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Local Time-stepping for Explicit Discontinuous
Galerkin Schemes

Gregor Gassner, Michael Dumbser, Florian Hindenlang and Claus-Dieter Munz

Abstract A class of explicit discontinuous Galerkin schemes is described which

time approximation is based on a predictor corrector formulation. The approxima-

tion at the new time level is obtained in one step with use of the information from

the direct neighbors only. This allows to introduce a local time-stepping for un-

steady simulations with the property that every grid cell runs with its own optimal

time step.

1 Introduction

The time discretization in discontinuous Galerkin schemes for advection diffusion

reaction equations is often based on the so called ODE (Ordinary Differential Equa-

tion) or method of lines approach. In this approach the discretization in space is

applied first and then the time discretization is applied in a second step using an

ODE solver. The attractivity is that the space and time discretization separates which

simplifies the structure and gives latitude to change time and space approximation

independently. In this paper, we describe an explicit time approximation which may

be considered as a formulation in the space-time domain rather than in a separate

step. The numerical scheme is kept explicit by a predictor corrector approach.

Such an approach was first proposed within the finite volume framework. The

second order accurate MUSCL scheme has this form which was generalized by

Harten et al. [4] in their famous paper about ENO schemes. Here, a truncated Taylor

expansion in time is used to predict the time evolution of the data within the grid

cell. The time derivatives are successively replaced by space derivatives using the

evolution equation, usually called the Cauchy Kovalewskaya procedure.
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We generalize this procedure in this paper and incorporate it into the DG

schemes. The Taylor expansion may be considered as a local predictor which ap-

proximates the time evolution within the grid cell. Lörcher et al. [5] proposed to

use a space-time expansion in the barycenter, applying the Cauchy Kovalewskaya

procedure, and used this local solution to evaluate the space-time integrals in the

fully discrete DG formulation. This Taylor expansion may be replaced by any other

approximate solution of the local Cauchy problem which gives a space-time approx-

imation within the grid cell. Dumbser et al. [2, 3] proposed to use a locally implicit

either continuous or discontinuous Galerkin time discretization to define an aux-

iliary solution. Here, we describe a novel idea using a local continuous extension

Runge Kutta scheme.

This first step can be considered as a predictor that gives the needed time accu-

rate data for the evaluation of the integrals in the discrete variational formulation.

As every explicit scheme the predictor corrector approach has a time step restric-

tion. For unsteady solutions this time step restriction is also a natural condition of

consistency, because it guarantees the appropriate resolution of the solution in time,

too. But it becomes cumbersome for unstructured grids with small grid cells to re-

solve the geometry or for solutions with different local time scales. Using a global

time step, the grid cell with the smallest time step defines the time step for all grid

cells. In our explicit DG approach, there is a remedy for this drop in efficiency. The

locality of the explicit space-time DG scheme allows a completely new time march-

ing technique: Each grid cell may run with its own time step in a time-consistent

manner, thus local time stepping for unsteady problems.

2 General Formulation

In the following we discuss the discontinuous Galerkin method. To keep matters

simple, we restrict the discussion to a scalar conservation law of the form

ut +∇ · f = 0, (1)

with appropriate initial and boundary conditions in a domain Ω × [0; T ]⊆ Rd ×R+
0 .

The flux function f(u,∇u) is composed of two parts

f = f(u,∇u) = fa (u)− fv (u,∇u) , fv (u,∇u) = μ(u)∇u. (2)

The first step of our approximation is to subdivide the domain Ω in non-overlapping

grid cells Q. For every grid cell, we use a local polynomial approximation of the

form

u(x, t)
∣∣
Q ≈ uQ(x, t) =

N

∑
j=1

ûQ
j (t)ϕ

Q
j (x) =: ûQ(t) ·ϕQ(x), N =

(p+d)!
p!d!

, (3)
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where {ϕQ
j (x)} j=1,...,N is a set of modal hierarchical orthonormal basis functions.

The dimension of this space N and thus the number of time dependent degrees of

freedom ûQ
j (t) depends on the polynomial degree p and the spatial dimension d.

The next step of our approximation is to define how the degrees of freedom ûQ
j (t)

are determined. The base of the considered discontinuous Galerkin method is a weak

formulation. We insert the approximate solution (3) into the conservation law (1),

multiply with a test function φ = φ(x) and integrate over the volume of grid cell Q.

We obtain

〈ut +∇ · f,φ〉Q = 0. (4)

We proceed with an integration by parts

〈ut ,φ〉Q + 〈f ·n,φ〉∂Q −〈fa −μ∇u,∇φ〉Q = 0, (5)

where n denotes the outward pointing normal vector and 〈. . .〉∂Q the integral over the

grid cell surface. As the approximative solution is in general discontinuous across

grid cell interfaces, we need an approximation by numerical flux functions. For

advection as well as diffusion we apply approximate Riemann solvers. While this is

standard for advection, for diffusion it is described in [6] in detail. The semi-discrete

version with discretization in space only we rewrite in a compact form as

ûQ
t = RV

(
ûQ,ϕQ

)
+RS

(
ûQ, ûQ+

,ϕQ
)
, (6)

where we collect all volume terms in RV and all surface terms in RS. We indicate

the dependence of the surface term on neighbor data by ûQ+
.

The set of ODE’s (6) can now be integrated, where the time interval [0;T ] is sub-

divided into time levels tn, by using for instance the standard Runge-Kutta methods,

resulting in the classic Runge-Kutta discontinuous Galerkin method, see, e.g., [1].

In this paper a predictor corrector formulation is presented which picks up again

the space-time nature of the equations . We start with an integration in time of the

semi-discrete formulation (6) from time level tn to time level tn+1

ûQ
n+1 − ûQ

n =

tn+1∫
tn

RV

(
ûQ,ϕQ

)
+RS

(
ûQ, ûQ+

,ϕQ
)

dt. (7)

The most efficient way to approximate the time integrals is to use Gauss quadra-

ture. The problem is, that the DG solution is only known at the ’old’ time level

tn. However, the Gauss points live in-between the time levels tn and tn+1 and thus

an implicit treatment or a predictor is needed for the evaluation of the volume and

surface terms. A predictor is found by approximating the following local Cauchy
problems: Find for every grid cell Q the function v = v(x, t) for (x, t) ∈ Rd × [0;Δ t],
which satisfies the initial value problem

vt +∇ · f(v,∇v) = 0, v(x, t = 0) = u∗(x, tn), (8)
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where u∗(x, tn) is the DG polynomial uQ(x, tn) of grid cell Q extended in Rd . The

idea is to solve this locally in every grid cell in a first step by any numerical method

that produces a space-time solution of the desired order of accuracy.

2.1 The Predictor-Corrector Formulation

We propose in this paper to apply an explicit local Runge-Kutta Galerkin discretiza-

tion to construct an approximative solution to the local Cauchy problems. Accord-

ingly to the semi discrete DG scheme described above we introduce an approxima-

tion with the same polynomial degree

vQ(x, t) =
N

∑
j=1

v̂Q
j (t)ϕ

Q
j (x) =: v̂Q(t) ·ϕQ(x). (9)

Inserting this into (8), multiplying by a test function and integrating over the grid

cell Q yields the semi-discrete Galerkin formulation

〈(vQ)t +∇ · f(vQ,∇vQ) ,φ〉Q = 0, (10)

and analogously the set of ODE’s for the time dependent polynomial coefficients

(
v̂Q)

t = RV

(
v̂Q,ϕQ

)
, v̂Q(0) = ûQ(tn). (11)

We note that the local problem (8) does not involve DG data from neighbor grid

cells. As stated above we aim to use a Runge-Kutta method to integrate (11) in time.

