture of
either a house or a face, which appeared with either a high or a
low likelihood. Each sequence was preceded by a cue that
gave participants probabilistic information about which items
to expect next. This allowed examining cue-related anticipa-
tory modulation of activity as a function of prior probability in
category-speci f ic areas ( fusi form face area and
parahippocampal place area). Our findings show that activity
in the fusiform face area was higher when faces had a higher
prior probability. The finding of a difference between levels of
expectations is consistent with graded, probabilistically mod-
ulated activity, but the data do not rule out the alternative
explanation of a categorical neural response. Importantly,
these differences were only visible during anticipation, and
vanished at the time of stimulus presentation, calling for a

functional distinction when considering the effects of prior
probability. Finally, there were no anticipatory effects for
houses in the parahippocampal place area, suggesting sensi-
tivity to stimulus material when looking at effects of
prediction.
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Introduction

Being able to estimate and take into account the certainty of
evidence is important for optimal decision-making and behav-
ior. In the past decade, Bayesian models have predominantly
been used to describe and explain a vast amount of behavioral
(e.g., Ernst & Banks, 2002; Körding & Wolpert, 2004;
Tassinari, Hudson, & Landy, 2006) and imaging (e.g.,
Vilares, Howard, Fernandes, Gottfried & Kording, 2012) data
pertaining to the role of probability in perception and action.
In Bayesian models, two sources of evidence are relevant in
order to infer the posterior probability of sensory data: prior
probability and likelihood. For example, to decide whether the
sensory data are consistent with a white rabbit in a befogged
top hat, both the prior probability of a white rabbit appearing
in a top hat and the current sensory evidence, the likelihood,
have to be taken into account. The basic premise of such
models is that the brain represents information probabilistical-
ly (Knill & Pouget, 2004). At the level of large-scale net-
works, modulations as a function of probability of occurrence
have been investigated in a number of reinforcement learning
studies, where a reward is delivered only with certain likeli-
hood. For example, Abler et al. (2006) used a simple delayed
incentive task with a discrete range of reward probabilities.
During the anticipation period of the task, activation in the
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nucleus accumbens increased linearly with the probability of a
given reward. Similarly, Knutson et al. (2005) found that ac-
tivity of the mesial prefrontal cortex increased proportionally
to gain probability. However, brain areas identified with rein-
forcement learning may rather mediate processes such as
stimulus-independent value expectations. To probe for neural
correlates of stimulus-specific prior probabilities, the task has
to tap into more perceptual processes. In a study by Vilares
et al. (2012), participants had to estimate the position of a
hidden visual dot. At the beginning of each trial, they received
information about its likely position in the form of surround-
ing dots, manipulating its likelihood. In addition, participants
could obtain the prior probability of the target position from
the distribution of previous target positions. The authors found
that likelihood modulated higher-level sensory regions (bilat-
eral regions of superior occipital visual cortex), while prior
probability modulated activity in the putamen, amygdala,
insula, and orbitofrontal cortex. The regions they identified
as related to prior probability are commonly not related to
specifically represent stimulus information. Of note is that
while the position of the target could change, its identity al-
ways remained the same (i.e., a dot). It remains possible that
prior probability directly influences activity in regions where
the actual stimulus is represented by increasing overall base-
line activity. Such modulation could serve as a Bneural
weight^ of prior probability, and contribute to the computation
of the posterior probability in sensory-specific regions. To
investigate this option, one would have to manipulate prior
probability of stimulus information and probe for subsequent
modulations in stimulus-specific regions. In a study by
Summerfield and Koechlin (2008), participants made percep-
tual decisions and were either biased in favor of a single visual
alternative or had no prior expectation. The authors reported
increased activity in extrastriate regions in the bias condition,
indicating the pre-activation of the representation of the stim-
ulus. However, the prior probability was not manipulated in
this study; rather, participants were either biased in favor of
one alternative or not.

