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Abstract— Classification of breast lesions is clinically most
relevant for breast radiologists and pathologists for early breast
cancer detection. This task is not easy due to poor ultrasound
resolution and large amount of patient data size. This paper
proposes a five step novel and automatic methodology for breast
lesion classification in 3-D ultrasound images. The first three
steps yield an accurate segmentation of the breast lesions based
on the combination of (a) novel non-extensive entropy, (b)
morphologic cleaning and (c) accurate region and boundary
extraction in level set framework. Segmented lesions then
undergo five feature extractions consisting of: area, circularity,
protuberance, homogeneity, and acoustic shadow. These breast
lesion features are then input to a Support Vector Machine
(SVM)-based classifier that classifies the breast lesions between
malignant and benign types. SVM utilizes B-spline as a kernel
in its framework. Using a data base of 250 breast ultrasound
images (100 benign and 150 malignant) and utilizing the
cross-validation protocol, we demonstrate system’s accuracy,
sensitivity, specificity, positive predictive value and negative
predictive value as: 95%, 97%, 94%, 92% and 98% respectively
in terms of ROC curves and Az areas, better in performance
than the current literature offers.

I. INTRODUCTION

As per American Cancer Society [1], breast cancer ranks
second in the list of women’s cancer. Even though the rate of
breast cancer has risen since 1980, the mortality rates have
declined by 2.3% since 1990. The reduction in mortality rate
is due to early detection and improvement in technology for
treatment.

With the advancement of ultrasound acquisition (see [2])
and the digital nature of 3-D volume acquisition, computer-
aided diagnosis (CAD) has become even more powerful,
reducing the physician’s work load (see [3] and references
there in). The process of breast lesion classification and
efficient CAD-based methods from utlrasound is generally
categorized into several techniques such as those in [4],
[5], [6] and [7]. On these lines, in [8] was proposed a
CAD system using fuzzy inference for breast sonography
and adopted six different criteria to classify lesions such
as: lesion shape, border, edge shadows, internal echoes,
posterior echoes, and halo. However, their system accuracy,
sensitivity, and specificity were only 60.3%, 82.1% and
42.9%. On the other hand, texture framework in US image
processing goes back to more than two decades [9], [10].
Since the implementations were presented on a smaller set
of data, there is a fundamental weakness with texture-based
strategies. The settings of ultrasound machine parameters
have to be fixed for acquiring ultrasound images. On the
contrary, if ultrasound parameter setting changed, the CAD

performance was very unstable [6]). Moreover, a CAD
system trained by images from one ultrasound machine needs
to be trained again for a different ultrasound machine due
to different image resolution and image quality. Hence, in
[6] is proposed nearly setting-independent features based
on shape information. Their system was very robust and
powerful because the statistical data using ROC curve were
all greater than 0.95. Note that all above strategies where
used on 2-D ultrasound images, which has its own limitations
such as, it did not allow 3-D spatial processing during
the ultrasound data acquisition. As a result, the shape and
structure information of the breast lesions could not be
reconstructed. This helps in the determining the growth of the
cancer and is spatial relationships. Recently, 3-D ultrasound
[11] has shown promising signs that overcome the limitations
of traditional 2-D ultrasound allowing to view the anatomy
in 3-D interactively.

This paper proposes a five step novel and automatic
methodology for breast lesion classification in 3-D ultra-
sound images. The first three steps yield an accurate seg-
mentation of the breast lesions based on the combination of
(a) novel non-extensive entropy, (b) morphologic cleaning
and (c) accurate region and boundary extraction in level set
framework. For the first step, we propose a new algorithm
based on a new kind of entropy, called non-extensive en-
tropy, which extends the well known concept of Boltzman-
Gibbs entropy from statistical mechanics. Our algorithm,
named NESRA (Non-Extensive Segmentation Recursive Al-
gorithm), is a recursive version of the non-recursive pro-
cedure proposed by Albuquerque [12]. Segmented lesions
then undergo five feature extractions consisting of: area,
circularity, protuberance, homogeneity, and acoustic shadow.
These features are then input to a Support Vector Machine
(SVM) framework that classifies the lesions between ma-
lignant and benign types. Using a data base of 250 breast
ultrasound images and utilizing the cross-validation protocol,
we demonstrate system’s accuracy, sensitivity, specificity,
positive predictive value and negative predictive value as:
95%, 97%, 94%, 92% and 98% respectively in terms of ROC
curves and Az areas, better in performance than the current
literature offers.

