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DIFFERENTIAL INVARIANTS AND GEOMETRY 

The problem of the comparative study of geometries was clearly outlined in 
a very general form by RIEMANN in his Habihtationschrift in 1854. After 
exphcitly recognizing the possibihty of discrete spaces, RIEMANN Hmited his 
discourse to continuous manifolds in the sense of Analysis Situs and defined 
what he meant by such manifolds. This amounted to assuming that the points 
of any neighborhood can be represented by ordered sets of n coordinates, 
(x1, x2,...., xn). He also assumed that his discourse was to use the analytic methods 
which involve differentials. This implies that we admit to our attention only a 
class of coordinate systems which are related among themselves by analytic 
transformations — or at least by transformations equipped with a sufficient 
number of derivatives. He thus had a sufficient basis for the discussion of any 
phenomena which could be described by means of coordinates and differentials. 
But his own work narrowed down to an investigation of the measure of distance 
and, ultimately, to the theory of quadratic differential forms. 

The comparative geometry problem was again formulated in 1872 by KLEIN 
in his Erlanger Programm. With the same presuppositions as RIEMANN regarding 
the nature of the underlying manifold, KLEIN asked us to consider a group of 
transformations (not necessarily point transformations) in this manifold and to 
regard a geometry as the theory of properties of figures in the manifold which 
are unaltered by the transformations of this group. 

This point of view was the dominant one for the first half century after it 
was enunciated. It effectively took account of subjects Hke Projective Geometry 
which the Riemannian point of view seemed to overlook. It was a helpful guide 
in actual study and research. Geometers felt that it was a correct general for
mulation of what they were trying to do. For they were aU thinking of space 
as a locus in which figures were moved about and compared. The nature of 
this mobihty was what distinguished between geometries. 

With the advent of Relativity we became conscious that space need not be 
looked at only as a « locus in which », but that it may have a structure, a 
field-theory, of its own. This brought to attention precisely those Riemannian 
geometries about which the Erlanger Programm said nothing, namely those 
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whose group is the identity. In such spaces there is essentiaUy only one figure, 
namely the space structure as a whole. It became clear that in some respects 
the point of view of RIEMANN was more fundamental than that of KLEIN ( i). 

Nevertheless the hold of the Erlanger Programm upon the imagination of 
mathematicians is such that attempts were sure to be made to revamp the Pro
gramm so as to adapt it to the new order of things. And these attempts have 
had a considerable degree of success. The concept of infinitesimal paraUeHsm 
which had been introduced by LEVI-CIVITA was developed and enlarged by WEYL 

and has been generahzed by a number of mathematicians. In particular, CARTAN 

and SCHOUTEN have shown that there are other ways than those forseen by 
KLEIN of connecting up the theory of continuous groups with geometry. As 
CARTAN has said, we may regard a Riemannian space as a non-holonomic 
Euchdean space, and many of the generalizations of Riemannian spaces can be 
arrived at in a simüar manner. 

But while these new relations between group theory and geometry are im
portant and fruitful, each new step in advance makes the whole matter seem 
more comphcated than before. The KLEIN theory of geometry seems to be showing 
the same symptoms as a physical theory whose heyday is past. More and more 
comphcated devices have to be introduced in order to fit it to the facts of nature. 
Its fate, I should expect, wiU be the same as that of a physical theory — it becomes 
classical and its Hmitations as weU as its merits are recognized. 

Once we have recognized that there are geometries which are not invariant 
theories of groups in the simple sense which we had in mind at first, we are 
on the way to recognize that a space may be characterized in many other ways 
than by means of a group. For example, there is the fundamental class of spaces 
of paths studied by EISENHART and some of my other coUeagues, which are 

(1) It should be remarked in passing (partly because this point has been commented on 
by SCHOUTEN, Rendiconti del Circolo Matematico di Palermo, Vol. 50 (1926) and CARTAN, 
L'Enseignement Mathématique, 26e Année (1927) p. 203) that the way in which the Rieman
nian geometries fit most naturally into the Erlanger Programm is to take as the manifold 
the set of points (x1, x2,...., xn) and instead of the group (for it is not, strictly speaking, a 
group) the set of all analytic transformations regarded as point transformations, not as 
transformations of coordinates. The Riemannian spaces (or the quadratic differential forms) 
fall into classes of those which are equivalent under these transformations. From this point 
of view the theory of all Riemannian geometries is a single geometry. There is just one space 
and in it the various Riemannian spaces are particular figures. This way of looking at the 
matter is precisely analogous to the way in which Klein himself brought the theory of 
contact transformations into the Programm as a geometry. It is helpful in connection with 
the equivalence problem, but it is not a way of characterizing a particular Riemannian 
space by means of its group. And it was just this sort of a characterization of a projective, 
an affine, a Euclidean, a non-Euclidean space, that was the significant thing about the 
Erlanger Programm. 
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characterized by the presence of a system of curves such that each pair of points 
is joined by one and only one curve of the system. Whether or not these spaces 
can be characterized in other ways there can be no doubt of the significance of 
this way of viewing them. 