We aimed to examine whether prior probabilities directly
modulate sensory activity during anticipation. Specifically, we
asked whether the BOLD signal can be modulated as a func-
tion of prior probability in brain regions that are assumed to
represent category stimulus information. There is a lot of ev-
idence that the fusiform face area (FFA) is specialized for
processing faces (Kanwisher, McDermott, & Chun, 1997)
and the parahippocampal place area (PPA) for processing
scenes and buildings (Epstein & Kanwisher, 1998). Not only
have these areas been shown to be sensitive to the respective
categories but both imagery and expectation of faces and
houses lead to activity increases in FFA and PPA, respectively
(Esterman&Yantis, 2009; Ishai, Ungerleider, &Haxby, 2000;
O’Craven & Kanwisher, 2000; Puri, Wojciulik & Ranganath,
2009). Egner et al. (2010) capitalized upon those findings and

used a task in which a cue was followed by face stimuli that
occurred with a high, medium, or low probability. The authors
examined stimulus-related activity in the FFA as a function of
face expectation (face was expected and shown), surprise
(face was expected but house was shown), and the interaction
between expectation and surprise. The authors found a signif-
icant interaction: Under high face expectation, there was no
difference in FFA activity when faces or houses were shown.
Interestingly, they found nomain effect of expectation in FFA,
i.e., a modulation as a function of prior probability. Taken
together, these data do not exclude the interpretation that an-
ticipation was binary, i.e., an expectation of faces in the high,
but not in the low and medium condition. A possible expla-
nation is that the response at stimulation obscures differences
between prior probabilities.While it is possible that less neural
resources are allocated to events with a low prior probability
during anticipation, such sensory events may elicit a higher
prediction error at stimulation, which has been shown to
increase the BOLD signal, for example, in FFA (de
Gardelle, Waczuzk, Egner, & Summerfield, 2013; Egner,
Monti, & Summerfield, 2010). Conversely, events with a high
prior probability might elicit a higher baseline shift during
anticipation, but a lower BOLD response at stimulation, due
to a lower prediction error. Therefore, a second goal of this
study was to directly distinguish between anticipation and
stimulation, and address whether prior probability modulates
anticipatory BOLD response, i.e., before stimulus onset. We
hypothesized that we would find a higher anticipatory BOLD
response if the faces had a high prior probability. The same
pattern was expected for PPA and house stimuli. In addition,
in a more exploratory fashion, we probed for temporal dis-
tance effects, i.e., whether an anticipatory BOLD signal would
be stronger if a stimulus occurred earlier rather than later in
time.

Material and methods

Participants

Twenty volunteers were recruited from the Max Planck
Institute for Human Cognitive and Brain Science community
and provided written informed consent. They were financially
compensated for their participation. All participants had nor-
mal or corrected-to-normal vision. The study was carried out
according to the guidelines approved by the Ethics Committee
of the University of Leipzig. One participant was not success-
ful in the memory test of the behavioral training session, and
another participant was not able to attend the functional mag-
netic resonance imaging (fMRI) sessions. We therefore ex-
cluded both from the study sample. The remaining 18 volun-
teers participated in four sessions, each lasting approximately
1 hour (see BProcedure^ section). For two more participants,
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behavioral data from one of two fMRI sessions were either not
recorded or incomplete (less than 10 % responses). The anal-
yses were performed with the remaining 16 participants.

Stimuli

Ten different visual sequences were used in the present study.
Each sequence consisted of a geometric pattern, a textured
rectangular, and either a picture of a face or a house, with
the order of presentation varying between conditions (see
below).

Each sequence was preceded by a cue, which was one of
the letters A, B, C, D, or E. Each of these five cues was
associated with two different sequences; one of the sequences
contained a picture of a face, and the other one contained a
picture of a house. Altogether, the set consisted of ten different
sequences. The cues differed in the probability with which
they were associated with a face or a house picture, either with
a high (70 %) or a low (30 %) probability (see Fig. 1). In
addition, the sequences differed in the position of the face
and the house (either on position 1 or position 3). The two
sequences associated with the letter E were introduced as a
baseline for comparison. They contained neither a picture of a
face nor a house, but a picture of a globe (70 %) and a picture
of a bag (30 %). The cue allowed participants to anticipate the
complete sequence (see BProcedure^ section).

Note that we excluded potential effects of familiarity and,
thereby, differences as a function of memory retrieval for each
sequence type by re-using the same stimuli/sequence for both
face [house] low and high probability conditions (A and C,
and B and D, respectively). Thereby, we avoided anticipatory
BOLD modulation from being contaminated by factors other
than prior probability or temporal distance.

Design

Figure 1 shows the design of the study.

Procedure

Training sessions before the scanning experiment There
were two behavioral training sessions, separated by 3 days.
In the first training session, participants were shown all ten
sequences and their associated cues (see BStimuli^, Fig. 1) on
a piece of paper and were given 15 min to memorize them.
They were instructed that they will later view these sequences
on a PC and that they will have to detect an order deviant, i.e.,
a change in the memorized position of the picture within the
sequence.