However, to evaluate the space-time integrals in Eq. (7), a continuous approximation

in time is needed. In [7, 8] a special Runge-Kutta based framework for the solution

of such initial value problems was introduced, with the main feature that the approx-

imation can be naturally extended to a time polynomial, hence the name continuous
extension Runge-Kutta (CERK) schemes.

We observed, that for a desired time order Ot of the final scheme, we need one

order less for the construction of the approximation of the local Cauchy problem

O∗
t = Ot −1. The evaluation of (7) with the approximation vQ

ûQ
n+1 − ûQ

n =

Δ t∫
0

RV

(
v̂Q(t),ϕQ

)
+RS

(
v̂Q(t), v̂Q+

(t),ϕQ
)

dt, (12)

increases the time order Ot by 1. Summing up, we have shown how to use a Runge-

Kutta method to construct a time continuous local solution and insert this into the

fully discrete DG scheme.

If we recall the semi-discrete Galerkin formulation of the local Cauchy problem

(10), we notice that the volume integral is directly related to the time derivative of

the auxiliary solution
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〈(vQ)t ,φ〉Q =−〈∇ · f(vQ,∇vQ) ,φ〉Q , or
(
v̂Q)

t = RV

(
v̂Q,ϕQ

)
. (13)

Inserting this into the volume term yields

tn+1∫
tn

RV

(
ûQ,ϕQ

)
dt ≈

Δ t∫
0

RV

(
v̂Q,ϕQ

)
dt =

Δ t∫
0

v̂Q
t dt = v̂Q(Δ t)− v̂Q(0). (14)

Due to the construction of the auxiliary solution we have v̂Q(0) = ûQ
n .

The strong variant of the fully discrete DG scheme (12) yields the predictor-
corrector formulation

ûQ
n+1 = v̂Q(Δ t)+

Δ t∫
0

RS

(
v̂Q(t), v̂Q+

(t),ϕ
)

dt. (15)

This formulation shows, that the DG solution at the new time level ûn+1 is deter-

mined by the value of the prediction at the new time level v̂Q(Δ t) (note that the

predictor does not take any neighbor data into account) corrected with the surface

integral term, where information from the local and the neighbor grid cells is taken

into account.

3 Local Time-stepping

The most important property of this predictor-corrector formulation is its inherent

locality valid for the whole time step. The disadvantage of an explicit time approx-

imation, to advance with the smallest time step determined by all local stability

restrictions, can be dropped by a time accurate local time stepping. The time evo-

lution is shown in Fig.3. A grid cell Qi is evolved from tn
i to tn+1

i = tn
i +Δ ti under

the condition that the predictor (light gray) of the neighbor cells Q j is available

tn+1
i ≤ tn+1

j . This evolve condition guarantees the time-consistency needed for un-

steady problems. In Fig.3a, all predictors are calculated and Q2 fulfills the evolve

condition. In Fig.3b, the corrector, consisting of the surface integrals, is then applied

to Q2, a new predictor can be computed and now Q3 can evolve. The algorithm con-

tinues analogously, see Fig.3c-d. If we take a careful look at the corrector, the spatial

integral can be approximated with Gauss integration, yielding to the general form

tn+1
i∫

tn
i

∮

∂Qi

h(x, t)ϕ j(x)dsdt =

tn+1
i∫

tn
i

M

∑
k=1

h̃k(t)ω j
k dt =

M

∑
k=1

( tn+1
i∫

tn
i

h̃k(t)dt
)

ω j
k =

M

∑
k=1

Hk ω j
k ,

(16)

where h(x, t) is the numerical flux, depending on the local and neighbor predictor,

h̃k(t) = h(ξ k, t) its value at the spatial point. The weights ω j
k contain the evaluation



6 Gregor Gassner, Michael Dumbser, Florian Hindenlang and Claus-Dieter Munz

(a) (b)

(c) (d)

Fig. 1 Time evolution of the local time stepping algorithm in 1D with 4 grid cells

of ϕ j(ξ k) and are calculated once at the beginning of the calculation, since they are

time-independent. Furthermore, integration and summation can be changed. Now

only the time integrated flux Hk = H(ξ k, [tn
i , t

n+1
i ]) at evaluation point ξ k remains

to be calculated. We will first integrate the fluxes in time and then in space. The

remedy can be seen in Fig.3c at the interface Q2,Q3. The time integrated flux [t0
2 , t

1
2 ]

is temporarily saved. We only add H(ξ k, [t1
2 , t

1
3 ]), before applying the final space

integration. This is crucial for the efficiency of the local time-stepping algorithm.
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Multi-dimensional Limiting Process for
Discontinuous Galerkin Methods on
Unstructured Grids

Jin Seok Park and Chongam Kim

Abstract The present paper deals with the continuous work of extending the multi-

dimensional limiting process (MLP), which has been quite successful in finite vol-

ume methods (FVM), into discontinuous Galerkin (DG) methods. Based on suc-

cessful analyses and implementations of the MLP slope limiting in FVM, MLP is

applicable into DG framework with the MLP-based troubled-cell marker and the

MLP slope limiter. Through several test cases, it is observed that the newly devel-

oped MLP combined with DG methods provides quite desirable performances in

controlling numerical oscillations as well as capturing key flow features.

1 Introduction

Multi-dimensional limiting process (MLP) has been developed quite successfully in

finite volume methods (FVM). Compared with traditional limiting strategies, such

as TVD or ENO-type schemes, MLP effectively controls unwanted oscillations par-

ticularly in multiple dimensions. The theoretical foundation of the MLP limiting

strategy is to satisfy the maximum principle to ensure multi-dimensional mono-

tonicity. A series of researches [2, 6, 4] clearly demonstrates that the MLP limiting

strategy possesses superior characteristics in terms of accuracy, robustness and effi-

ciency in inviscid and viscous computations on structured and unstructured grids in

FVM. Recently, discontinuous Galerkin (DG) methods become more popular as a

higher-order discretization of hyperbolic conservation laws because of its own mer-
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its, such as flexibility to handle complex geometry, compact stencil for higher-order

reconstruction, and amenability to parallelization and hp-refinement. However, one

of the major bottlenecks in DG methods is to design a robust, accurate and efficient

limiting strategy to handle oscillations and discontinuities in multiple dimensions.

Although there have been several remarkable efforts to control oscillations using

TVB-based limiters or WENO-type limiters, overall performances are not satisfac-

tory at all in terms of accuracy and/or efficiency, especially in controlling oscilla-

tions near shock discontinuities in multi-dimensional flows. Based on the remark-

able successes of the MLP in FVM, the MLP limiting philosophy is now extended

into the DG framework to provide an accurate, efficient and robust limiting strategy.