If we give up the idea of making any one concept — such as the group 
concept — dominant in geometry, we naturaUy return to something Hke the 
starting point of Riemann's discussion. That is to say, we prescribe only the 
continuous nature of the manifold to be considered and the analytic character 
of the operations. There has indeed been an uninterrupted development of the 
Riemannian geometries along these, so to speak, unprejudiced Unes. I mean the 
work of LIPSCHITZ, CHRISTOFFEL, RICCI and, more recently, the mathematical 
physicists. This work seemed to most mathematicians to be extremely formal and 
narrow in outlook. But it was continuaUy developing the ideas of differential 
invariant theory. The definitions and terminology were at first modeUed as nearly 
as possible on those current in algebraic invariant theory, but the growth of the 
subject, particularly since the apphcations to relativity have emphasized the im
portance of the systematic methods of RICCI, has led to a conception of a diffe
rential invariant which is weU suited to the comparative study of geometries. 

Such an invariant is an abstract object which has in each coordinate system 
a unique set of components, each component being a function of the coordinates 
and their differentials ( i). For example a quadratic differential form is an invariant 
which has a single component in each coordinate system, this component being 
a function which is a homogeneous polynomial of degree two in the differentials 
and an analytic function of the coordinates. The theory of one or more such 
invariants is what we caU a geometry. 

In some cases the geometries at which we arrive by this definition wiU be 
geometries in the sense of the Erlanger Programm or one of its generahzations, 
and in some cases they wiU not. I do not regard this definition of the term 
geometry as anything definitive, because I regard any attempt to make a sharp 
definition of such a term as savoring of pedantry. I would rather say that a 
theory is a geometry when it is sufficiently Hke the classical geometry to deserve 
this name — and let it go at that. 

Moreover the family of transformations of coordinates which underlies the 
definition of a differential invariant is not the only one we should consider. 
There are other transformations of the frame of reference, such as contact tran
sformations, which have a right to consideration. But the definition of a diffe
rential invariant which we have adopted is sufficiently general so that with 
whatever descriptive idea of a space you may choose to begin, you are Hkely 

(*) This conception of a differential invariant is discussed at greater length in Chap. II 
of my recent Cambridge Tract, Invariants of Quadratic Differential Forms} Cambridge, 1927. 
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to find in working it out that you must come to grips with the theory of a 
particular differential invariant. 

Let us consider some of the differential invariants which go with the classical 
geometry. First of aU there is a quadratic differential form. In each coordinate 
system this invariant has one component, namely a function 

(1) gij dxl dxi 

of the coordinates and their differentials. If there is a coordinate system in which 
the component is simply the sum of the squares of the differentials, the diffe
rential form is said to be Euclidean. In the neighborhood of any point this 
differential form determines a unique Euclidean space, but it also determines a 
unit of length. So it is not quite accurate to say that the Euchdean geometry 
is the theory of this quadratic differential form. The Euchdean space and the 
unit of length together determine a unique quadratic differential form. The 
Euchdean space by itself determines an infinite class of differential forms such 
that in each coordinate system they have components, 

(2) o gij dxl dxj, 

one for each choice of the function o of the coordinates. 
In each coordinate system we may choose a unique one of the components 

(2) by the requirement that the determinant of the n2 quantities o g^ shall be 
equal to unity. This detemines for each coordinate system a unique function 

Gij dxl dxi 

and therefore another invariant which has this function as its component in each 
coordinate system. This invariant is a relative quadratic form of weight —2/n. 
Its components in any two coordinate systems x and x are related by the formula 

ÒX 

bx (3) Gij dxl dx$-
—2/n 

Gij dxl dxK 

The Euchdean geometry uniquely determines this invariant, but it would not 
be correct to say that the Euchdean geometry is the theory of this invariant. 
For, as was first remarked by T. Y. THOMAS (*), the theory of a relative qua
dratic form of weight —2/n is conformai geometry. In the case before us the 
Euchdean conformai group is the group of aU transformations between coordinate 
systems in which the component of our relative differential form is the sum 
of the squares of the differentials. The Euchdean group (of similarity transfor
mations) is the subgroup of Hnear transformations of this group. In other 
words, we cannot have Euchdean geometry until we distinguish between circles 
and straight Unes. 

