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1 Review
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A. D. Poularikas, Signals and Systems Primer with MATLAB. CRC Press, 
2007. 
S. Haykin, Communication Systems. John Wiley & Sons, 4th edition, 
2001
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McGraw-Hill, 2nd edition, 1984. 
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3

M.Sc. Marko Hennhöfer, Communications Research Lab                     Information Theory and Coding Slide: 5

2 Information Theory

Overview: communication system
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2.1 Information, entropy

Source a,b,a,c

Discrete source, emits symbols from a given alphabet

modelled via a random variable S with probabilities of occurence

Discrete memoryless source. 
subsequent symbols are statistically independent   

e.g.:
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2.1 Information, entropy

What is the ammount of information being produced by this source?
if:                            no uncertainty, no surprise, i.e., 

no information

for small      the surprise (information) is higher as compared to higher 
values of 

Occurence of an event:   
Information gain (removal of uncertainty ~
Information of the event
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2.1 Information, entropy

Properties of information:

.

.

The event              yields a gain of information (or no information) but 
never a loss of information. 

The event with lower probability of occurence has the higher 
information

For statistically independend events      and
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2.1 Information, entropy

The basis of the logarithm can be chosen arbitrarily.

Usually:

Information if one of two equal probable events occurs

is a discrete random variable with probability of occurence 
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2.1 Information, entropy

Entropy
mean information of a source
(here: discrete memoryless source with alphabet    ) 
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2.1 Information, entropy

Important properties of the entropy

where K is the number of Symbols in

no uncertainty

maximum uncertainty.
All symbols occur with the same probabilities
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2.1 Information, entropy

Bounds for the entropy

Lower bound:

Upper bound:
Use

Given two distributions

for the alphabet 
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2.1 Information, entropy

Upper bound for the entropy continued:

This yields Gibb’s inequality:

Now assume 

M.Sc. Marko Hennhöfer, Communications Research Lab                     Information Theory and Coding Slide: 14

2.1 Information, entropy

Summary:

Redundancy and relative redundancy of the source

High redundancy of a source is a hint that compression methods will 
be beneficial.
E.g., Fax transmission: 

~90% white pixels 
low entropy (as compared to the “best” source)
high redundancy of the source 
redundancy is lowered by run length encoding 

Entropy of the current source
Entropy of the “best” source
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2.1 Information, entropy

Example: Entropy of a memoryless binary source
Symbol 0 occurs with probability
Symbol 1 occurs with probability
Entropy:

Characteristic points:

Entropy function (Shannon’s Function)
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2.1 Information, entropy

Extended (memoryless) sources:
Combine n primary symbols from
to a block of symbols (secondary symbols from     ) 

Example:

e.g., n=2, the extended source will have 3  =9 symbols, n 
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2.2 Source Coding

Source coding theorem (Shannon) 

Efficient representation (Coding) of data from a discrete source
Depends on the statistics of the source

short code words for frequent symbols
long code words for rare symbols

Code words must uniquely decodable

Source
Source
coder

efficient mapping to 
binary code words

a,b,a,c 11,01,

K different 
symbols

has the probabilities of occurence      and the code word length
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Source coding theorem (Shannon) 

Mean code word length
(as small as possible)

Given a discrete source with entropy                     .
For uniquely decodable codes the entropy is the lower bound for the 
mean code word length:

Efficiency of a code:

Redundancy and relative redundancy of the coding:

2.2 Source Coding
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Fano Coding
Important group of prefix codes
Each symbol gets a code word assigned that approximately matches 
it’s infomation
Fano algorithm:

1. Sort symbols with decreasing probabilities. Split symbols to groups with 
approximately half of the sum probabilities

2. Assign “0” to one group and “1” to the other group.
3. Continue splitting

Fano Coding, example:
Code the symbols S={a, b, c, d, e, f, g, h} efficiently. Probabilities of 
occurence pk={0.15,0.14, 0.13, 0.1, 0.12, 0.08, 0.06, 0.05}

2.2 Source Coding
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Fano Coding, example:
Symbol prob. CW lk  / bit

c 0.3 0 0 00 2

a 0.15 0 1 01 2

b 0.14 1 0 0 100 3

e 0.12 1 0 1 101 3

d 0.1 1 1 0 0 1100 4

f 0.08 1 1 0 1 1101 4

g 0.06 1 1 1 0 1110 4

h 0.05 1 1 1 1 1111 4

Source Entropy

Mean CW length

Redundancy

Efficiency

In average 0.06 bit/symbol more need to be transmitted as information is provided by the 
source. E.g., 1000 bit source information -> 1022 bits to be transmitted.

2.2 Source Coding
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Huffman Coding
Important group of prefix codes
Each symbol gets a code word assigned that approximately matches 
it’s infomation
Huffman coding algorithm:

1. Sort symbols with decreasing probabilities. Assign “0” and “1” to the 
symbols with the two lowest probabilities 

2. Both symbols are combined to a new symbol with the sum of the 
probabilities. Resort the symbols again with decreasing probabilities.

3. Repeat until the code tree is complete
4. Read out the code words from the back of the tree

2.2 Source Coding
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Huffman Coding, example:
Symbol prob. CW lk  / bit

c 0.3 0.3 0.3 0.3 0.3 0.41 0.59 00 2

a 0.15 0.15 0.18 0.23 0.29 0.3 0.41 010 3

b 0.14 0.14 0.15 0.18 0.23 0.29 011 3

e 0.12 0.12 0.14 0.15 0.18 100 3

d 0.1 0.11 0.12 0.14 110 3

f 0.08 0.1 0.11 111 3
e.g.

g 0.06 0.08 1010 4

h 0.05 1011 4

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Redundancy

Efficiency

In average 0.03 bit/symbol more need to be transmitted as information is provided by the 
source. E.g., 1000 bit source information -> 1011 bits to be transmitted.