2 Multi-dimensional Limiting Process

2.1 Multi-dimensional Limiting Condition

In order to maintain multi-dimensional monotonicity, the present limiting strategy

exploits the MLP condition, which is an extension of the one-dimensional mono-

tonic condition. The basic idea of the MLP condition is to control the distribution of

both cell-centered and cell-vertex physical properties to mimic a multi-dimensional

nature of flow physics. We focus on the observation that well-controlled vertex val-

ues at interpolation stage make it possible to produce monotonic distribution of

cell-averaged values. This observation is verified by showing that cell-centered and

cell-vertex values reconstructed by the MLP limiting safisfy the maximum princi-

ple. Based on the observation, the vertex values are required to satisfy the following

MLP condition

q̄min
neighbor ≤ qvtx ≤ q̄max

neighbor, (1)

where qvtx is the vertex value, and (q̄min
neighbor, q̄

max
neighbor) are the minimum and max-

imum cell-averaged values sharing the same vertex point. The MLP condition can

be implemented regardless of grid topology, though the present work is focused on

triangular mesh. For example, the detailed implementation in FVM can be seen in

the work of Ref. [2, 6] for structured grids and Ref. [4] for unstructured grids. The

effectiveness of the MLP condition is supported by the maximum principle, which

plays a key role in ensuring the monotonicity in multiple dimensions. Compared

to previous approaches, the MLP condition fully exploits the cell-averaged values

sharing the same vertex point as well as edges, so the MLP limiting is less sensitive

to local mesh distribution and accurately represents multi-dimensional flow physics.
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3 Extension of MLP into Discontinuous Galerkin Methods

In DG methods, the distribution within a cell is approximated by the sum of shape

modes in a suitable function space

qh
j(x, t) =

n

∑
i=1

q(i)j (t)b(i)(x), (2)

where qh
j is an approximated solution of q(x, t) on the cell Tj and b(i) is a shape

function. In the present work, the RKDG method with orthogonal shape functions is

adopted. In order to prevent unwanted oscillations near discontinuities, limiting pro-

cedure is essential. Especially for efficient and accurate computations, limiter should

be selectively activated on the troubled-cells only. Thus, an accurate troubled-cell

marker, as well as a limiter, is crucial to obtain an accurate monotone solution in the

DG framework.

In FVM, the MLP condition is used to identify and control the maximum-

principle-violating cells [4]. If property distribution is linear, the edge midpoint

(or any quadrature point) can be restricted by controlling the vertex points where

extrema occur. However, for higher-order reconstruction greater than P1, it is not

guaranteed. The P1-based MLP condition may not identify the troubled-cells which

may lead to violation of the maximum principle. After some analysis, a more strict

condition is found to be necessary to identify the troubled cells. The MLP-based

troubled-cell marker is proposed using the following augmented MLP condition

q̄min
vi

≤ qh,min
vi

≤ qh
vi
, qh

vi
≤ qh,max

vi
≤ q̄max

vi
, (3)

where qh
vi

is an approximated solution at vertex vi and (q̄min
vi

, q̄max
vi

) are minimum and

maximum among the cells sharing the vertex. If distribution at vertex violates the

above condition, this cell is marked as a troubled cell. To avoid the clipping problem

across local smooth extrema, a simple but effective extrema detector is additionally

introduced as follows

Δ q̄vi = q̄max
vi

− q̄min
vi

≤ KΔx2, (4)

where K is a parameter to be determined. Numerical experiments strongly indicate

that computed results are not sensitive to the change of K, and its optimal value is

around 100. With the augmented MLP condition (Eq. (3)) and the extrema detector

(Eq. (4)), the troubled-cells are marked and the MLP slope limiter is applied only

on these cells with the following distribution

q̃h
j(x, t) = q̄ j +φMLP∇q j · (x− x̄j). (5)

For the Euler systems, density or entropy variable is used in the troubled-cell

marker to identify physical discontinuities. After marking the troubled-cells, the

MLP limiting is applied on conservative variables, the same as in the MLP in FVM.



4 Jin Seok Park and Chongam Kim

4 Numerical Result

4.1 Compressible Flow with Sinusoidal Density Perturbation

In order to examine accuracy in continuous flow, the Euler system with the following

smooth initial data is considered

(ρ0,u0,v0, p0) = (1+0.2sin(π(x+ y)),0.7,0.3,1.0). (6)

The computational domain is [0,2]× [0,2] with periodic boundary condition. Tri-

angular elements are created by dividing uniform square elements along the diag-

onal. Table 1 shows the result of grid refinement test at t = 2. The MLP limiting

combined with the MLP troubled-cell marker (K = 100) preserves the designed ac-

curacy in DG reconstruction.

Table 1 Grid refinement test for compressible flow with sinusoidal density perturbation

DG-P1, MLP-u1, K=100 DG-P2, MLP-u1, K=100
Grid L∞ Order L1 Order L∞ Order L1 Order

10x10x2 1.774E-2 - 1.046E-2 - 8.137E-4 - 4.279E-4 -
20x20x2 3.411E-3 2.38 1.919E-3 2.45 1.046E-4 2.96 5.242E-5 3.03
40x40x2 7.019E-4 2.28 3.743E-4 2.36 1.326E-5 2.98 6.527E-6 3.01
80x80x2 1.543E-4 2.18 7.965E-5 2.23 1.664E-6 2.99 8.159E-7 3.00

4.2 A Mach 3 Wind tunnel with a Step

This is one of the popular cases to test higher-order high-resolution schemes.

Around the expansion corner, computational meshes are slightly clustered without

any special treatment. Lax-Friedrich scheme is applied as a numerical flux. Figure

1 shows the density contours computed on triangular grids of h = 1/160 at t = 4.0.

DG reconstructions with the MLP limiter provide monotonic solutions with a sharp

capturing of the slip line from the shock triple point.

4.3 Strong Vortex-Strong Shock Interaction

Shock-vortex interaction generally leads to complex but challenging flow patterns.

When the rapidly rotating vortex strikes the strong shock, vortex core is severely

elongated and eventually split by compression [5]. The computational domain is

[0,2]× [0,1] and the normal shock wave with Ms = 1.5 is located at x = 0.5. A
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composite vortex is located at (xc,yc) = (0.25,0.5), and the velocity profile is given

as follows

vθ =

⎧⎪⎨
⎪⎩

vm
r
a if r ≤ a

vm
a

a2−b2

(
r− b2

r

)
if a ≤ r ≤ b

0 if r > b
, (7)

where (a,b) = (0.075,0.175), and the maximum Mach number of angular velocity

is 0.9. AUSMPW+ scheme [1] is used as a numerical flux. In Fig. 2, numerical

Schlieren images computed by FVM and DG reconstructions with the MLP limiter

are compared at t = 0.7 on coarse and fine grids. While FVM-MLP on coarse grid

does not show the vortex-splitting phenomenon, DG P2-MLP captures this flow

structure very clearly. In addition, DG reconstruction with the MLP limiter provides

a more detailed resolution for emitted sound waves and discontinuities.

4.4 Interaction of Shock wave with 2-D Wedge

The computational domain contains a regular triangle with length L= 1 on [−2.5,4.6]×
[−2.5,2.5]. The tip of wedge is located at the origin. As an initial condition, the

moving shock with Ms = 1.34 is located at x = 0. RoeM flux scheme [3] is ap-

plied. Figure 3 shows the comparison of numerical Schlieren images at t = 3.25.

Computed results confirm again that the DG reconstruction with the MLP limiter

guarantees a sufficient resolution to capture complex shock-vortex structure.

5 Conclusion

Guided by the MLP condition and the maximum principle [4], the Multi-dimensional

limiting process is efficiently and accurately designed within discontinuous Galerkin

framework. The proposed approach is able to accurately capture complex multi-

dimensional flow structure without yielding unwanted oscillations. Various numeri-

cal results show the desirable characteristics of the proposed limiting strategy, such

as multi-dimensional monotonicity, improved accuracy and efficiency.