After the initial acquaintance with and memorization of the
stimulus material, participants started a computer-based train-
ing, during which they were exposed to sequences. Some of
these sequences were shownwith high probability (70% of all

trials) and some sequences were shown with low probability
(30 % of all trials). The exact trial structure was as follows:
One of the five possible cues (A–E) was presented on the
screen for duration of 1,000 ms. After a variable delay ( 1,
500, 2,000, and 2,500 ms), three pictures were presented con-
secutively, each for 250 ms, with an inter-stimulus interval of
250 ms. The task structure is illustrated in Fig. 2.1 The ratio-
nale was that participants would store the associative strength
between cue and visual events after several exposures, and, in
addition, that they would anticipate the sequence order with
cue presentation to be better prepared to detect a deviant that
occurred in 10 % of all trials. No feedback was given. The
sequence task lasted 32.2 min per session.

After 3 days, participants returned for a second training
session. At the beginning of this session, they were given
the sequence events (cue plus pictures) on single cards and
were asked to put them in the right order and to indicate which
sequence occurred more often (high vs. low). It was important
that participants were aware of probabilistic contingencies to
avoid variance due to implicit versus explicit formation of
expectations. Only if participants were successful (i.e., no er-
ror) in this memory evaluation did they start with the second
PC training, which was identical to the training of session 1.
For the training sessions, we did not emphasize response
speed because we primarily wanted to ensure that participants
learned the correct order of each sequence and internalized
different probability distributions. In contrast, we emphasized
speed during the fMRI sessions to encourage them to use the
cue to anticipate the sequence to be readily prepared for the
quick detection of an order deviant. Participants were in-
formed after the second training session that speed was to be
emphasized during the scanning session.

The training sessions were presented on a 19-in computer
screen with the Presentation software version 14.7
(Neurobehavioral Systems, Inc., Berkley, CA, USA).

fMRI session Two days after the second behavioral training,
participants returned for the fMRI session. The scanning ses-
sion consisted of three parts: memory test, sequence task, and
a localizer scan to identify regions related to processing faces
(FFA) and houses (PPA).

At the beginning, participants had to perform the memory
test again. Only upon successful completion of the memory
test (i.e., no errors) did participants continue with the scanning
procedure. If participants had just one error, he/she was ex-
cluded from further testing. Following this procedure, one
participant was excluded (see BParticipants^ section).

1 Note that there was a difference in the delay between cue and sequences
for the behavioral training (1,500, 2,000, 2,500 ms) and the fMRI session
(6,000, 7,000, 8,000 ms) to be able to probe for an event-related BOLD
response in the latter.

Cogn Affect Behav Neurosci



Participants then proceeded with the task, which was identi-
cal to the training session, except that the ISI, i.e., the delay
between the cue and the first sequence event, was longer (6,
000, 7,000, 8,000 ms). We chose a longer delay period to make
sure participants would have sufficient time to anticipate the
subsequent sequence, and to be able to analyze the fMRI data
in an event-related fashion. It is important to note that we delib-
erately chose an unpredictable onset of stimulation to prevent
participants anticipating the temporal onset of the first picture in
the sequence, thereby confounding the BOLD response with
temporal expectation. Response speed was emphasized to en-
courage participants to anticipate the sequence for a quick de-
tection of an order deviant. The deviants were randomly distrib-
uted across the experiment (10%). Therefore, it was not possible
to anticipate whether the subsequent sequence would contain an
order deviant or not. Accordingly, the exact button press could

not be anticipated, thus preventing BOLD activity to be con-
founded with the anticipatory specification of a motor response.

For the subsequent localizer task, participants viewed seri-
ally presented pictures of faces, outdoor scenes, or
checkerboard-like grid stimuli, and indicated with a speeded
choice response whether the presented stimulus matched the
previous one (continuous 1-back task). In each block, 11 stim-
uli from one category were presented for 1 s, separated by a 1-
s inter-stimulus-interval (block length: 22 s). Within each
block, there were five matches and five non-matches. There
were six blocks for each category (faces, scenes, checker-
boards), separated by 6-s inter-block intervals. The order of
stimuli within each block and the order of blocks were pseu-
do-randomized, with the exception of every fourth block,
which was a 22-s baseline block without stimulation. The
localizer lasted 10.4 min, and was conducted in each session.