2.2 Source Coding



12

M.Sc. Marko Hennhöfer, Communications Research Lab                     Information Theory and Coding Slide: 23

2.3 Differential entropy

Source

Continuous (analog) source
modelled via a continuous random variable X with pdf            .

differential entropy

Example: Gaussian RV with pdf

X
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2.4 The discrete channel

The discrete channel

Channel
coder

Line 
coder

Modu-
lation

Channel
decoder

Line 
decoder

Demodu
-lation

Physical
channel

discrete 
channel

input alphabet

output alphabet
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Discrete channel:

: Input alphabet with    values/symbols. Easiest case          , i.e., 
binary codes. Commonly used                           , i.e., symbols are bit 
groups.

: Output values

Hard decision:
Decoder estimates directly the transmitted values, e.g., in the binary 
case                                   .

Soft decision:
has more values as       . Extreme case:                  , continuous-

valued output. Allows measures for the reliability of the decision

2.4 The discrete channel
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Conditional probabilities / transition probabilities:

conditional probability that            is received if            has been 
transmitted.

are assumed to be random variables with                 and              .

Discrete memoryless channel, DMC:

Subsequent symbols are statistically independent.
Example: Probability that a 00 is received if a 01 has been transmitted.

General:

2.4 The discrete channel
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Symmetric hard decision DMC:

symmetric transition probabilities
.

.

special case          : Binary symmetric channel (BSC)

symbol error probability

2.4 The discrete channel
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Binary symmetric channel (BSC):

Example: Probability to receive 101 if 110 has been transmitted

2.4 The discrete channel
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Binary symmetric channel (BSC)

Important formulas:
1. Error event,       , i.e., probability that within a sequence               

of length     at least one error occurs.

2. Probability that    specific bits are erroneous in a sequence of length    .

3. Probability for    errors in a sequence of length    . 

2.4 The discrete channel
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Binary symmetric erasure channel (BSEC):

Simplest way of a 
soft-decision output

2.4 The discrete channel



16

M.Sc. Marko Hennhöfer, Communications Research Lab                     Information Theory and Coding Slide: 31

Entropy diagram:

equivocation

irrelevance

mean 
transmitted 
information

mean 
received 

information

source channel receiver

2.4 The discrete channel
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source entropy, i.e., mean information emitted by the source

mean information observed at the receiver

irrelevance, i.e., the uncertainty over the output, if the 
input is known

equivocation, i.e., the uncertainty over the input if the 
output is observed

transinformation or mutual information, i.e., the 
information of the input which is contained in the output.   

Explaination:

2.4 The discrete channel
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Important formulas:

Example:

Input entropy output entropy

2.4 The discrete channel
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Example:

irrelevance:

first consider only one input value

2.4 The discrete channel
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Example:

irrelevance:

then take the mean for all possible input values

2.4 The discrete channel
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irrelevance:

2.4 The discrete channel
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Example:

equivocation:

2.4 The discrete channel
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Mutual information:

2.4 The discrete channel
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Mutual information & channel capacity:
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2.4 The discrete channel
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2.5 The AWGN channel
AWGN (Additive White Gaussian Noise) Channel:

Channel
coder

Modu-
lation

Channel
decoder

Demodu
-lation

Physical channel

+

infinite bandwidth, 
therefore, infinite 
power:

Demodulator limits bandwidth. 
The noise variance at the 
sampling times computes to      . 

See “Communications Engineering” lecture for details.

PSD

ACF∞

∞
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2.5 The AWGN channel
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Simplified model:

Channel
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Channel
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+

assume as statistically 
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binary example conditional PDF
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2.5 The AWGN channel
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Error probability:

decision  boundary

2.5 The AWGN channel
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AWGN Channel, binary input, BER performance (uncoded):
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Bounds for the Q-function:
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2.5 The AWGN channel
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Entropy diagram for the continuous valued input and output:

differential equivocation

differential irrelevance

transmitted 
differential 

entropy

received 
differential 

entropy

source channel receiver

2.5 The AWGN channel
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Differential entropies:

Mutual information:

2.5 The AWGN channel
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: Random variables, containing the 
sampled values              of the input, output, 
and the noise process.

AWGN Channel model:

: Gaussian distibuted with variance      , 

: Input signal, power limited to  

Channel capacity:

2.5 The AWGN channel
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Mutual information:

2.5 The AWGN channel
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AWGN Channel capacity:

2.5 The AWGN channel
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AWGN Channel capacity:

in bits per transmission
or bits per channel use

AWGN Channel capacity as a function of the SNR and in bits per second?

Example: Assume a transmission with a binary modulation scheme and bit 
rate                 bit/s. 

PSD

2.5 The AWGN channel
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Band limited noise process:PSD of the sampled signal:

......