P1, MLP-u2, K= 5, h=1/160 P2, MLP-u2, K= 5, h=1/160

Fig. 1 Comparison of density contours for the Mach 3 wind tunnel with a step. Thirty equally
spaced contour lines from ρ = 0.32 to ρ = 6.15
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DG-P1, MLP-u1, K= 10, h=1/100 DG-P2, MLP-u1, K= 10, h=1/100FVM, MLP-u1, h=1/100

DG-P1, MLP-u1, K= 10, h=1/400FVM, MLP-u1, h=1/400 DG-P2, MLP-u1, K= 10, h=1/400

Fig. 2 Comparison of numerical Schlieren images of strong vortex-strong shock problem at t = 0.7

FVM, MLP-u1 DG-P1, MLP-u1 DG-P2, MLP-u1

Fig. 3 Comparison of numerical Schlieren images on interaction of shock wave with 2-D wedge
at t = 3.25. (Bottom left corner of each image: Close-up view around the primary vortex.)
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Runge Kutta Discontinuous Galerkin to solve
reactive flows

Germain Billet & Juliette Ryan

1 Introduction

Phenomena which develop in the combustion chambers or industrial furnaces are

multiple. Injections of fuel and oxidizer, premixed or not, in a strongly turbulent

flow set up gas pockets which react generating either premixed flames or diffusion

flames together with intense acoustic phenomena. These physical processes have

to be captured in order to describe in details the reactive flows. It is then neces-

sary to take into account the transport coefficients for the parabolic operator of the

Navier-Stokes (NS) equations and detailed chemical kinetics for the production rates

(source operator). Vortex dynamics, transport, stretching and wrinkling of fronts as

well as acoustic propagation must be suitably resolved by the hyperbolic operator.

Within the framework of the Euler equations, we found two recent articles

[8] , [11] which propose to solve the two-medium flow simulations starting from

a Runge-Kutta Discontinuous Galerkin (RKDG) method. Both use the level set

method to compute the location of the interface. The advantage is to keep a con-

servative treatment of the interface but the difficulty lies in the coupling between

a traditional RKDG method far from the interface and a Discontinuous Galerkin

(DG) level set method around the interface. The level set method is very powerful

and is used in many fields but its main weakness is that it can only treat nondiffusive

interfaces. Its use in the field of the reactive flows is thus limited to the follow-up

of thin front with very reductive assumptions as to the reactive processes. For the

reacting porous media, some approaches using DG to solve reacting NS equations

have been developed but generally the incompressibility hypothesis is introduced,

see for example [12]. In addition, many papers have presented the resolution of NS
equations with RKDG method for nonreactive flows with a constant specific heat

ratio γ . But when the fluid contains Ns gaseous species in a flow where the tem-

perature T evolves strongly as in reactive flows, it is necessary to take into account
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the variation of γ and to assume γ = γ(Yi,T ) where Yi is the mass fraction of the ith

species (i ∈ S = [1,Ns]). In the same way, the transport coefficients depend on the

same variables.

We describe here a RKDG method with no restrictive physical hypothesis to

solve the reactive Navier-Stokes equations written in conservation form. For the

time integration, a third-order TV D Runge-Kutta scheme is used [10]. One test case

is presented with DGP1 and DGP2 which simulates 2-D premixed flames H2-air

with a simplified kinetic scheme.

2 The Discontinuous Galerkin approach

This approach is based on the work of Cockburn and Shu (see [4] ). For simplicity,

we shall just recall the 1D case, representative of all dimensions. The solution as

well as the test function space is given by

W k
h =

{
ϕ ∈ L∞(Ω) / ∀ j,ϕ|Ω j ∈ Pk(Ω j)

}
where Pk(Ω j) is the space of poly-

nomials of degree ≤ k on the cell Ω j = [x j−1/2,x j+1/2] = Δx j. We define a local

orthogonal basis over Ω j, {φ (l)
j (x), l = 0,1, ...,k} where φ (l)

j (x) are the Legendre

polynomials. The numerical solution in the test function space W k
h is written as

∀t ∈ [0,T ],∀x ∈ Ω j, U h(x, t) =
l=k

∑
l=0

U
(l)
j (t)φ (l)

j (x) for x ∈ Ω j

where U
(l)
j (t) are the degrees of freedom. A weak formulation of the problem is

obtained by multiplying the NS equations by a test function ϕ and by integrating on

each cell Ω j. Then, a discrete analogous is obtained by replacing the exact solution

U by the approximation U h(x, t), ∀t ∈ [0,T ],∀ j,

∫
Ω j

ϕ(x)
∂U h(x, t)

∂ t
dx+

∫
Ω j

ϕ(x)
∂F (U h(x, t))

∂x
dx =

∫
Ω j

ϕ(x)S (U h(x, t))dx.

The test function ϕ is replaced by each element of the basis set φ (l)
j (x) and the

inviscid and viscous fluxes are integrated by part. The source term S represents the

production rates of each species.

3 Hyperbolic operator

The main difficulty is to capture correctly the gaseous interfaces. If no care is taken

to solve the hyperbolic part of the Navier-Stokes equations in conservative form,

spurious pressure oscillations develop when several species diffuse through an in-
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terface where γ varies [6], [1]. Some models were proposed in the past but, either

they present other disadvantages like the appearance of oscillations on other quanti-

ties, or they are written for particular cases of front capturing or for mixtures where

CP is supposed constant. In 2001, Abgrall and Karni [2] proposed the DF model for

mixtures where CP depends only on the mass fractions. In 2003, Billet and Abgrall

[3] generalized this approach for CP =CP(Yi,T ). This approach, which is no longer

strictly conservative but only quasi-conservative for the hyperbolic part of NS equa-

tions when γ varies, suppresses the numerical oscillations of the physical quantities

through the gas interfaces. DF is efficient only with numerical fluxes which can be

extended to a complex thermodynamic laws γ = γ(Yi,T ) as for example HLLC [13].

A limiting treatment based on Krivodonova’s paper [5] is applied for DGP2 when

the reactive processes are activated.

4 Parabolic operator

The recovery method reproduces the symmetric DG formulation with natural penalty

terms depending on the accuracy of the method. Van Leer’s idea is to construct for

each piecewise continuous polynomial basis of degree k defined on two adjacent

cells a unique continuous polynomial space of degree 2k + 1 on the union of the

two cells. In consequence, to the approximation of the solution as an expansion in

the discontinuous basis functions locally corresponds an identical expansion in the

smooth recovery basis. Thanks to this new smooth basis, the diffusion fluxes across

the cell interfaces can be naturally computed. The details of this approach can be

found in [15] for the 1-D problems and the extension to 2-D is developed in [14].

In reactive flows, the transport coefficients are not uniform and consequently the

diffusive part of the NS equations are integrated by part once only.

5 Numerical example

5.1 Draughtboard reactive mixing H2-Air in a shear flow

We are interested in a draughtboard mixture of H2-Air (simulating the region of an

idealized multi-point injector). This mixture is immersed in a sinusoidal temperature

field varying between 300K and 1200K. This gaseous mixing is also submitted to in

a sinusoidal velocity field varying for each component u and v between −100m/s
and +100m/s. With these values, the Mach number M varies in the range −0.4 <
M < 0.4 during the computation. Four shear lines are present in the flow at t = 0

(x = 0m, x = 0.05m, y = 0.025m and y = 0.075m). The domain dimensions are L2 =
0.1m x 0.1m and the boundary conditions are periodic. A Cartesian grid is used with

Δx = Δy. The mixture wave length LY
λ = L/4 and the wave length of temperature
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and velocity fields are LT
λ = Lu

λ = Lv
λ = L. At t = 0,

T = 750−450sin(2πx/LT
λ )sin(2πy/LT

λ )
u =−100sin(2πx/Lu

λ )cos(2πy/Lu
λ )

v =−100sin(2πx/Lv
λ )cos(2πy/Lv

λ )
YO2

= 0.117(1+ sin(2πx/LY
λ )sin(2πy/LY

λ ))
YH2

= 0.015(1− sin(2πx/LY
λ )sin(2πy/LY

λ ))
YN2

= 1−YO2
−YH2

.