Fig. 1 Stimuli and conditions used in the experiment. Participants
learned visual sequences with different pictures. The pictures were
presented serially, starting with a cue (letter). Each letter cue was
associated with two sequences: (a) a sequence with high face [house]

prior probability [70 %] and (b) a sequence with low face [house] prior
probability [30 %]. The face [house] picture was presented either on
position 1 (short temporal distance) or position 3 of the sequence (long
temporal distance)

Fig. 2 Order deviant detection task. Participants had to detect an order
deviant within the sequence, i.e., a picture presented at an incorrect
position. The correct order of pictures in the sequence was learnt

beforehand. They had to react as fast as possible to a deviant or to no
deviant, i.e., correct order. A deviant occurred in 10 % of all trials. The
inter-stimulus interval was jittered between 6,000, 7,000, and 8,000 ms
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During the fMRI session, participants lay inside the scan-
ner and viewed the stimuli through a mirror projected onto a
back-projection screen by an LCD projector. Stimulus presen-
tation and behavioral response collection were controlled by
Presentation software (Neurobehavioral Systems, Inc.). The
fMRI session was split into two consecutive sessions in order
to keep each session at an endurable length.

fMRI data recording and analysis Images were collected
with a 3 T Magnetom TimTrio MRI scanner system
(Siemens Medical Systems, Erlangen, Germany) using a 12-
channel head coil. Thirty axial slices were collected parallel to
the AC–PC plane using a gradient-echo EPI sequence with a
TE 28 ms, flip angle 90°, TR 2,000 ms, acquisition bandwidth
2232 Hz/px, with 3 mm3 and inter-slice gap of 1 mm. The
matrix acquired was 64 × 64 with a field of view (FOV) of
19.2 cm. The experiment was split into two sessions, each
consisting of 971 EPI volumes. High-resolution T1-weighted
MR scans of the participants were acquired beforehand and
were part of the Max Planck Institute for Human Cognitive
and Brain Science database.

fMRI data were analyzed using Statistical Parametric
Mapping (SPM 12b; Wel lcomeTrus t Cent re for
Neuroimaging, UCL). Data were preprocessed including
correcting for differences in slice acquisition as well as for
motion and image distortions (based on separately acquired
fieldmaps of the local static magnetic field). Functional data
were normalized to the Montreal Neurological Institute tem-
plate, using the unified segmentation approach (Ashburner &
Friston, 2005) and spatially smoothed with a Gaussian kernel
of 8-mm full width at half maximum (FWHM). In addition, a
high-pass filter was applied using cutoff frequency of
1/128 Hz. The intra-individual statistical analysis was based
on a least-squares estimation using the general linear model
taking the non-sphericity into account.

The model of the sequence task included regressors
coding for the onsets and durations of the following
phases of each trial: cue, delay, pictures, and response.
The focus of the present study was the delay period fol-
lowing the cue before onset of the sequence, that is, the
period when participants were able to anticipate an up-
coming sequence. To examine activity as a function of
prior probability and temporal distance of the category-
specific stimuli, the delay period was separated into five
different regressors, each coding for one of five possible
cues (A, B, C, D, and cue E). Cue-condition E (only
containing pictures of a globe and a bag) served as a
high-level baseline, allowing controlling for global effects
unspecific to category-anticipation effects in FFA and
PPA. Therefore, this cue was subtracted from others cues,
and the contrast estimates of the remaining regressors
were later analyzed under a 2 × 2 design (prior

probability [high,low], temporal distance [short,long]) in
the region-of-interest (ROI) analysis.

The localizer task was analyzed in a comparable fashion,
but implementing a block design and using a high-pass filter
of 1/180 s. Face-sensitive areas were identified by contrasting
faces versus scenes using a liberal threshold of p < 0.001
(uncorrected). A corresponding analysis was done for scene-
sensitive areas, where we contrasted scenes versus faces. If for
a participant it was not possible to find clear activations in
these ROIs, the threshold was lowered. If still no maximum
was identifiable, the mean coordinates derived from all other
participants were used. For 12 participants, one or more out of
four coordinates (left and right FFA and PPA, respectively)
could only be identified with lowered thresholds. For three
participants, coordinates were partially replaced by the group
mean (right FFA: 42/-50/-18, left FFA: -39/-51/-18, right PPA:
28/-46/-9, left PPA: -27/-48/-10). We used these ROIs (size:
one voxel) to assess the difference between the experimental
conditions. All ROI analyses were performed using the rfxplot
toolbox (Gläscher, 2009). The resulting contrast estimates
were analyzed with an ANOVA using SPSS.