The layout of the paper is as follows: Section II presents a
theoretical background of this work; Section III present our
proposed protocol for breast US classification and Section
IV presents practical results; and Section V highlights some
conclusions.



II. THEORETICAL BACKGROUND

A. Tsallis Entropy

The entropy is an idea born under the thermodynamics
concept, but Shannon redefined the concept of entropy of
Boltzmann/Gibbs (now called BGS entropy) for the context
of system information. Generically speaking, systems that
have statistics of the type BGS are called extensive systems.
Such systems have an additive property, defined as follows.
Let P and Q be two random variables, with probability
densities functions P = (p1, . . . , pn) and Q = (q1, . . . , qm).
If S is the BGS entropy associated with P or Q (and if P and
Q are independent), the entropy of the composed distribution
verify the so called additivity rule: S(P ∗Q) = S(P )+S(Q),
where the composed distribution (also called direct product)
between P and Q is defined as P ∗ Q = {piqj}i,j , with
1 ≤ i ≤ n and 1 ≤ j ≤ m.

This traditional form of entropy is well known and for
years has achieved relative success to explain several phe-
nomenon if the effective microscopic interactions are short-
ranged (i.e., close spatial connections) and the effective spa-
tial microscopic memory is short-ranged (i.e., close time con-
nections) and the boundary conditions are non(multi)fractal.
Roughly speaking, the standard formalism are applicable
whenever (and probably only whenever) the relevant space-
time is non(multi)fractal. If this is not the case, some kind
of extension appears to became necessary. Then, recent de-
velopments, based on the concept of non-extensive entropy,
also called Tsallis entropy, have generated a new interest in
the study of Shannon entropy for Information Theory [12],
[13]. Tsallis entropy (or q-entropy) is a new proposal for
the generalization of Boltzmann/Gibbs traditional entropy
applied to nonextensive physical systems.

This non-extensive characteristic has been applied through
the inclusion of a parameter q, which generates several math-
ematical properties and has the following general equation:

Sq(p1, . . . pk) =
1−

∑k
i=1(pi)q

q − 1
(1)

where k is the total number of possibilities (0 ≤ pi ≤ 1)
of the system and the real number q is the entropic index
that characterizes the degree of non-extensiveness. These
characteristics give to q-entropy flexibility in explanation of
several physical systems that can not be explained by the
traditional BGS entropy.

The main characteristic of Tsallis entropy, which is useful
in our work, is the so called q-additive property, given by:

Sq(P + Q) = Sq(P ) + Sq(Q) + (1− q)Sq(P )Sq(Q) (2)

In this equation, the term (1 − q) stands for the degree of
non-extensiveness.

In Albuquerque et al. [12] is proposed an algorithm using
the concept of q-entropy to segment US images. Since
this concept may be naturally applied over any statistical
distribution, in this paper we propose a natural extension of
the algorithm proposed in [12] which yields to a recursive
procedure when, for each distribution P and Q we applied

again the concept of q-entropy. We named our extended
algorithm as NESRA (Non-Extensive Segmentation Recur-
sive Algorithm) and also propose to apply it for an initial
segmentation of our five step protocol.