Some initial fields are plotted in Fig.1. The time step δ t = 5×10−8s corresponds

to C f l = 0.1. The kinetic scheme is made up of 4 species and 2 Arrhenius reactions

[9]:

H2 +O2 ↔ 2OH and H2 +2OH ↔ 2H2O.

Figs. 2 and 3 present the time evolution of the temperature with DGP1 and DGP2

on a same grid (LY
λ = 8Δx). At t = 10−3s, the solutions are similar but more de-

tails appear with DGP2. But at t = 2×10−3s, the topology of the temperature field

is quite different and the temperature levels are no longer the same. These differ-

ences are due to the very strong acoustic waves that develop at the beginning of

the reactions. DGP2, thanks to its weaker dissipation, captures better these strong

fluctuations and gives after t = 10−3s a different shape of the flames in the domain.

(a) Initial hydrogen mass fraction. (b) Initial velocity and temperature fields (K).

Fig. 1 Initial values.
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(a) Temperature field at t=10−3 s. (b) Temperature field at t=2×10−3 s.

Fig. 2 Temperature fields with DGP1.

(a) Temperature field at t=10−3 s. (b) Temperature field at t=2×10−3 s.

Fig. 3 Temperature fields with DGP2.

6 Conclusion

A RKDG approach with no restrictive physical hypothesis has been developed for

reactive flows. This approach is stable and robust and works well for low Mach

number and subsonic flows. Its extension to supersonic combustion is under devel-

opment. Comparisons with a sixth order finite difference DNS code with detailed

kinetic scheme [7] are to be carried out.
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Comparison of the high-order compact
difference and discontinuous Galerkin methods
in computations of the incompressible flow

Artur Tyliszczak, Maciej Marek and Andrzej Boguslawski

Abstract High-order compact difference scheme (CD) based on the half-staggered
mesh is compared with discontinuous Galerkin method in computations of the in-
compressible flow. Assessment of the accuracy is performed based on the classical
test cases: Taylor-Green vortices, Burggraf flow and also for temporally evolving
shear layer. The CD method method provides very accurate results with expected
order of accuracy, 4th and 6th. Similarly for the discontinuous Galerkin method
provided that the number of degrees of fredom is close to the number of nodes in
computations with CD method. Furthermore, it appeared that CD method is much
more efficient than the discontinuous Galerkin method of comparable accuracy.

1 Introduction

The most accurate spectral or pseudospectral methods [1] based on Fourier or
Chebyshev approximation allow for detailed study of complex fundamental physical
phenomena. Their application is however limited to simple geometries and meshes
defined by the collocation points which means that in geometrically complicated
problems they are no longer feasible. The coordinate transformation combined with
the domain decomposition are not always possible but even if so, this approach
considerably complicates the numerical codes and sometimes leads to additional
problems related to stability, singularity, etc.. The compact difference schemes [6]
can be regarded as an alternative of the spectral approach sharing their most im-
portant properties (accuracy, resolving efficiency). Additionally, they can be easier
applied in the cases of non-uniform and non-cartesian grids with various type of the
boundary conditions. The finite volume, the finite element or discontinuous Galerkin
approach are examples of the methods without any particular geometrical or mesh

Artur Tyliszczak, Maciej Marek and Andrzej Boguslawski
Czestochowa University of Technology, Al. Armii Krajowej 21, 42-200 Czestochowa, Poland.
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related limitations. In this work we compare two of the above mentioned methods,
the compact difference method and the discontinuous Galerkin method applied to
the incompressible flow calculations.

2 Numerical methods

Both for the discontinuous Galerkin method and for the compact difference method
we apply the projection method [3] which after the pressure correction step enforces
the divergence free velocity field. In the compact difference (CD) approach we use
half-staggered meshes [5, 10] where the pressure is shifted half cell size with re-
spect to the velocity field. This approach eliminates the pressure oscillation caused
by the pressure-velocity decoupling occurring on the collocated meshes. In the half-
staggered approach additional computational cost and complications are related to
the mid-point interpolation and mid-point derivative approximation, however we
note that these steps are less computationally expensive than in the case of the fully
staggered approach. We also note that shifting the pressure half-cell size from the
velocity node is relatively easy and can be surely applied to any code based on the
collocated meshes - that was done in our case. Another important point concerns
solution of the Poisson equation (introduced by the projection method) which in the
case of the high-order methods can be very expensive computationally as the result-
ing coefficient matrix of the Poisson equation is dense. Solving the Poisson equation
we combine a low-order pressure gradient discretization with an explicit high-order
discretization of the divergence operator. The resulting discretization has similar re-
solving characteristics as the compact scheme but it leads to 5 or 7-diagonal system
which can be effectively solved by a direct method for sparse systems (analogy of
TDMA algorithm).

The discontinuous Galerkin method (DGM) belongs to the family of finite ele-
ment methods (FEM) and allows for employment of unstructured flexible compu-
tational meshes. Moreover, hp-adaptivity is much easier to implement, comparing
to classical continuous Galerkin method, as the method supports non-conforming
elements (hanging nodes) and possibility of various expansion bases (shape func-
tions). The locality of DGM makes it an ideal framework for parallelisation. The
matrices, that are typically constructed in FEM (e.g. mass matrix), can be calcu-
lated seperately for each element and their size is related to the number of local
degrees of freedom. DGM has also some drawbacks, the main being larger number
of variables comparing to continuous Galerkin method and additionally the sec-
ond order derivatives (e.g. viscosity, diffusion terms, Laplacian) have to be handled
by mixed methods. In the present work the implementation of DGM method has
been developed for 2D incompressible, viscous flow. The code accepts unstructured
FEM meshes with quadrilateral elements. Such meshes offer better quality, compar-
ing to those with triangular elements. Also the basis functions may be constructed in
a straightforward way by tensor products of one-dimensional functions [2, 4, 8]. The
disadvantage is that the Jacobian of transformation from the standard element to the
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physical element is not constant (in general), which results in considerable storage
requirements – DGM matrices must be constructed for each of the elements seper-
ately. The second order terms, representing viscosity and Laplacian of the pressure,
are handled by LDG (Local Discontinuous Galerkin) method. The solver of Poisson
equation for the pressure is based on simple, iterative method.

3 Results

The comparison of the accuracy and efficiency of the compact and discontinuous
Galerkin methods is performed for classical test cases, i.e. Taylor-Green vortices,
Burggraf flow and also for temporal shear layer flow. Both codes were written in
the Fortran 90 with mathematical libraries (Lapack/BLAS) used wherever possible.
The test of the efficiency showed that the code based on CD scheme is considerably
faster than the code based on DG method. For instance, for the CD scheme, the com-
putations of the Taylor-Green flow (simulation time equal to 1.0 with Δ t = 10−5) on
the mesh 100×100 took about 45 minutes. For the DG method the accuracy of the
results similar to that obtained with CD was achieved with 20× 20 elements with
4th order of expansion, in this case the computations took 10 hours, approximately.