Results

Behavioral

The accuracy was at ceiling in both sessions; therefore, we did
not subject the data to inferential statistics. In fMRI session 1,
average performance was 95.2 % correct (SD = 6.31 %) for
sequences with a high prior probability, and 95.4 % correct on
average (SD = 5.52 %) for sequences with a low prior prob-
ability. Likewise, during the fMRI session 2, overall perfor-
mance was at ceiling both for sequences with a high (92.3 %
correct on average, SD = 11.8 %) and low (93.4 % correct on
average, SD = 10.63 %) prior probability.

Reaction times (RTs) were fast on average (fMRI session 1:
high probability: 230 ms; SD: 44.3 ms, low probability:
242.2 ms; SD: 46.4 ms; fMRI session 2: high probability:
251.2 ms; SD: 36.3 ms; low probability: 251 ms; SD:
34.1 ms) and did not differ between high and low probability
conditions (t(15) = 0.016, p = 0.987).

Note that the study was not designed as a RT experiment.
The rationale for our study was to teach associative strengths
between cues and sensory events by mere exposure,2 and the
order deviant task was conceptualized as a cover-task towards
this end. We assumed that independent from the functional
requirement of the task, the prior probabilities of stimuli

2 Although participants were eventually informed that there were differ-
ent frequencies of specific sequences (by asking them which sequence
occurs more often in the second training session), they were not informed
about the exact amount of exposure (70 % vs. 30 %).
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would nevertheless be learned, stored, and retrieved according
to their likelihood eventually. Due to this emphasis in the
design, the analysis of RT data suffers from technical con-
straints. The picture presentation and the subsequent interstim-
ulus interval (ISI) were both very short (each 250 ms), leaving
little time to react before the onset of the next stimulus.
Presentation software logs the response to the current event,
and therefore, it may be that a (too late) response to picture 1
[2] is logged to the onset of the subsequent picture (i.e., picture
2 [3]), rendering the response latency artificially low. In prin-
ciple, this problem could be solved by analyzing only those
remaining trials in which participants responded to the correct
picture position. However, the problem is that although speed
was emphasized, some participants already made their deci-
sion about the correctness of the order with picture 2 (as here
the third position is already determined) whereas other (more
uncertain) participants only made their button press once the
last picture 3 was shown. Therefore, RT analysis suffers from
certain limitations.

Whole-brain analysis

The focus of the present study was to examine modulation
of activity in two category-specific areas as a function of
prior probability. It is important to note that the only differ-
ence between the experimental conditions was the prior
probability (high vs. low) and the temporal distance of faces
and houses in the sequence (early vs. late) while stimuli and
task were identical across conditions. Therefore, a whole-
brain analysis would necessarily result only in activation
differences in regions that represent and process prior prob-
abilities or temporal onset of upcoming sensory events.
However, the whole-brain analysis showed no significant
clusters that survived family-wise error correction for the
difference between cue A and cue C (high [low] vs. low
[high] prior probability of faces [houses]), cue A and cue
B (short vs. long temporal distance of faces), and cue C and
cue D (short vs. long temporal distance of houses). As the
location of FFA and PPA shows significant variation be-
tween participants, we here focused on a ROI analysis in
these regions to probe for differences as a function of prior
probability and temporal distance, based on individually de-
termined coordinates extracted from the localizer task.

Region-of-interest analysis

There was a stronger signal during anticipation in the FFA if
faces had a high as compared to a low prior probability (left:
F(1,15) = 6.8, p = 0.020; right: F(1,15) = 7.42, p = 0.016;
ANOVA repeated-measures). There was no main effect of
temporal distance (left: F(1,15) = 0.2, p = 0.6665; right:
F(1,15) = 0.19, p = 0.669). The interaction between prior
probability and temporal distance was significant for the left

(F(1,15) = 9.83, p = 0.007) but not for the right FFA (F(1,15) =
0.71, p = 0.412). We found no evidence for any modulations
in PPA for house stimuli as a function of prior probability (left:
F(1,15) = 0.8, p = 0.387; right: F(1,15) = 3.92, p = 0.067) or
temporal distance (left: F(1,15) = 1.41, p = 0.253; right:
F(1,15) = 0.544, p = 0.472). For illustration of the results see
Fig. 3.