B. The Non-Extensive Segmentation Recursive Algorithm
(NESRA)

We can apply the concept of q-entropy separately over
the two distributions P and Q. Them we normalize them
as P : p1

pA
, p2

pA
, . . . , pt

pA
and Q : qt+1

qB
, qt+2

qB
, . . . , qk

qB
where

pA =
∑t

i=1 pi and qB =
∑k

i=t+1 qi.
Them, we can apply the q-entropy to each new normalized

distribution and compute its q-additivity as follows:
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In order to find the optimal partition (t = topt) which
maximizes the SP+Q additive sum, we can achieve with
cheap computational effort the t which maximizes

topt = argmax[SP (t) + SQ(t) + (1− q).SP (t).SQ(t)] (4)

The NESRA algorithm then computes recursively the q-
additive rule separately in each partition P and Q. Now, after
the appropriate normalization we have P split into two new
distributions P1 and P2. Analogously, Q is split into Q1 and
Q2. If PA1 and PA2 is the normalized sum of the P1 and
P2 distribution respectively, and QB1 and QB2 are the same
for Q1 and Q2, the new additive rule can be computed as:
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where t, % and υ are the new optimal partition for the first
partition and second and third recursive partitions. This is



accomplished computing t = topt which maximizes

topt = argmax[(SP1 + SP2 + (1− q) · SP1 · SP2)
·(SQ1 + SQ2 + (1− q) · SQ1 · SQ2) · (1− q)

·(SP1 + SP2 + (1− q) · SP1 · SP2)
·(SQ1 + SQ2 + (1− q) · SQ1 · SQ2)]

(6)

The Equation (5) is simple, although with several terms.
By developing a third recursion would yielding the number
of terms up to sixteen, which is difficult to analyze. However,
the growing of recursion number does not enlarge the algo-
rithm complexity or computation, since there is a dropping
of the states to be computed at each recursion.

The motivations to use the q-entropy are: 1) managing
only a simple parameter q to search for good segmentations;
2) as suggested in [12], the mammographic images may
have a non-extensive behavior; 3) it is simple and makes the
implementation easy having a low computational overload.

III. 3-D BREAST IMAGE SEGMENTATION AND
CLASSIFICATION

As we highlight above, in this paper we proposed a five
step protocol in order to classify 3D breast images. After ap-
plication of NESRA algorithm, we must to extract the lesion
area from the background. The Figure 1 shows an image
example of an original benign lesion (a) and the NESRA
result (b). This result was obtained only with one NESRA
recursion, where we used q = 0.0001, which suggest a non-
extensive behavior of the gray scale distribution.

In the second step we use a morphological chain approach
in order to extract the ROI from the background. This is
accomplished through the following rule. Considering the
binary image generated by NESRA (e.g Figure 1-b), let α
and β be the total ROI’s area and the total image area,
respectively. If α ≥ ξβ an erosion is carried out, and if
α ≤ δβ a dilation is carried out. After, assuming that the
ROI has a geometric point near to the image center, we
apply a region growing algorithm which defines the final
ROI’s boundary. In our experiments, we fixed ξ = 0.75 and
δ = 0.25 to correctly extracting most of all ROIs. The result
of this morphological rule applied in the image of Figure 1-b
is shown in Figure 1-c.

The region generated by the morphological chain rule is a
coarse representation of the lesion region. Then, we apply
a level set framework using as initialization this region’s
boundary [14]. The result can be seen in Figure 1-d, which
was accomplished with only 10 iterations.

The next step is the feature extraction of the ROI. In our
work, two radiologists stated five features that have high
probability to work well as a discriminator of malignant and
benign lesions. Then, we have used these features and tested
them in order to achieve the best combination in terms of
performance.

The first feature is the normalized lesion area. Since
malignant lesions generally have large areas in relation to
benign ones, this characteristic is a power discriminant. The
second characteristic is the region circularity. Since benign

(a) (b)

(c) (d)

Fig. 1. (a) original ultrasound benign image; (b) NESRA segmentation
with two recursions and q = 0.0001; (c) ROI after morphological chain
application; (d) ROI after level set application.