3.1 Taylor-Green and Burggraf flows

The Taylor-Green or Burggraf flow are examples of the test cases for which the an-
alytical solution of the Navier-Stokes equations exists and therefore these cases are
used in this work to assess the order of the applied methods. Fig. 1 shows parts of the
computational domains with contours of the horizontal velocity component obtained
with 6th order compact difference method with 3th and 4th order approximation for
the near boundary and boundary nodes. Fig. 1 on the right hand side presents the
error decreasing with the number of mesh points N. The error is defined as:

Error =

√√√√ 1
Nx

1
Ny

Nx

∑
i=1

Ny

∑
i=1

(uc(xi,y j)−ua(xi,y j))
2 (1)

where uc and ua are computed and analytical value respectively. We note that in the
computations performed with CD scheme for the velocity components we applied
Dirichlet boundary conditions resulting from the analytical solution - typically (and
also in our implementation of the discontinous Galerkin method) the Taylor flow
is solved with the periodic boundaries which eliminate the influence of the lower
order boundary closure scheme. Besides that, as the number of the boundary nodes
is small compared to all computational nodes one may observe that for the Taylor
flow the error decreases according to the assumed order of the scheme. Influence of
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Fig. 1 Horizontal velocity component in the Taylor-Green flow and in the Burggraf flow (left
figure) - CD results. Error of the horizontal velocity component in Taylor-Green flow (line with
triangles) and in the Burggraf flow (line with squares).

the boundary closure is seen in the case of the Burggraf flow for which the solution
accuracy decreases to 4th order.
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Fig. 2 Error of the horizontal velocity component for the Burggraf flow (left figure) and Taylor-
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direction.

The results obtained with discontinous Galerkin method indicate that for Burggraf
flow the method is only second order accurate, even when the order of expansion P
is larger than one. The error decay is presented in Fig. 2. The reduction of order of
accuracy for this particular flow is known in the literature and probably is related
to the specific type of projection method used in the implementation of DGM. Re-
duction of the order has not been observed in CD code, using somewhat different
procedure in projection step. In the case of Taylor vortices, the order of accuracy
agrees with expectations, i.e. it equals P + 1. It should be noticed, that for high or-
der expansion DGM offers better accuracy than CD of the same number of degrees
of freedom.
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3.2 Temporal shear layer flow

The temporal shear layer flow is relatively simple example of turbulent flow, it was
often used as the test case for the numerical codes for Direct and Large Eddy Sim-
ulation [7, 9, 11, 12]. The velocity profile is defined as u(y) = Uer f (yπ1/2). The
Reynolds number defined as: Re =Uδ/ν (U – free stream velocity, δ – initial width
of shear layer, ν – viscosity) was equal 250. In the computations with CD method
the mesh consisted of 128× 128 uniformly distributed nodes. The evolution of the
shear layer (vorticity isocontours) is presented in Fig. 3, details of the flow charac-
teristics may be found in [7, 9]. In this paper we concentrate on the comparison of
the amplitudes of the most unstable mode and its subharmonic. The length of the
computational domain L was equal four times the length of the most unstable mode
(equal to 2.32π [9]), allowing to form four vortices corresponding to the most un-
stable mode which then was pairing due to the presence of the subharmonic modes.

t = 0 t = 22 t = 40

Fig. 3 Evolution of shear layer (vorticity isocontours).

The amplitudes of a given mode of the initial perturbation or in the evolved field are
measured by the integrated RMS of the velocity modes defined as:

Aα =
[∫ +L/2

−L/2
2ûx(α)û∗x(α)dy

] 1
2

(2)

where ûi(α) – Fourier coefficient of velocity component ux and û∗x(α) – its complex
conjugate. The evolution of the most unstable mode A1 and its subharmonic A1/2
are shown in Fig. 4. It can be observed the agreement between DGM and CD results
is satisfactory only when the number of degrees of freedom in DGM is at least
the same as the number of gridpoints in CD, although for the subharmonic mode
reasonable accuracy is obtained even for quite coarse mesh (20× 20, P = 2). This
is not surprising, as the characteristic spatial scales related to that mode are much
larger than for the most unstable mode. Both codes provide correct moment of time
in which the maximum of the mode A1 is attained [7, 9].

The support for the research was provided within the research grant WZ-1-101-701/2008 founded
by Polish Ministry of Science and the statutory funds BS-1-103-301/2004/P. The authors are
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On the boundary treatment for the compressible
Navier-Stokes equations using high-order
discontinuous Galerkin Methods

Andreas Richter and Jörg Stiller

Abstract An appropriate boundary treatment is one of the most important tasks
to perform when carrying out numerical simulations. The technique to define the
boundary condition depends strongly on both the numerical scheme and the type
of differential equation to be solved. In terms of implementation effort and cost of
computational resources, every boundary should be treated locally in both space
and time. In this paper we discuss techniques to deal with adiabatic walls in the
framework of high-order discontinuous Galerkin methods for compressible flow.

1 Introduction

The treatment of boundaries is essential for the numerical simulation of fluid me-
chanics problems. A multitude of requirements exist: i) Stability and robustness. ii)
The boundary condition has to reflect the physical problem, e. g. Dirichlét conditions
and Neumann conditions. iii) The formulation should be local in space and time. iv)
The boundary treatment has to respect the numerical scheme, e. g. the representa-
tion of curved walls has to be of the same order as the underlying scheme. v) The
implementation has to fulfill the requirements listed above without an unrealistic
expansion of the computational domain. Because there are so many requirements, it
is difficult to find a general solution.

For the investigation of aeroacoustic problems as well as musical woodwind in-
struments we use a high-order discontinuous Galerkin finite element method in con-
junction with a TVD Runge-Kutta time integration scheme to solve the unsteady and
compressible Navier-Stokes equations in the form
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∂tU+∇ ·�F(U) = ∇ ·�D(ΠΠΠ,∇ΠΠΠ) ,

with U = (ρ, ρ�v, ρet)
T the solution vector and ΠΠΠ = (�v, T )T the vector of primitive

variables. To solve the diffusive terms an interior penalty scheme is used (Stiller
et al., 2007; Richter et al., 2007, 2008, 2010; Hartmann and Houston, 2008). This
leads to the weak form

∫
Ωe

(
ve∂tUe dΩe −∇ve ·

(
�F(Ue)−�D(ΠΠΠe,∇ΠΠΠe)

)
dΩe

)

+
∫

Γe

ve

(
Hc(U±

e ,�n)+Hd({ΠΠΠe} ,{∇ΠΠΠe} ,ΠΠΠ±
e ,�n)

)
dΓe

−1
2

∫
Γe

∇ve ·�Cn(U−
e )

(
ΠΠΠ−

e −ΠΠΠ+
e

)
dΓe = 0 (for ∀ve ∈ Ve and ∀Ωe)

(1)

�D(ΠΠΠ,∇ΠΠΠ) = C(ΠΠΠ) ·∇ΠΠΠ

Hd =�n ·
{
�D
}
+

cip

Δ
{Cnn}(ΠΠΠ+−ΠΠΠ−)

with ve the test function, Hc the convective and Hd the diffusive fluxes at the element
boundaries Γe. The averages and jumps are defined as follows:

{q}= 1
2
(q−+q+) ; {�q}= 1

2
(�q−+�q+)

[[q]] =�n(q−−q+) ; [[q]] =�n · (�q−−�q+) ,

using {}− to denote values coming from the element interior and {}+ for values
from the outside. The convective and diffusive fluxes and the derivatives of the prim-
itive variables need an appropriate treatment. Different strategies exist:

1. Hard correction of the solution field. This approach strictly keeps the bound-
ary value but leads to instabilities, because it does not respect the type of the
underlying differential equation.

2. Direct definition. This is only possible if the exact flux is known, e. g. at walls.
3. Alternatively, the outer values at the corresponding edge can be defined in such

way that the resulting numerical flux meets the exact flux.
4. Characteristic treatment. Following Hirsch (1990) or Polifke et al. (2006), the

solution can be divided into variables that propagate along characteristic direc-
tions. This quasi one-dimensional approach respects the hyperbolic character of
the differential equation, but may fail at more complex geometries.