Note that to truly reflect sensitivity to prior probability, a
neural correlate should show activation that parametrically
varies with the degree of expectation. Therefore, in a second
step, we explicitly compared activity related to cue E (no face
expectation) to low face expectation (cue C) and high face
expectation (cue A). In accordance with the 2 × 2 ANOVA
model, paired t-tests revealed a significant difference in FFA
between high versus low prior probability of faces (cue A vs.
C; right: t(15) = 2.7, p = 0.018; left: t(15) = 3.3, p = 0.005) and
between high prior probability and no face expectation (cue A
vs. E; right: t(15) = 2.3, p = 0.040; left: t(15) = 2.5, p = 0.022).
However, there was no statistically significant difference be-
tween low prior probability and no face expectation (cue C vs.
E; right: t(15) = 0.1, p = 0.916; left: t(15) = 0.03, p = 0.974).

For the PPA, we again found no significant difference be-
tween cues associated with high versus low prior probability
of houses in right and left PPA (cue Avs. C; right: t(15) = -1.6,
p = 0.125; left: t(15) = -0.3, p = 0.779). There was also no
significant difference between high prior probability and no
house expectation (cue C vs. E; right: t(15) = -0.5, p = 0.602;
left: t(15) = -1.4, p = 0.190), and low prior probability and no
house expectation (cue A vs. E; right: t(15) = -1.4, p = 0.171;
left: t(15) = -01.6, p = 0.141).

Analogous to previous studies, we also looked at activity in
FFA and PPA at the time of visual stimulation as a function of
prior probability of stimuli. To this end, we set up an addition-
al model including ten different regressors that coded for the
onset of the sequence as a function of the prior probability of
the picture and the actual picture shown in this trial. For ex-
ample, for faces, when cue A was shown, there were two
different regressors for the onset of this sequence: (a) a regres-
sor with a high prior probability of faces, and a face shown at
presentation, and (b) a regressor with a high prior probability
of faces, and a face not shown at presentation. We restrained
our analysis to those two sequences where the first picture was
a face or a house (i.e., cue A and C), because all the following
events were confounded with participants’ responses, as the
task was primarily designed to analyze the anticipation period.
We then probed for differences in right and left FFA [PPA]
when a face [house] was presented and had a high prior prob-
ability (cue A [C}) versus when a face was presented and had
a low prior probability (cue C [A}). The difference in the FFA
was not significant (right: t(15) = .688, p = 0.502; left:
t(15) = 0.33, p = 0.974). The data also did not show a signif-
icant difference in the PPA (right: t(15) = -.050, p = 0.961; left:
t(15) = -.068, p = 0.947).
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Discussion

Awealth of studies leave little doubt that expectations have an
effect on stimulus-evoked activity (e.g., Alink et al., 2010;
Den Ouden et al., 2009; Kok et al., 2012a, 2013; Todorovic
et al., 2011). However, the question of whether this activity is
modulated by prior probability during anticipation remained
open.We designed a study that aimed to fill this gap and found
that activity in FFA, a region specialized for face processing,
was modulated by the prior probability of faces during antic-
ipation. While we found a significant difference between high
and low prior probability, a comparison between low prior
probability (cue C) and no face expectation (cue E) revealed
no difference. These results could in principle indicate that the
difference between high and low prior probabilities is driven
by a binary effect of expectation, that is, only anticipation of
the highly likely sequence and its associated visual events.
However, it has to be noted that the no face expectation con-
dition, i.e., activity related to cue E, was not ideally suited as a
proper baseline. First, it is known that FFA is not only activat-
ed by faces, but can be modulated by perceptual expertise
with, for instance, cars and birds (Gauthier et al., 2002) or
novel 3D objects (Gauthier and Tarr, 2002; Wong et al.,
2009). Participants in the current study were exposed to the
two pictures that were associated with letter cue E over an
extended period of four sessions. It is therefore possible that
this led to some sort of perceptual expertise and, accordingly,
to elevated activity in FFA, blurring differences with the low
prior probability condition. Furthermore, errors in both condi-
tions (high and low prior probability) did not differ and were

low, supporting the notion that participants did prepare for
both events. Certainly, low error rates could in principle also
indicate that the task was easy and did not require any prepa-
ration. However, if this was true, one would either expect (a) a
general, non-specific face expectation for all cues associated
with faces – in this case, activity linked to cues with low prior
probability should be different from cues linked to no face
expectation, or (b) no face expectation at all – in this case,
one would not expect a difference between high prior proba-
bility and no face expectation. Furthermore, an informal post-
task report collected from the participants revealed a tendency
to anticipate both the high and low likely sequence during the
extended delay period. Altogether, this renders the option that
expectation was entirely binary unlikely.

