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When we defined perfect graphs in our last lecture, the idea was that they would be
graphs with “easy-to-determine” chromatic numbers. Has this been true so far?

For the three classes of graphs we’ve shown to be perfect: yes! Complete graphs have
trivial-to-find chromatic numbers, bipartite graphs also have easily-found chromatic num-
bers, and so do their line graphs (the chromatic number of the line graph L(G) of a bipartite
graph G is A(G), which we proved in our last lecture.)

Motivated by this success, our lecture today will invert this process: first, we’ll try to
find a family of graphs that (if they were perfect) would have an easily-calculated chromatic
number, and then we’ll see if this means they’re actually perfect after all!

1 Perfect Elimination Orderings

Definition. In a graph G, a vertex v is called simplicial if and only if the subgraph of G
induced by the vertex set {v} U N(v) is a complete graph.
For example, in the graph below, vertex 3 is simplicial, while vertex 4 is not:
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A graph G on n vertices is said to have a perfect elimination ordering if and only
if there is an ordering {v1,...v,} of G’s vertices, such that each v; is simplicial in the
subgraph induced by the vertices {v1,...v;}. As an example, the graph above has a perfect
elimination ordering, witnessed by the ordering (2,1, 3,4) of its vertices.

Why do we mention this definition? Well: if a graph G admits a perfect elimination
ordering, then we have a really fast way to find its clique number: just look at the n different
cliques

o {vp} UN(vy)) N{vr,...vn},

° ({'Un—l} U N(’Un_l)) N {'Ul, .. -'Un—l}a



[ ] {Ul}.

If H is an induced subgraph corresponding to a maximum-size clique in our graph, and
vy € V(H) is the vertex in H with the largest subscript value in our ordering, then by
definition H = (v U N(vg)) N{v1,...v}; therefore, H comes up in our list! So, to find the
largest clique, we just have to check n different graphs. This stands in sharp contrast to
the normal situation for graphs, where finding w(G) is a NP-complete problem.

In a very well-defined sense, then, we’ve shown that graphs that have perfect elimination
ordering are graphs that would have really easy to find chromatic numbers (if they were
perfect!) So: are they?

As it turns out: yes! We prove this here, in two propositions:

Proposition 1 If G admits a perfect elimination ordering, so do any of its induced sub-
graphs.

Proof. Let {v1,...v,} be G’s perfect elimination ordering, iy < is < ...i; be any sub-
sequence of the sequence {1,2,...n}, and H the corresponding induced subgraph of G on
{vi;,...v;, }. By definition, we had that each of the graphs

o ({vi,} UN(uvy)) N{v1,...vi }s

o ({vig_, JUN(n-1)) N {1, vy

i {Uh} U N(Uh)) N {Ula cee Ui1}
were cliques in G; therefore, by restricting to H, we have that all of the sets
o ({vi,} UN(vy)) N{viy,... v},

i ({Uik—l} U N(Un—l)) N {Uiu ce Uik_1}7

i {Uil}

are still cliques. Therefore, this induced subgraph H still admits a perfect elimination
ordering.

Proposition 2 If G admits a perfect elimination ordering, G is perfect.

Proof. By our above proposition, it suffices to just show that x(G) = w(G) for any graph G
with a simplicial elimination ordering. We proceed by induction on the number of vertices
in G. If |V(G)| =1, G is trivially perfect, as it’s Kj.

Assume now that V(G) = n > 1, for some n, and let {v1,...v,} be the perfect elim-
ination ordering of G’s vertices that we’re given. Look at the graph G \ {v,}, formed by
deleting v, from G. By our proposition, G \ {v,} still admits a simplicial elimination or-
dering. Therefore, we can apply our inductive hypothesis to see that G\ {v,} is perfect:

i.e. that x(G\ {vn}) = w(G\ {vn}).



For brevity’s sake, define k = w(G \ {v,}). In G itself, by definition, we know that the
collection of vertices v, U N(v,) induces a clique as a subgraph: therefore, we know that
N (vy,) itself induces a clique, and therefore that deg(v,) = |N(v,)| < w(G \ {v,}) = k. So
vy, has less than k neighbors.

Suppose that deg(v,) < k. Then, given any k-coloring of G \ {v,}, we can extend it
to a coloring of G by just letting v, be whatever color in {1,...k} doesn’t show up in its
neighbors. This means that x(G) = k = w(G \ {v,}) < w(G), and therefore that G is
perfect.

Conversely, assume that deg(v,) = k. Then v, U N(v,,) forms a clique of size k + 1, so
w(G) > k+1. Finally, because x(G\ {v,}) = k, we can extend any k-coloring of G\ {v,} to
a k + 1-coloring of G by painting v, the color k + 1; this shows that x(G) < k+ 1 < w(G),
and therefore (again) that G is perfect.