5. Puffer zone techniques such as Perfectly Matched Layers (PML) extend the
computational domain by additional zones, in which the solution is damped to
a homogeneous mean flow.

Depending on the boundary type, one of the strategies can be a good choice. For
convective and diffusive fluxes, a combination of the listed strategies or a different
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strategy altogether may be useful or necessary. In this contribution we focus on
adiabatic walls. We shall discuss inflows and outflows in further publications.

2 Treatment of adiabatic, full-reflective walls

2.1 Advective flux treatment

In terms of adiabatic and hard walls, the characteristic formulation reads

Znew
1 −Zold

1
Δ t

= ΔtZ1 =
1

ρa
Δt pcorr −Δt vbc

n
!
= ΔtZ4 =

1
ρa

Δt p+Δt vn ,

with ΔtZ = Δ tR−1U̇. It describes the reflection of characteristics running outwards.
This formulation requires time derivatives of both the pressure and velocity, which
are typically determined by linearization. Because this linearization can produce
oscillations that disturb the solution, this strategy shall not be pursued further. At
stationary walls the boundary flux can be prescribed directly with

Hbc =

⎛
⎝ 0

p−�n
0

⎞
⎠ ,

or alternatively it can be constructed by mirroring the outer state to fit the boundary
flux

U+ =

⎛
⎝ ρ−

�v−α1�nvn
ρe−t +β1e−kin

⎞
⎠ α1 = 1 . . .2, β1 =−1 . . .1 . (2)

For frictionless systems –like solutions of the Eulerian equation– the outer total
energy state fully accounts for the inner energy. For systems with friction, different
choices for the kinetic energy are possible.

2.2 Diffusive flux treatment

The characteristic formula to treat the diffuse flux is also based on time linearization
and is therefor not discussed here. As the velocity gradients are unknown at the wall,
only an incomplete data set to define the exact diffusive flux is given. Alternatively
the outer state can be constructed by setting the velocity field to zero or by mirroring
the velocity. The outer temperature has to meet the inner temperature because no
temperature gradients are allowed. The constructions scheme follows
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ΠΠΠ+ =

(
�v−−α2�v−

T−

)
,

with α2 equal to one in terms of setting the velocity to the boundary value, or two
for mirroring.

2.3 Gradients

Gradients can be treated similarly as diffusive fluxes. Only the temperature gradient
is given to construct the outer state, while the wall shear stress is unknown. This
leads to

(∇�v)+ = (∇�v)−

∂nT+ = ∂nT−−β3∂nT− ,

with β3 also a constant value between one and two.

3 Test case

As test case, a lid-driven cavity is investigated in two steps: First the flow is driven
by a moving isothermal wall on the top. Then, all walls are defined stationary and
adiabatic and the development of the mass and the total energy inside the container
and also the temperature gradients at the boundaries are measured. The domain is
divided into 4 x 4 elements of polynomial order 8, the Reynolds number during the
start up process is 400 (Fig. 1).

Fig. 1 Lid-driven cavity. Snapshot of flow field.



Boundary treatment for the discontinuous Galerkin Methods 5

4 Mass conservation

Tab. 1 displays mass conservation as function of advective flux treatment. Two re-
sults emerge: Firstly, a factor β1 �= 0 in Eq. 2 significantly reduces the conservation
properties. They also deteriorate when the outer normal velocity is set to zero in-
stead of mirroring it. On the other hand, neither the treatment of diffusive fluxes nor
that of velocity and temperature gradients influences mass conservation measurably.

Table 1 Mass conservation as function of adiabatic fluxes∗.

advective flux treatment L∞ norm of mass error

H = Hbc 7.320 ·10−12

v+n =−v−n ρe+t = ρe−t + e−kin 8.301 ·10−9

v+n =−v−n ρe+t = ρe−t − e−kin 8.286 ·10−9

v+n =−v−n ρe+t = ρe−t 7.320 ·10−12

v+n = 0 ρe+t = ρe−t + e−kin 5.606 ·10−7

v+n = 0 ρe+t = ρe−t − e−kin 4.099 ·10−7

v+n = 0 ρe+t = ρe−t 4.852 ·10−7

∗Diffusive fluxes equivalent to the first row in Tab. 2.

5 Total energy conservation

The other hand the total energy strongly depends on the treatment of the diffusive
terms. For reasons of mass conservation the energy correction term ±ekin drops and
the remaining choices of the advective flux have no effects on the total energy. In-
terestingly, uncoupled variations of both the diffusive flux and the primitive variable
gradients seem to have no effect on the energy losses. Only one configuration –the
combination of mirrored temperature gradients and mirrored velocities– pushes the
energy losses two orders downward.

Table 2 Total energy conservation as function of primitive variables and their gradients∗.

diffusive flux treatment gradients L∞ norm of total energy error

�v+ = 0 T+−T− ∂nT+ = 0 (∇v)+ = (∇v)− 1.628 ·10−6

�v+ = 0 T+−T− ∂nT+ =−∂nT− (∇v)+ = (∇v)− 4.443 ·10−6

�v+ =−�v− T+−T− ∂nT+ = 0 (∇v)+ = (∇v)− 9.818 ·10−6

�v+ =−�v− T+−T− ∂nT+ =−∂nT− (∇v)+ = (∇v)− 7.844 ·10−8

∗Advective flux H = Hbc.
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6 Conclusion

In this article we present results of the study of different techniques to define adia-
batic hard walls in the framework of high-order discontinuous Galerkin schemes. In
these, mass conservation depends strongly on the exact definition of the advective
flux, while energy conservation is guaranteed only if both the primitive variables
and their gradients are properly defined. In general, mirroring all values may be a
good choice for fluxes that cannot be calculated directly.

Acknowledgements This work was supported by the German National Science Foundation
(Deutsche Forschungsgemeinschaft, DFG) within the project Numerical simulation of the sound
spectrum and the sound radiation in and around a recorder (Numerische Simulation des Klangspek-
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Analytical and numerical investigation of the
influence of artificial viscosity in Discontinuous
Galerkin methods on an adjoint-based error
estimator

Jochen Schütz, Georg May and Sebastian Noelle

Abstract Recently, it has been observed that the standard approximation to the dual
solution in a scalar finite difference context can actually fail if the underlying for-
ward solution is not smooth [9]. To circumvent this, it has been proposed to over-
refine shock structures of the primal solution. We give evidence that this is also the
case in the discontinuous Galerkin approach for the one-dimensional Euler equa-
tions if one explicitely adds diffusion. Despite this, on the first sight very negative
result, we demonstrate that, if using the dual solution only for adaptation purposes,
a special treatment seems not to be necessary to get good convergence in terms of a
target functional.

1 Introduction

1.1 Background

Distributing degrees of freedom economically in the numerical computation of hy-
perbolic conservation laws has motivated the development of error control.

Traditionally, e.g. in the context of elliptic equations, one has always tried to
reduce the solution error in some given norm below some given treshold, i.e. the
approach take as little degrees of freedom as possible to achieve ‖w− wh‖ < ε ,
where w is the exact and wh the approximated solution (see e.g. [10] for a good
overview).
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In engineering applications, however, one is often interested in only one or a few
single numbers coming from the solution w, e.g. in aerodynamics these numbers
could be lift or drag. Mathematically speaking, one is interested in J(w), where J
is a given, probably nonlinear functional (usually called target functional). This has
motivated the aproach take as little degrees of freedom as possible to achieve |J(w)−
J(wh)|< ε . This error can be approximately calculated via the adjoint method.