We did not find modulation of activity by prior probability
of houses in the PPA. Similarly, Summerfield et al. (2006) did
not find evidence for top-down modulation of PPAwhen they
investigated how category-specific visual regions respond
during erroneous perceptual judgments. In their study, partic-
ipants had to discriminate between degraded, noisy pictures of
houses and faces. The FFA was activated when a house was
misperceived as a face, but the PPA was not activated when
faces were misperceived as houses. The authors argued that
the FFA might be strongly modulated by a top-down expec-
tation that a face will be presented, explaining input as corre-
sponding to a face stimulus even if a face stimulus was not
present. While such a top-down expectation of faces might be
facilitated by the overall, highly predictable structure of a face,
natural scenes as well as buildings/houses entail larger vari-
ability, possibly making them less suited candidates for

Fig. 3 Region-of-interest analysis. Contrast estimates as a function of
prior probability and temporal distance in fusiform face area (top) and
parahippocampal place area (bottom), during anticipation (left) and
stimulation (right). The color code used is: dark blue = high prior

probability, short temporal distance; light blue = high prior probability,
long temporal distance; dark orange = low prior probability, short
temporal distance; light orange = low prior probability, long temporal
distance
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predictive processing. However, in our design, there were on-
ly two house pictures, rendering such an explanation less like-
ly. An alternative explanation could be linked to the fact that
the PPA is activated by mere associations (Aminoff et al.,
2007; Bar et al., 2008). It is possible that the long ISIs during
anticipation afforded general associative processes, which
lead to PPA activation, and this in turn might have rendered
the difference among high and low prior probability in PPA
insignificant. Along these lines, PPA activity could have also
been elevated by no house expectation (cue E), simply by
associating the visual events of the sequence ( globe and the
bag picture) with the cue, or with each other. Finally, there is
evidence that the Bdefault network^ overlaps with the network
activated by contextual associations, which are assumed to
provide the building blocks for predictions (Bar, 2007).
Thus, the long ITIs serving as an implicit baseline in our
designmight have been confoundedwith PPA activity as well.

Vossel, Thiel, and Fink (2006) indirectly tested the influ-
ence of prior probability by manipulating cue validity (high
vs. low), and probed for neural activation patterns in a visual
target detection task. Data revealed higher activation of right
inferior parietal and right frontal cortex for high compared
with low cue validity. However, both parietal and frontal areas
have been linked to the Bsource^ of attentional processing
(Corbetta et al., 1998). Generally, sources refer to brain sys-
tems that send top-down signals to sensory areas, whereas
Bsites^ are assumed to be those target regions that are influ-
enced by these top-down signals (Kastner & Ungerleider,
2000; Saalmann et al., 2007). A few studies have directly
investigated anticipatory activity in such site regions. Puri
et al. (2009) reported that baseline activity in FFAwas higher
during expectation of a face versus expectation of a house and
counter-likewise for PPA, indicating that these areas are gen-
erally sensitive to expectation. However, the important differ-
ence from our study is that these authors looked at FFA activ-
ity when either houses or faces were expected, whereas we
examined modulations in this region when only faces were
expected (with a high vs. a low prior probability). In a simi-
larly relevant study by Esterman and Yantis (2009), partici-
pants had to detect a face or a house that gradually emerged
from noise, and were cued to either faces or houses. The au-
thors found better performance and higher baseline shifts in
FFA and PPAwhen participants were biased towards a specif-
ic category. However, their cue was always 100 % valid, i.e.,
activity was compared between conditions in which partici-
pants were either biased towards a category or not at all.
Vilares et al. (2012) directly investigated the question of dif-
ferential activation of the BOLD signal as a function of prior
probability. However, the regions identified in that study, such
as the putamen, the amygdala, the insula, and the orbitofrontal
cortex, are all related to more general evaluation processes,
and much less linked to the representation of an actual stimu-
lus or category-specific information. Our motivation was to