lesions generally have more circular areas compared with
the malignant ones, also this can be a good discriminant.
Then, the standard deviation of the normalized distances of
each boundary point to the ROI’s geometric center is taken
as a circularity measure. Since Malignant lesions have high
average lobe areas, the third feature is the size distribution
of the lobes in a lesion. A boundary’s lobe is a protuberant
region on the boundary. We compute the convex hull of the
ROI and the lobe as a protuberance between two valleys.
The next feature is related to the homogeneity of the lesion.
Malignant lesions tend to be less homogeneous than benign
ones. Then, we take the BGS entropy over the gray scale
histogram relative to the maximum entropy as the fourth
discriminant feature. As higher the relative entropy more
homogeneous is the lesion region. The last feature is related
with an interesting characteristic of the lesions: the acoustic
shadow. When benign lesions have many water particles,
the formation of an acoustic reinforcement below it is more
probable. On the other hand, when the lesion is more solid (a
malignant characteristic), there is a tendency in forming an
acoustic shadow. Then, by comparing the region inside and
below the lesion may give an idea of the region malignance.
Then, we compute the gray scale histograms of both regions
(inside and below the lesion) and compare them. As more
darkness is the region below the lesion more is the acoustic
reinforcement and, consequently, higher is the probability to
have a benign lesion. Obviously, this is not a general rule
and then we must to combine several features in order to
have more precise inferences.

Then, as final step of our proposed protocol, we use a
Nonlinear Support Vector Machine (SVM) framework in
order to classify the lesion area by combining these five
US features. SVM is a very good discriminant tool with
successful application in several areas. In our work, these
features compose a five-dimensional space used as SVM’s



input. Also, since this data do not have a linear separation,
we have used a B-Spline curve as the SVM’s kernel.

IV. PERFORMANCE EVALUATION

In order to test our proposed method we used a 50
pathology-proven cases data base – 20 benign and 30 ma-
lignant –. Each case is a sequence of 5 images of the same
lesion. Then, we tested 100 images of benign lesion and 150
of malignant ones. Since the detection of a malignant lesion
between five images of the same case indicates a malignant
case, it is reasonable to consider 250 different cases.

Since our data base is small we have improved the results
through a cross-validation method. Then, these ultrasonic
images are randomly divided into five groups. We first set
the first group as a testing group and use the remaining four
groups to train the SVM. After training, the SVM is then
tested on the first group. Then, we set the second group as
a testing group and the remaining four groups are trained
and then the SVM is tested on the second. This process is
repeated until all five groups have been set in turn as testing
group.

To estimate the performance of the experimental result,
five objective indices are used. These indices are acu-
racy, sensitivity, specificity, positive predictive value and
negative predictive value. In our experiment, accuracy of
SVM with B-Spline kernel for classification malignancies
is 95.2% (238/250), the sensitivity is 97% (97/100), the
specificity is 94% (141/150), the positive predictive value is
91.51% (97/106) and the negative predictive value is 97.92%
(141/144)1. We also show the ROC analysis. In Figure 2 we

Fig. 2. ROC curves for the proposed CAD System based on NESRA
algorithm for several features combinations.

plot several ROC curves for different combinations of the
lesion features. The curves are normalized.

1TP = True Positive; TN = True Negative; FP = False Positive;
FN = False Negative; Acuracy = (TP+TN)/(TP+TN+FP+FN); Sensitivity
= TP/(TP+FN); Specificity = TN/(TN+FP); Positive Predictive Value =
TP/(TP+FP); and Negative Predictive Value = TN/(TN+FN).

V. DISCUSSION AND CONCLUSIONS

Geometrical and Textured information from lesion area
in ultrasound images provide important discriminant for
computer-aided diagnosis systems. Since ultrasound images
generally have complex characteristics between pixels it
is interesting to study them from the point of view of
non-extensive entropy. Then, our work proposes a SVM
diagnostic system which uses as input a five-dimensional
feature space characteristics. These characteristics are based
on geometrical and textured information and should be com-
bined in order to tuning the system. In our experiments, the
best combination was achieved when only area, homogeneity
and shadow were used.

According to Fig. 2, the better feature combination occurs
when we have only area (AR), homogeneity (HT) and
acoustic shadow (AS), which generates Az = 95%.
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