A lot of work has been put into the development and theoretical justification of
adjoint methods supposed that the underlying solution is smooth ([4], [8]). Despite
its importance for the use in the context of hyperbolic conservation laws, only a few
publications have been concerned with the correct adjoint formulation in the case
where there is a jump discontinuity in the underlying forward solution, see e.g. [3],
[9], [13] and the references therein.

Recently, it has been observed that the discrete approximation to the dual can
actually fail ([7], [9]) in the case of a shock in the underlying forward solution.
The key observation of the authors of the aforementioned paper is that the loss of
information within the discontinuity is too much to allow for giving precise initial
data of the gradient of the objective function.

To circumvent this feature, the authors in [9] have proposed (and, for their very
special setting, also proved) that an over-refinement of the shock-structure, i.e. giv-
ing viscosity of O(hα), where h is the cell-size and α < 1, does lead to convergent
adjoint solutions.

We have been conducting experiments and came to the conclusion that this does
also hold for the case when one approximates the one-dimensional steady-state Eu-
ler equation with a DG method - stabilized by explicit artificial diffusion - so, as
expected, it is not a particular feature of the approach of [7] and [9]. We will demon-
strate these findings and investigate how they influence an adaptation algorithm.

1.2 Underlying primal equation

We will in the course of this paper consider a one-dimensional model problem; the
quasi one-dimensional steady Euler nozzle flow with flux f and sourceterm S ([1])
through a convergent-divergent duct of given geometry A(x) (x ∈ Ω ⊂ R).

1.3 Adaptive DG discretization with artificial diffusion

We discretize our primal equations by using a Discontinuous Galerkin method (cf.
[5], [2]). In the last few years, these methods have gained quite a lot of attention,
as they bring together the advantages of Finite Element methods (the built-in high-
order) and the advantages of Finite Volume methods (the stability due to upwind-
ing). Furthermore, even in the very high order context, DG methods stay local which
makes them very well suited for parallel computations.
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Recently, several authors (e.g. [12], [6]) have suggested to explicitely add artifi-
cial, solution-dependent diffusion terms for stabilization into the method.
We discretize the convective term with the approach of Cockburn and Shu [5], while
for the viscous term, we use a Bassi-Rebay 2 discretization [2].

We modify the treatment of the boundary conditions in such a way that our dis-
cretization is asymptotically adjoint consistent (cf. [2], [11]). In our adaptation pro-
cedure, we start with a rather coarse grid and calculate a primal solution w1

h. We
then calculate a dual error estimator (see next section) which drives the adaptation
algorithm. To avoid ’extremal’ refinement steps (like e.g. refine only one cell, or
refine all), we use the so-called fixed-fraction criterium ([4]) which refines a fixed
fraction q of cells that have the largest error indicator.

2 Linearization and dual equation

We are mainly interested in variations of J, i.e. (directional) gradients of the func-
tional J(w) :=

∫
Ω p(w) dx . We will for simplicity in this section only deal with

the one-dimensional model problem (for more sophisticated cases, we refer to [3]
and the references therein), where its solution is assumed to have a discontinuity at
x = α .

Given a function v that is supposed to fulfill the dual equation

− f ′(w)T vx +S′(w)T v = p′(w) ∀x ∈ Ω (1)

vT f ′(w)ξ = 0 ∀x ∈ ∂Ω ,∀ξ ∈ Ker(B′(w)), (2)

v2(α) =− A(α)

A′(α)
(3)

and that is additionally supposed to be continuous at x = α , we end up with the fact
that the linearization can be written as

J′(w)w =
∫

Ω
vT · (( f ′(w)w)x +S′(w)w

)
dx. (4)

Of course the internal boundary condition (3) is awkward in actual numerical
calculations for several reasons, one being the uncertainty about α . This is why most
authors do not at all consider this internal boundary condition but just calculate a
solution to (1)-(2) in the hope of reaching (3) for free. This has been very successful
in the context of low-order methods (cf. [8], [14]), although Giles published, for the
time-dependent scalar case, a simple counter example (cf. [7]).
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3 Numerical results

The hα viscosity approach: As mentioned in the introduction, the convergence to-
wards the dual solution can actually fail unless one gives enough diffusion ([7],
[9]). We have - in the 1D Euler case - been conducting experiments and have found
out that this is also true in our setting.

Let us consider a one-dimensional test-case with a free-stream Mach number of
0.5 and an exit pressure of pout = 1.0. For our smooth geometry, this creates a shock
at position x = 5.25... (which can, thanks to the explicit solution, be calculated in
advance). Both primal and dual solution are calculated with polynomial order once
p = 1 and once p = 3 on the same mesh.

To demonstrate our findings, we assume that the viscosity ε(w) ≡ ε is constant
throughout our domain Ω . As a measure of error, we use the relative deviation of the
dual solution v in fulfilling (3). Figure 1 plots the amount of viscosity used versus
the error in the dual solution.

Fig. 1
Amount of artificial viscosity versus error in the adjoint solution for p = 1 and p = 3.

There are some remarks in order about the plot: Notice the right hand side where
all the graphs lie above each other. This means that both primal and dual solution are
perfectly grid-converged and that the only source of error stems from the viscosity
term. The interesting point is always when the graphs ’leave’ the common region
(on the left hand side of the plot) because this is where discretization errors begin
to dominate the overall error. What can be seen is that these occurences do not
appear linearly with respect to the mesh-size but that they eventually occur earlier
and earlier.

These findings motivate the conclusion that one shoud take viscosity constant to
hα , where α is slightly less than unity, to ultimately guarantee convergence of the
adjoint solution.

We demonstrate the advantage in taking the viscosity proportional to h0.8 in Fig-
ure 2. When giving viscosity proportional to h, the dual solution does not converge
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Fig. 2
Plot of the model problem and convergence history of the adjoint solution for p = 3.

at all, while when adding diffusion as O(h0.8), we have a perfectly acceptable con-
vergence history.

What one can also see when comparing the two pictures in Figure 1 is that the
higher-order solution needs a little less (about half) the amount of viscosity to accu-
rately resolve the dual solution on the same mesh.

It remains to prove these findings similar to [9]. Unfortunately, this will be - due
to the more complicated structur of the Euler equations - a non-trivial task as already
mentioned in [9].

Adaptivity by the adjoint without enforcing the hα approach: Despite the very neg-
ative results in the preceeding subchapter, we want to demonstrate that - for using
adaptivity - it does not seem necessary at all to enforce the dual boundary condition.

Let us therefore look at Figure 3. We ran a test with the same starting parameters
as the one for Fig. 2, with the difference that we now did not refine uniform, but we
did refine where the adjoint error estimation did tell us to. The constant viscosity
was chosen to be of size O(h) and O(h0.8), respectively, where h is the minimum

mesh-size.
Of course we are not primarily interested in whether the adjoint internal boundary

condition (3) does converge or whether not, but we are interested in how far the
primal functional J converges. It can be seen clearly from Fig. 3, that even if the
dual does not converge towards the boundary condition (and, in so far, the dual does
not converge properly),we still get an adaptation criterion that seems to be very
reasonable.

Note that, furthermore, due to the viscosity of size O(h), the ’standard’ approach
which concerns viscosity seems to converge mush faster in terms of the functional
J (which is - after all - not very surprising). The actual surprising part is that as
an adaptation criterion, the standard approach seems to be as good as the over-
refinement approach.

This in some way demonstrates the capability of the adjoint approach even if
one does not enforce or even achieve the internal dual boundary condition (3). (This
is what actually most authors do - just neglect (3). Our findings could justify their
approach.)
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50mm

Fig. 3
Convergence history of the adjoint solution for p = 3.
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