probe for modulations as a function of prior probabilities in
regions that are assumed to actually represent and process
sensory information. This comparison was not possible in
the design of Vilares and colleagues (2012), as the authors
compared conditions in which the identity of sensory infor-
mation did not change, just its spatial position – the target´s
identity was always a dot. Although they did find modulation
of higher-level visual areas as a function of likelihood, we here
were primarily interested in whether such regions would also
be modulated as a function of prior probability. Egner et al.
(2010) manipulated the prior probability that a face will be
shown (low, medium, high), and examined stimulus-related
activity when a face was shown (main effect of expectation),
a house was shown (main effect of surprise), and the interac-
tion hereof. They found that in conditions with a high face
expectation, but with a house stimulus shown, the activity in
FFAwas akin to the activity when a face was actually shown.
This, however, could also mean that subjects had an expecta-
tion of a face in the high face expectation (vs. having no
expectation of a face in the low andmedium condition), which
was responsible for the increase in FFA activity. Such an in-
terpretation would be in line with a study that demonstrated
FFA activity when a house is misperceived as a face
(Summerfield et al., 2006). Possibly, the authors would have
found a main effect of expectation had they looked at neural
responses during anticipation rather than at stimulation, be-
cause neural response at stimulation may be a mixture of
two processes – computation of prior probability and predic-
tion error. A high prior probability may enforce the allocation
of more resources in advance, and an increase in the BOLD
response. In contrast, a low prior probability may lead to less
resources allocated in advance, but a higher prediction error,
which however also increases the BOLD response. Indeed, we
did not find a main effect of prior probability when analyzing
activity at the time of stimulus presentation. In addition to
demonstrating the influence of prior probabilities on anticipa-
tory neural signals, our result calls for a careful distinction
between anticipation and stimulation when investigating ef-
fects of expectation.

We also probed for differences in the anticipatory BOLD
response as a function of temporal distance of stimuli in a
series of upcoming visual events. We hypothesized a larger
response for events that were about to occur earlier in time. In
contrast to our expectation, we did not find that the anticipa-
tory BOLD signal was modulated as a function of the tempo-
ral onset of faces in a sequence. It is possible that faces con-
stitute a stimulus category with a strong social significance
and if likely to occur, may therefore be anticipated indepen-
dent of whether they are about to appear a few seconds earlier
rather than later. Another explanation is related to the slug-
gishness and long latency of the BOLD signal. It is conceiv-
able that early signals were stronger for faces that were about
to appear at the beginning of the sequence, but that this
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difference was rapidly overshadowed by anticipation of faces
occurring later in time. Future studies may address such ques-
tions with methods that offer better temporal resolution such
as electroencephalography or magnetoenceohalography.

It should be noted that the processes that underlie these and
related effects of preparatory activity can be interpreted with
or linked to different psychological constructs. For example,
Peelen and Kastner (2011) investigated anticipatory activity
when preparing for a certain object category (people vs. cars)
and related their findings to attention. In an fMRI study by
Kok et al. (2014), an auditory cue predicted the orientation of
a subsequently presented grating stimulus. The pattern of ac-
tivity evoked with this cue was similar to that pattern evoked
by the actual stimulus in primary visual cortex, and the authors
interpreted their findings as reflecting expectations. Another
construct that is presumably linked to anticipation is imagery.
Stokes et al. (2009) asked participants to imagine either X or
O, and revealed with fMRI that the pattern of activation re-
sembles that of actual visual stimulation. In the informal post-
task debriefing, our participants also reported that that they
Bimagined^ upcoming pictures. It is possible that predictions
or expectations that entail conscious awareness may include
active imagery and simulation of upcoming events. However,
constructs such as Bimagery^ are generally too vague and
unspecific to be discussed as alternative candidate mecha-
nisms. Attention, on the other hand, is a construct that has
been more specified and there is an ongoing debate about
how attention and expectation are linked (Kok et al., 2012b;
Summerfield & Egner, 2009). A study utilizing signal detec-
tion analysis suggests that attention affects the actual sensitiv-
ity for visual input, whereas expectation adjusts the response
criterion (Wyart et al., 2012). Clearly, the current design does
not allow disentangling attention to and expectation of up-
coming information.We were primarily interested in the ques-
tion of whether prior probability would modulate anticipatory
activity in category-specific regions, and our results suggest
that a probability-sensitive baseline shift in FFA might serve
as a Bneural bias^ towards the more likely category interpre-
tation. Our results leave open the question of which psycho-
logical process actually subserves this bias. Differentiating
among these constructs is certainly an important venue for
future research, as the Bayesian framework is mute to the
psychological processes that underlie the computation of and
comparison between prior, likelihood, and posterior probabil-
ities (Jones & Love, 2011).
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