Excellent! The only somewhat unsatisfying part of this new family of graphs is that their
property — this perfect elimination ordering — is a kind of ponderous thing, and not quite
as obviously easy to check as (say) being bipartite, or being the line graph of a bipartite
graph. One of the other motivations we had for defining perfect graphs was our hope that
it would lead us to a “nice” characterizing property, similar to the one we had for bipartite
graphs; does one exist for these “perfect elimination ordering” graphs?

As it turns out, yes!

2 Chordal Graphs

Definition. A graph G is said to contain a chordless cycle if and only if it has some
induced subgraph isomorphic to a cycle Cy, for t > 4. If a graph does not contain any
chordless cycles, it is called chordal.

Definition. For any two vertices x,y € G such that {z,y} ¢ F(G), a © — y separator is
a set S C V(@) such that the graph G \ S has at least two disjoint connected components,
one of which contains  and another of which contains y.

Theorem 3 For a graph G on n vertices, the following conditions are equivalent:
1. G has a perfect elimination ordering.
2. G is chordal.

3. If H is any induced subgraph of G and S is a vertex separator of H of minimal size,
S'’s vertices induce a clique.

Proof. (1 = 2:) Let C be any cycle in G of length at least 4. Take our perfect elimination
ordering of GG, and start deleting vertices according to this ordering until you get to an
element ¢ in C. When you delete this element in C'; we know that its neighbors in C' have
to induce a clique: therefore, there is a “chord” (i.e. edge) between two elements in C, and
therefore the induced subgraph on the vertices in C' is not a cycle.

(2 = 3:) Any induced subgraph of a chordal graph is chordal, because any cycle in G
has a chord in it, which will be preserved in any induced subgraphs containing that cycle.



So it suffices to prove that if G is chordal, any minimal x — y separator .S will induce a
clique.

To do this: let S be a minimal z —y separator in G, and let A, A, be the two connected
components of G that contain x and y, respectively. Suppose that u, v are a pair of vertices
in S; then, because S is minimal, there are edges from both u and v to the two components
Ay, Ay (otherwise, we wouldn’t have needed them to separate A, from A,. Let P, be the
shortest path from u to v in A, and P, be the shortes path from u to v in A,; because both
of these paths have length > 2, their union is a cycle of length > 4. Because G is assumed
to be chordal, there must be a chord in this cycle; because there are no direct edges from
A; to Ay (because they’re distinct connected components when we cut along S) nor any
other edges from u,v to these components (because we picked shortest-possible paths), the
only possible chord can be if {u,v} itself is an edge! Because this holds for every pair of
vertices u,v € S, we have that there is an edge between every pair of vertices in S: i.e. S
induces a clique.

(3 = 1:) We proceed by induction on n, the number of vertices in G.

In particular, we will prove the following second claim by induction: given any chordal
graph G, then either G is a complete graph or G has two vertices x,y that (1) do not share
an edge and (2) are both simplicial. If we have this, then note that we immediately have
that G has a perfect elimination ordering: simply take a simplicial vertex in G, delete it,
and note that induction gives us that this smaller chordal graph has a perfect elimination
ordering. Adding our vertex back in does not change the existence of a perfect elimination
ordering, so we have proven our claim!

For n = 1 this is trivial. Inductively, assume that our claim holds for all graphs on
< n—1 vertices, and seek to prove it for graphs on n vertices. If G is a clique, we are trivially
done, as any ordering of G’s vertices gives a perfect elimination ordering. Otherwise, there
are a pair of vertices z,y such that {z,y} is not an edge in E(G). Let S be a minimal
x — y separator, and A, A, the components of G \ S containing z and y. There are two
possibilities: either both of x,y are simplicial (in which case we're done!) or one (or both)
are not simplicial.

Assume that x is not simplicial for now. In this case, look at the subgraph induced by the
vertices in SU A,. This is a proper induced subgraph of our graph, and thus (by induction,
as induced subgraphs of chordal graphs are chordal) contains two simplicial vertices with
no edge between them. At least one of these simplicial vertices is in A,, because there is
no edge between these two simplicial vertices. Moreover, the only edges this vertex has are
to elements of A, and S, so this vertex is in fact simplicial in our larger overall graph, and
not connected to any vertex in A,!

Applying this logic to y in the event that y is not simplicial gives us a simplicial vertex
in A, as well, and thereby proves our claim.

Perfect elimination graphs, therefore, are chordal — a remarkably elegant classification!
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