Sampling at Nyquist rate of 2W, 
i.e., we use the channel 2W times 
per second

Noise power

in bits per second

channel uses per second

in bits/second

2.5 The AWGN channel
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3 Channel Coding

Channel
coder

add useful 
redundancy
e.g., for
FEC

11,01, 110,011,

Channel coding:

info word, 
length k

code word, 
length n

Defines a (n,k ) block code       code rate R = k / n < 1

Example: (3,1) repetition code

results in an 
increased data rate

code
bit
rate

info
bit
rate

bandwidth
expansion 

factor



28

M.Sc. Marko Hennhöfer, Communications Research Lab                     Information Theory and Coding Slide: 55

3 Channel Coding

Code properties:

Systematic codes: Info words occur as a part of the code words

Code space:

Linear codes: The sum of two code words is again a codeword

bit-by-bit modulo 2 
addition without carry

M.Sc. Marko Hennhöfer, Communications Research Lab                     Information Theory and Coding Slide: 56

3 Channel Coding

Code properties:

Minimum Hamming distance: 
A measure how different the most closely located code words are.
Example:

compare all combinations 
of code words 

For linear codes the comparison simplifies to finding the code word 
with the lowest Hamming weight:
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3 Channel Coding
Maximum likelihood decoding (MLD):

Goal: 
Minimum word error probability 

Code word estimator:

Channel
coder

11,01, 110,011, discrete
channel

CW
estimator

encoder
inverse

100,011, 110,011,

11,01,

is the mapping from all 2n possible received words to the 2k possible 
code words in 

Example: (7,4) Hamming code
27 = 128 possible received words
24 = 16 valid code words in 
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3 Channel Coding

Decoding rule: 
Assumption: equal apriori probabilities, i.e., all 2k code words appear with 
probability 1/2k.

Probability for wrong detection if a certain cw     was transmitted: 

Probability to receice a CW 
that yields an estimate 

Furthermore: 
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3 Channel Coding

Example: (n=3,k=1) Repetition Code: 
Assumption: equal apriori probabilities, i.e., each of the 2k =21 =2 code 
words (111,000) appear with probability 1/2k=1/21=1/2

Probability for wrong detection if a certain cw     was transmitted: 

e.g., assume               was transmitted over a BSC:

Transmitted, 
a

Possibly
received, y

Decoded

111 000 000
001 000
010 000
011 111
100 000
101 111
110 111
111 111

consider all received
words that yield a
wrong estimate

Prob., e.g., if a BSC is
considered

P(000|111) pe pe pe
P(001|111) pe pe (1-pe)
P(010|111) pe (1-pe) pe

P(100|111) (1-pe) pe pe
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3 Channel Coding

Probability for a wrong detection (considering all possibly
transmitted CWs now): 

wrong detection

any detection
correct detection

mean over all transmitted CWs

combining
the sums
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3 Channel Coding

Probability for wrong detection: 

To minimize       choose                 for each received word  such that 
gets maximized 

is maximized, if we choose a CW     with the minimum 
distance     to the received word   .
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3 Channel Coding
MLD for hard decision DMC:
Find the CW with minimum Hamming distance.

MLD for soft decision AWGN:

Euklidean distance

Find the CW with minimum Euklidean distance.
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3 Channel Coding
Coding gain:

(the bit error probability is considered only for the k info bits)

Example: Transmit 10 CWs and 1 bit error shall occur

Suitable measure: Bit error probability:

Code word error probability:

k info bits

1 bit wrong will yield 1 wrong code word ⇒
40 info bits have been transmitted ⇒

As in general more than one error can occur in a code word, we can 
only approximate 
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3 Channel Coding

If we consider that a decoding error occurs only if          bits are wrong:

Comparison of codes considering the AWGN channel:
Energy per bit vs. energy per coded bit (for constant transmit power)

Example: (3,1) repetition code,

11 1 1
coding

coded bits, energy 
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3 4 5 6 7 8 9 10 11 12
10-10

10-8

10-6

10-4

10-2

 Ec / N0 in dB

BER Performance using the (7,4) Hamming code

 

 

uncoded
 Pb hard, approx

 Pb soft, approx

3 Channel Coding

In the low SNR regime 
we suffer from the 
reduced energy per 
coded bit

asymptotic 
coding gain

hard vs. soft
decision gain

Example:
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3 Channel Coding
Analytical calculation of the error probabilities:
Hard decision:
Example: (3,1) repetition code

Info code received
word          word             word 

3 combinations for 1 error

1 combination for 3 errors

3 combinations for 2 errors

combinations for r errors 
in a sequence of length n

will be corrected
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3 Channel Coding

error can be corrected

3 combinations 
for 2 errors

1 combination 
for 3 errors

general: 

CW errors occur 
for more than 
t+1 wrong bits

combinations 
for r errors 
in a sequence 
of length n

probability 
for r errors

probability 
for n-r
correct bits
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3 Channel Coding

Approximation for small values of 

general: 

only take the lowest power 
of      into account 

Example: (7,4) Hamming code,

for a binary 
mod. scheme & 
AWGN channel
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3 Channel Coding
Example:

simulated

calculated
as derived
before

3 4 5 6 7 8 9 10 11 12

10
-8

10
-6

10
-4

10
-2

Eb / N0 in dB

BER Performance using the (7,4) Hamming code

uncoded
Pb hard
Pw hard

Pb approx

Pw approx

more bits should have 
been simulated to get 
reliable results here
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3 Channel Coding
Asymptotic coding gain for hard decision decoding:
uncoded:

coded:

constant 

Assume constant BER and compare signal-to-noise ratios

in dB 

good approximation
for high SNR
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3 4 5 6 7 8 9 10 11 12
10-10

10-8

10-6

10-4

10-2

 Ec / N0 in dB

BER Performance using the (7,4) Hamming code

 

 

uncoded
 Pb hard, approx

 Pb soft, approx

3 Channel Coding
Example:

Asymptotic coding gain
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3 Channel Coding
Analytical calculation of the error probabilities:
Soft decision:

+

AWGN channel

Noise vector: i.i.d.

code word received word

Example: (3,2) Parity check code

+
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3 Channel Coding
Example continued

ML decoding rule, derived before

Pairwise error probability: Assume       has been transmitted. What is 
the probability that the decoder decides for a different CW     ?

The decoder will decide for     if the received word     has a smaller Euklidean 
distance to      as compared to     .

next: Evaluate the norm by summing the squared components
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3 Channel Coding

For the whole CW we have                   different bits
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3 Channel Coding

scales standard deviation

Gaussian rv with standard deviation

sum of Gaussian rvs: The variance of the sum will be the
sum of the individual variances.

std. dev.

variance

Gaussian rv with zero mean and variance
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3 Channel Coding

multiplied 
with -1

Question: What is the probability that our Gaussian r.v. becomes larger 
than a certain value?

Answer: Integral over remaining part of the Gaussian PDF, e.g., expressed
via the Q-function.

Q-Function:

Probability that a normalized Gaussian r.v. becomes larger than
certain value .

normalized Gaussian rv
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3 Channel Coding

Pairwise error probability:

normalized Gaussian r.v.
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3 Channel Coding
Example continued:

For                          we would 
get

e.g., for

transmitted

Number of CW 
within distance 

The CWs with the minimum Hamming distance to the transmitted CW 
dominate the CW error probability

Mean over the transmitted CWs
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3 Channel Coding

Best case: only one                                             worst case: all CWs
CW within                                                           within 

For high SNR or if            is unkown 
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3 Channel Coding
Example:

simulated

calculated
as derived
before 
using 

3 4 5 6 7 8 9 10 11 12
10

-10

10
-8

10
-6

10
-4

10
-2

Eb / N0 in dB

BER Performance using the (7,4) Hamming code

uncoded
Pb soft
Pw soft

Pb approx

Pw approx
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3 Channel Coding
Asymptotic coding gain for soft decision decoding:

uncoded:

coded:

Assume constant BER and compare signal-to-noise ratios

in dB 

good approximation
for high SNR

Derivation analog to the hard decision case 
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3 4 5 6 7 8 9 10 11 12
10-10

10-8

10-6

10-4

10-2

 Ec / N0 in dB

BER Performance using the (7,4) Hamming code

 

 

uncoded
 Pb hard, approx

 Pb soft, approx

3 Channel Coding
Example:

Asymptotic coding gain
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3 Channel Coding
Matrix representation of block codes:

Example: (7,4) Hamming code 

Encoding equation: 

systematic code 

bitwise modulo 2 
sum without carry 
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3 Channel Coding

Introducing the generator matrix we can express the encoding process 
as matrix-vector product.  

multiply and 
sum 

The identity matrix 
is responsible that 
the code becomes a 
systematic code. It 
just copies the info 
word into the CW 

Parity matrix
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3 Channel Coding

General: For a (n,k ) block code:

info words

code words

Encoding:

Set of code words:

For systematic codes:
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3 Channel Coding

Properties of the generator matrix

the rows of      shall be linear independent
the rows of      are code words of 
the row space is the number of linear independent rows
the column space is the number of linear independent rows
row space and column space are equivalent, i.e., the rank of the matrix
as      has more columns than rows, the columns must be linear 
dependent

Example: (7,4) Hamming code easy to see:
the rows are linear 
independent
the last 3 columns can be 
written as linear comb. of 
the first 4 columns
rank 4
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3 Channel Coding

Properties of the generator matrix

rows can be exchanged without changing the code
multiplication of rows with a scalar doesn‘t change the code
sum of a scaled row with another row doesn‘t change the code
exchanging columns will change the set of codewords but the weight 
distribution and the minimum Hamming distance will be the same

each Generator matrix can be 
brought to the row echelon form,
i.e., a systematic encoder

yields the same code:
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3 Channel Coding

Properties of the generator matrix

as the all zero word is a valid code word, and the rows of       are also 
valid code words, the minimum Hamming distance must be less or 
equal the minimum weight of the rows. 

Parity check matrix
The code can be also defined via the parity check matrix
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3 Channel Coding

Parity check matrix

If      is a systematic generator matrix, e.g.,

then

can be used to check whether a received CW is a valid CW, or to 
determine what is wrong with the received CW (syndrom)
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3 Channel Coding

Decoding:

ML decoding is trivial but computationally very complex as the received 
CW has to be compared with all possible CWs. Impractical for larger code 
sets.
Therefore, simplified decoding methods shall be considered.

Syndrom decoding using Standard Arrays (or Slepian arrays)

Assume an (n,k ) code with the parity check matrix

The Syndrom for a received CW     is defined as:

with

valid CW + error word, error pattern

For a valid received CW the syndrom will be 0. 
Otherwise the Syndrom only depends on the error pattern.
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3 Channel Coding

As we get 2k valid codewords and 2n possibly received words there must 
be 2n - 2k error patterns. The syndrom is only of size n -k, therefore the 
syndroms are not unique.
E.g., (7,4) Hamming Code: 16 valid CWs, 128 possibly received CWs, 112 
error patterns, 2(n-k )=8 syndroms.

Let the different syndroms be                              .
For each syndrom we‘ll get a whole set of error patterns        (cosets), that 
yield this syndrom.

Let                  , i.e., they’ll yield the same Syndrom 

The difference of two error patterns 
in        must be a valid CW then.

M.Sc. Marko Hennhöfer, Communications Research Lab                     Information Theory and Coding Slide: 92

3 Channel Coding

The set       can be expressed as one element              plus the code set    .

Within        each     can be chosen as coset leader to calculate the rest 
of the coset.

The coset leader is chosen with respect to the minimum Hamming weight

Example: (5,2) Code
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3 Channel Coding

Syndrom 0 valid CWs

coset 
leader coset syndrom

e.g.,       , all error 
patterns that yield 
the syndrom 011

choose the pattern with minimum Hamming 
weight as coset leader
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3 Channel Coding
Syndrom decoding

resort for easier look-up.
contains already the 

address information

As the coset leader was chosen with the 
minimum Hamming distance, it is the most 
likely error pattern for a certain syndrom

The same table as before only considering the coset leaders and the 
syndroms.

syndrom table 
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3 Channel Coding

Example: (5,2) Code continued

Assume we receive

Calculate the Syndrom (“what is wrong with the received CW?“)

Look-up in the syndrom table at position 3 (011 binary).

Invert the corresponding bit to find the most likely transmitted CW.
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3 Channel Coding
Convolutional codes:

No block processing; a whole sequence is convolved with a set of 
generator coefficients
No analytic construction is known good codes have been found by 
computer search
Description is easier as compared to the block codes
Simple processing of soft decission information well suited for 
iterative decoding
Coding gains from simple convolutional codes are similar as the ones 
from complex block codes
Easy implementation via shift registers

Features:
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3 Channel Coding
General structure:

output 
block

Example: (n,k ), e.g., (3,2) convolutional code with 
memory m=2 (constraint length K=m+1=3)

current input / info-block m=2 previous info-blocks

0           1                              1            0                             0           1
1           0                              1            1                             0           0

0           1                              0            0                             0           0

weights for 
the linear 

combination

[011001]
[101100]
[010000]

generators
usually in 
octal form

(31, 54, 20)
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3 Channel Coding
Formal description:

the       bit from input
block

corresponding weight, 
0 or 1

sum over the bits of the input blocks

sum over the input blocks

Describes the linear combinations, how to compute the n output 
bits from the k (m+1) input bits.

the       bit from 
output block
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3 Channel Coding
General structure:

output 
block

often used, input blocks of size 1: (n,1 ), e.g., (3,1) 
convolutional codes

current input / info-bit m=2 previous info-bits

1                                           0  0
1                                           0                                           1

1                                           1                                           1

[100]
[101]
[111]

generators
octal form

(4, 5, 7)
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3 Channel Coding
General structure: visualization as shift register, e.g., (3,1) conv. code 

with generator (4,5,7), constraint length 3.

initialization       X             0          0

m=2, 
memory

state

s0 = 0 0
s1 = 0 1
s2 = 1 0
s3 = 1 1

current 
input bit
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3 Channel Coding
Generation of Trellis diagram (example continued):
initialization

X 0 0
state
s0 = 0 0

s1 = 0 1

s2 = 1 0

s3 = 1 1

X=0

current
input

input  X=0             0          0

input  X=1             0          0

output

output

000
0

0

0

1

1

1

following 
state
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3 Channel Coding
Trellis diagram (example continued):

state
s0 = 0 0

s1 = 0 1

s2 = 1 0

s3 = 1 1

000

current input:0
current input:1

000 000 000 000

101 101 101
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3 Channel Coding

Input seq.: 0                 1                 0                 1                  1      ...
Output seq.:  000             111             001             100              110    ...

state
s0 = 0 0

s1 = 0 1

s2 = 1 0

s3 = 1 1

000

current input:0
current input:1

000 000 000 000

Encoding via the Trellis diagram (example continued):

101 101 101
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3 Channel Coding

s0 = 0 0

current input:0
current input:1

State diagram (example continued):
A more compact representation

s1 = 0 1

s2 = 1 0

s3 = 1 1

111
000

101

100

001

011

110

010
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3 Channel Coding

s0 = 0 0

current input:0
current input:1

Encoding via state diagram (example continued):

s1 = 0 1

s2 = 1 0

s3 = 1 1

111
000

101

100

001

011

110

010

Input seq.: 0                 1                 0                 1                  1      ...
Output seq.:  000             111             001             100              110    ...

initialization;
start here
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3 Channel Coding
Viterbi algorithm for hard decission decoding:

s0 =
0 0

s1 =
0 1

s2 =
1 0

s3 =
1 1

000

current input:0
current input:1

000 000 000 000 000

Info bits:  0                     1                       0                    1                        0                    0
Transm.:  000               111                   001                 100                   001                  011
Received: 001               111                   011                 000                   001                  010         

1

2

1

Viterbi
metric, i.e.,
Hamming 
distance

001
111

2

3

0

2

1

4

4

1

3

2

0

5

4

3

2
1

5

1

4

3
7

101 101

2

2

3

5

0

2
3

1

1
1

2

2

4

4

6

4

7

3

7

5

1

2

0

2

5

6

7

3

1

1

4

6

sum

survivor

transmission errors

termination / tail bits
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3 Channel Coding
Viterbi algorithm for hard decission decoding:

current input:0
current input:1

Info bits:  0                     1                       0                    1                        0                    0
Transm.:  000               111                   001                 100                   001                  011
Received: 001               111                   011                 000                   001                  010
ML est.:   000               111                   001                 100                   001                  011
Decoded:   0                   1                       0                     1                       0                      0

traceback
path with 
minimum 
metric

000 000 000 000 000 000
1

2

1

2

3

0

2

1

4

4

1

3

2

0

5

4

3

2
1

5

1

4

3
7

101 101

2

2

3

5

0

2
3

1

1
1

2

2

4

4

6

4

7

3

7

5

1

1

0

2

5

5

7

3

1

1

4

6

termination / tail bits
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3 Channel Coding
blank Trellis diagram:

state
0 0

0 1

1 0

1 1

current input:0
current input:1

termination / tail bits

0                      0
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3 Channel Coding
Summary: Viterbi algorithm for hard decission decoding:

Generate the Trellis diagram depending on the code (which is defined 
by the generator)
For any branch compute the Viterbi metrics, i.e., the Hamming 
distances between the possibly decoded sequence and the received 
sequence
Sum up the individual branch metrics through the trellis (path metrics)
At each point choose the suvivor, i.e., the path metric with the 
minimum weight
At the end the zero state is reached again (for terminated codes)
From the end of the Trellis trace back the path with the minimum 
metric and get the corresponding decoder outputs
As the sequence with the minimum Hamming distance is found, this 
decoding scheme corresponds to the Maximum Likelihood decoding

Sometimes also different metrics are used as Viterbi metric, such as the number of 
equal bits. Then we need the path with the maximum metric.
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3 Channel Coding
How good are different convolutional codes?

For Block codes it is possible to determine the minimum Hamming
distance between the different code words, which is the main
parameter that influences the bit error rate
For convolutional codes a similar measure can be found. The free
distance is the number of bits which are at least different for two
output sequences. The larger         , the better the code.
A convolutional code is called optimal if the free distance is larger as
compared to all other codes with the same rate and constraint length
Even though the coding is a sequential process, the decoding is
performed in chunks with a finite length (decoding window width)
As convolutional codes are linear codes, the free distances are the
distances between each of the code sequences and the all zero code
sequence
The minimum free distance is the minimum Hamming weight of all 
arbitrary long paths along the trellis that diverge and remerge to the 
all-zero path (similar to the minimum Hamming distance for linear 
block codes)
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3 Channel Coding
Free distance (example recalled): (3,1) conv. code with generator (4,5,7).

state
s0 = 0 0

s1 = 0 1

s2 = 1 0

s3 = 1 1

000 000 000 000 000

101 101 101

0

3

0 0 0 0

3

1 1
1

2

2 1

6 8

2

diverge
remerge

The path diverging and remerging to all-zero path with minimum weight

6

Hamming 
weight of 
the branch

Note: This code is not optimal as there exists a better code with constraint 
length 3 that uses the generator (5,7,7) and reaches a free distance of 8
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3 Channel Coding
How good are different convolutional codes?

Optimal codes have been found via computer search, e.g.,

As the decoding is done sequentially, e.g., with a large decoding 
window, the free distance gives only a hint on the number of bits that 
can be corrected. The higher the minimum distance, the more closely 
located errors can be corrected 
Therefore, interleavers are used to split up burst errors

Code rate Constraint 
length

Generator 
(octal)

Free distance

1 / 2 3 (5,7) 5

1 / 2 4 (15,17) 6

1 / 2 5 (23, 35) 7

1 / 3 3 (5,7,7) 8

1 / 3 4 (13,15,17) 10

1 / 3 5 (25,33,37) 12

Extensive tables, see reference: John G. Proakis, “Digital Communications”
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3 Channel Coding

Application example GSM voice transmission 

The speech codec produces blocks of 260 bits, from which some bits 
are more or less important for the speech quality

Class Ia: 50 bits most sensitive to bit errors
Class Ib: 132 bits moderately sensitive to bit errors
Class II: 78 bits least sensitive to bit errors 

class Ia

class Ib

class II

calc. parity 
bits (CRC)

co
nv

ol
ut

io
na

l 
en

co
de

r

m
ul

ti
pl

ex
er

vo
ic

e 
co

de
r

50 3

50

132

4
termination bits  0

78

189

189

378

456

standardization 1982-1992 
deployment starting 1992
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3 Channel Coding

Application example GSM voice transmission

The voice samples are taken every 20ms, i.e., the output of the voice 
coder has a data rate of 260 bit / 20 ms = 12.7 kbit/s
After the encoding we get 456 bits which means overall we get a code 
rate of about 0.57. The data rate increases to 456 bit / 20 ms = 22.3 
kbit/s
The convolutional encoder applies a rate ½ code with constraint length 
5 (memory 4) and generator (23, 35),                . The blocks are also 
terminated by appending 4 zero bits (tail bits). 
Specific decoding schemes or algorithms are usually not standardized. 
In most cases the Viterbi algorithm is used for decoding
24=16 states in the Trellis diagram
In case 1 of the 3 parity bits is wrong (error in the most sensitive data) 
the block is discarded and replaced by the last one received correctly
To avoid burst errors additionally an interleaver is used at the encoder 
output
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3 Channel Coding
Application example UMTS:

Example: Broadcast 
channel (BCH)
Convolutional code: 
Rate ½
Constraint length K=9
(memory m=8)
generator (561,753),

28=256 states in the 
Trellis diagram!

Also Turbo codes got
standardized

standardization 1990-2000 
deployment starting 2001

From: „Universal Mobile 
Telecommunications System 
(UMTS); Channel coding and 
multiplexing examples (ETSI 3GPP 
TR 25.944)“, 82 pages document
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3 Channel Coding
Recursive Systematic Codes (RSC):

delay delay

Example:
Systematic: Info 
bit occurs directly 
as output bit

Recursive: 
Feedback path in 
the shift register

1                             1  1

1                          0                         1

[111] (7)octal

[101] (5)octal

generators

feedback generator:
feedforward generator:

rate ½ RSC
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3 Channel Coding
Example continued:

delay delay

1                            0 0

1
0 0

0

1

1

1

1

state
s0 = 0 0

s1 = 0 1

s2 = 1 0

s3 = 1 1

current input:0
current input:1

00

10
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3 Channel Coding
More detailed:

delay delay
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3 Channel Coding
Tailbits for the terminated code?
Depend on the state!

state
s0 = 0 0

s1 = 0 1

s2 = 1 0

s3 = 1 1

current input:0
current input:1

0                      0

1                      1                      

1                      

0                      

tail bits

0 0

1 0

11

0 1

00

10

00 00

The tailbits are 
generated 
automatically by 
the encoder, 
depending on the 
encoded sequence
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3 Channel Coding
How to terminate the code?

delay delay

switch for 
termination

now generated 
from the state

will now be always zero, i.e., the 
state will get filled with zeros
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3 Channel Coding
Example: Termination if the last state has been „11“:

1                      

0 01

11

From the state 11 we force the encoder back to the 00 state by generating the 
tail bits 0 1. The corresponding output sequence would be 01 11. See also the 
Trellis diagram for the termination.

As the input is not arbitrary anymore, we get only 4 cases to consider
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3 Channel Coding
Turbo codes:

developed around 1993
get close to the Shannon limit
used in UMTS and DVB (Turbo Convolutional Codes, TCC)

parallel convolutional encoders are used
one gets a random permutation of the input bits
the decoder benefits then from two statistically independent encoded bits
slightly superior to TPC
noticeably superior to TPC for low code rates (~1 dB)

used in WLAN, Wimax (Turbo Product Codes, TPC)
serial concatenated codes; based on block codes
data arranged in a matrix or in a 3 dimensional array
e.g., Hamming codes along the dimensions
good performance at high code rates
good coding gains with low complexity 
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3 Channel Coding

Turbo 
encoder

System overview:

noisy received 
values

symbol 
mapping

+

Turbo 
decoder

mapping from bit to 
symbols, e.g., BPSK

channel: 
assume 
AWGN

bit
mapping soft 

outputs
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3 Channel Coding
Turbo encoder (for Turbo Convolutional Codes, TCC):

convolutional
encoder 1

convolutional
encoder 2interleaver

Structure of a rate 1/3 turbo encoder

pseudo 
random 

permutation

two identical 
convolutional 

encoders

The turbo code is a block code, as a certain number of bits need to be 
buffered first in order to fill the interleaver
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3 Channel Coding
Example: UMTS Turbo encoder:
Rate 1/3, RSC with feedforward generator (15) and feedback generator (13)

delay delay delay

interleaver

delay delay delay

Parallel Concatenated Convolutional Codes (PCCC)
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3 Channel Coding
Turbo decoder:

MAP 
decoder 1

MAP 
decoder 2

interleaver

Structure of a turbo decoder
extrinsic

information

The MAP decoders produce a soft output which is a measure for the reliability of 
their decission for each of the bits. This likelihood is used as soft input for the 
other decoder (which decodes the interleaved sequence). The process is repeated 
until there‘s no significant improvement of the extrinsic information anymore.

deinterleaver

interleaver

extrinsic
information
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3 Channel Coding
MAP (Maximum a posteriori probability) Decoding:

Difference compared to the Viterbi decoding:
Viterbi decoders decode a whole sequence (maximum likelihood 
sequence estimation). If instead of the Hamming distance the 
Euklidean distance is used as Viterbi metric we easily get the Soft-
Output Viterbi algorithm (SOVA)
The SOVA provides a reliability measure for the decission of the 
whole sequence

For the application in iterative decoding schemes a reliability measure 
for each of the bits is desirable, as two decoders are used to decode 
the same bit independently and exchange their reliability information 
to improve the estimate. The indepencence is artificially generated by 
applying an interleaver at the encoding stage.
In the Trellis diagram the MAP decoder uses some bits before and after 
the current bit to find the most likely current bit
MAP decoding is used in systems with memory, e.g., convolutional 
codes or channels with memory
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3 Channel Coding

Consider the transmission over an AWGN channel applying a binary 
modulation scheme (higher order modulation schemes can be treated 
by grouping bits).

Mapping:    0 1    and  1 -1

Suitable measure for the reliability

Log-Likelihood Ratio (LLR)
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3 Channel Coding

The reliability measure (LLR) for a single bit at time r under the condition 
that a sequence       ranging from 1 to N has been received is:

with Bayes rule:
joint 

probability
a-priori 

probability 
of A

a-posteriori 
probability of 

B 

unknown known, 
observed
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3 Channel Coding

Example as used before Rate ½ RSC with generators 5 and 7:

The probability that     becomes +1 or -1 can be expressed in terms of 
the starting and ending states in the trellis diagram

state before:

s0 = 0 0

s1 = 0 1

s2 = 1 0

s3 = 1 1

00

10

s1

s2

s3

s4

state afterwards:
00

10

0 (+1)                             1 (-1)
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3 Channel Coding

00

10

0 (+1)                             1 (-1)
joint probability for a pair of 
starting and ending states

probability for all combinations of starting 
and ending states that will yield a +1

probability for all combinations of starting 
and ending states that will yield a -1
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3 Channel Coding

The probability to observe a certain pair of states           depends on the 
past and the future bits. Therefore, we split the sequence of received bits 
into the past, the current, and the future bits

.... ....
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3 Channel Coding

Using Bayes rule to split up the expression into past, present and future

Looking at the Trellis diagram, we see the the future         is independent 
of the past. It only depends on the current state    .

Using again Bayes rule for the last probability

Summarizing
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3 Channel Coding

Identifying the metrics to compute the MAP estimate

Now rewrite the LLR in terms of the metrics

probability for a certain 
state and a certain past, 
called Forward metric

probability to observe a 
certain state and bit given 

the state and the bit before, 
called Transition metric

probability for a certain 
future given the 

current state, called 
Backward metric
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3 Channel Coding

How to calculate the metrics? Forward metric            :

probability for a certain state and a certain past, 
called Forward metric

example: r=2known from 
initialization

r-1                         r                         r+1

probability to arrive in a certain state and the 
corresponding sequence that yielded that state

using again Bayes rule and
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3 Channel Coding

How to calculate the metrics? Back metric          :

probability for a certain future given the current 
state, called Backward metric

r -2                        r-1                       r=N

known from 
termination

example: r=N
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3 Channel Coding

How to calculate the metrics? Transition metric             :

probability to observe a certain state and bit given the 
state and the bit before, called Transition metric

r -1                          r                          r+1

for a given state s the transition 
probability does not depend on the past

prob. to observe a received 
bit for a given pair of states

prob. for this pair of states, i.e., 
the a-priori prob. of the input bit
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Now some math:

3 Channel Coding

expressing the a-priori probability in terms of the Likelihood ratio

with

starting with this one
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3 Channel Coding

now combining the terms in a smart way to one expression

1 for ‘+’ and                        for ‘-’

with

we get the a-priori probability in terms of the likelihood ratio as
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Now some more math:

3 Channel Coding
continuing with this one

pair of transmitted coded bits, belonging to the 
encoded info bit 

pair of observed 
bits

noisy observation, 
disturbed by AWGN

example for code rate ½. Can 
easily be extended

+1 or -1 squared always 1
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3 Channel Coding

Now the full expression:

a-priori information
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3 Channel Coding

abbreviation

from before:
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3 Channel Coding

positive

negative
due to the assumptions

with

unknown at the receiver, but resulting from the corresponding branch in the Trellis diagram  s s’
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3 Channel Coding

a-priori information 
about the transmitted 
bit, taken from an initial 
estimate before running 
the MAP algorithm

Interpretation:

information 
provided by the 
observation. Only 
depending on the 
channel; not on 
the coding scheme

a-posteriori (extrinsic) information. 
Gained from the applied coding 
scheme

In a Turbo decoder the extrinsic information of one MAP decoder is used 
as a-priori information of the second MAP decoder. This exchange of 
extrinsic information is repeated, until the extrinsic information does not 
change significantly anymore.
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3 Channel Coding

Summary:
Info bits: mapped to +1 (0) and -1 (1)

.... ....
due to the fact that we 
use a systematic code

encoded sequence

+
AWGN channel

noisy received bits

a-priori information
set to 0.5 LLR=0 in 
the first stage

extrinsic information from the decodingnoisy observations

yields the LLR and 
therefore, the bit 
estimate
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3 Channel Coding

Iterations:

Iteration #1:
first iteration, first 
decoder,a-priori LLR=0

constant over iterations K

first iteration, second decoder: uses 
extrinsic information from the first 
one as a-priori informationIteration #2:

Iteration #3:

continuing in the same fashion with 
further iterations 

reference: 
see tutorials at www.complextoreal.com
or http://www.vashe.org/
Notes: We used a slightly different 
notation. The first tutorial has some minor 
errors but most cancel out
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3 Channel Coding
Low-Density Parity Check (LDPC) codes:

first proposed 1962 by Gallager
due to comutational complexity neglegted until the 90s
new LDPC codes outperform Turbo Codes
reach the Shannon limit within hundredths decibel for large block sizes, 
e.g., size of the parity check matrix 10000 x 20000
are used already for satellite links (DVB-S2, DVB-T2) and in optical 
communications
have been adopted in IEEE wireless local areal network standards, e.g., 
802.11n or IEEE 802.16e (Wimax)
are under consideration for the long-term evolution (LTE) of third 
generation mobile telephony
are block codes with parity check matrices containing only a small 
number of non-zero elements
complexity and minimum Hamming distance increase linearily with the 
block length
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3 Channel Coding
Low-Density Parity Check (LDPC) codes:

not different to any other block code (besides the sparse parity check 
matrix)
design: find a sparse parity check matrix and determine  the generator 
matrix
difference to classical block codes: LDPC codes are decoded iteratively
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3 Channel Coding
Tanner graph

graphical representation of the parity check matrix
LDPC codes are often represented by the Tanner graph

Example: (7,4) Hamming code

check nodes

bit nodesn bit nodes
n -k check nodes, i.e., parity check equations
Decoding via message passing (MP) algorithm. Likelihoods are passed 
back and forth between the check nodes and bit nodes in an iterative 
fashion
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3 Channel Coding
Encoding

use Gaussian elimination to find

construct the generator matrix

calculate the set of code words
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3 Channel Coding
Example:

length 12 (3,4) regular LDPC code
parity check code as introduced by Gallager
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3 Channel Coding
Message Passing (MP) decoding

soft- and hard decision algorithms are used
often log-likelihood ratios are used (sum-product decoding)

Example: (7,4) Hamming code with a binary symmetric erasure channel 

1        x        0        1        1        x        x

1+x+0+1    x+0+1+x    1+x+1+x
in order to be a valid code 
word, we want the 
syndrom to be zero.
Therefore, x must be 0.

Initialization:

0
1
x
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3 Channel Coding
Message Passing (MP) decoding

1        0 0        1        1        x        x

1+0+0+1    x+0+1+x    1+x+1+x

1        0        0        1        1        x        x

1+0+0+1    0+0+1+x 1+0+1+x
in order to be a valid code 
word, we want the sydrom 
to be zero.
Therefore, x must be 1 and 
x must also be 1.
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3 Channel Coding
Message Passing (MP) decoding

1        0 0        1        1        1        0

1+0+0+1    0+0+1+1    1+0+1+0

1        0        0        1        1        1        0

0             0             0

1 0 0 1 1 1 0
Decoding result:
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3 Channel Coding
Message Passing (MP) decoding

sum-product decoding
similar to the MAP Turbo decoding
observations are used a a-priori information
passed to the check nodes to calculate the parity bits, i.e., a-posteriory 
information / extrinsic information
pass back the information from the parity bits as a-priori information 
for the next iteration
actually, it has been shown, that the MAP decoding of Turbo codes is 
just a special case of LDPC codes already presented by Gallager

Robert G. Gallager,Professor Emeritus, Massachusetts Institute of Technology
und publications you‘ll also find his Ph.D. Thesis on LDPC codes

http://www.rle.mit.edu/rgallager/