(*) Proceedings of the National Academy of Sciences, Vol. 11 (1925) p. 722. 
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The differential equations of the straight Hnes are 

(4) r° 
in cartesian coordinates and 

,^v d2xl , -ni dxJ dxh ~ 

in arbitrary coordinates. In each coordinate system there is one and only one 
set of funtions T)u and the sets of functions in any two coordinate systems are 
connected by a simple law of transformation. The functions F are terefore the 
components of an invariant, which is caUed an affine connection, the theory 
of this invariant being affine geometry. If the components of an affine connec
tion vanish identicaUy in one coordinate systems, they vanish identicaUy in aU 
coordinate systems related to this one by Hnear transformations. 

The Euchdean geometry may now be characterized exactly as the simultaneous 
theory of a particular relative quadratic form of weight —2/n and a particular 
affine connection. There must be a coordinate system in which the components 
of affine connection are all zero. The Euclidean geometry is what is common to 
this conformai, and this affine, geometry. 

A geometer cannot help remarking at this point that we may replace affine 
by projective geometry in the above statement. Projective geometry is the theory 
of the straight Hnes free from some of the restrictions imposed by the affine 
treatment. One of these restrictions is that the differential equations (4) imply a 
particular assignment of the parameter t to the points of the Hne (*). If the 
parameter is to be assigned arbitrarily, the differential equations become 

/ crx d2xl I dxl ( dx\ 

<5> -wl-ät=<p(x>dt)> 
where cp is an arbitrary function, homogeneous of degree one in the quantities 
dxi/dt. This amounts to changing the components of affine connection from r}k 
into 

r}k + à} (pjc + dkW 

where cpj is homogeneous of degree zero in dxi/dt. None of these changes affect 
the quantities 

Yji j-iì 1 / jia si , rid jd\ 
Ujk = l j k — nJ_1 ( i aj Ok + 1 ah Oj), 

which are thus uniquely determined by the system of straight Hnes. These quan-

(*) The question of the parametrization of systems of paths is very clearly discussed by 
J. DOUGLAS, Ânnals of Math., Vol. 29 (1928) p. 143. 
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tities (*) are the components of an invariant, which may be caUed a projective 
connection, with a law of transformation which is somewhat more comphcated 
than that of an affine connection. If the components of a projective connection 
vanish identicaUy in one coordinate system, they vanish identicaUy in aU coor
dinate systems related to this one by Hnear fractional tranformations. The classical 
projective geometry is the theory of a projective connection for which there exists 
a coordinate system in which its components are identicaUy zero. 

Beside the affine and the projective connections we must place another invariant 
caUed the conformai connection (2), whose components can be given in terms 
of the conformai relative tensor, Gij, by the formula for Christoffel symbols of 
the second kind. If its components are identicaUy zero in one coordinate system 
they are identicaUy zero in aU coordinate systems related to this one by a set 
of transformations (3) which contains the conformai group as sub-group and, 
indeed, is related to the conformai group in much the same way that the affine 
group is related to the Euchdean group. 

I have now mentioned five invariants connected in an intimate way with the 
Euchdean geometry, (1) an absolute quadratic differential form, (2) a relative 
quadratic differential form of weight —2/n, (3) an affine connection, (4) a proje
ctive connection, (5) a conformai connection. Each of these invariants is specia-
Hzed in an obvious way : the first two so that in some coordinate system their 
components are sums of squares of the differentials, the last three so that aU 
their components shaU be zero in some coordinate system. 

In each case, if we drop the restriction imposed by its apphcation to the 
Euchdean geometry, we obtain a class of invariants each of which has a theory 
which is a geometry in the generahzed sense. In the first case we obtain the 

(A) These quantities were introduced by T. Y. THOMAS, Proc. Nat. Ac. of Sc, Vol. 11 
(1925) p. 199. Their law of transformation is 

-a bxl bat oaf , bzxa ox* 1 ' ° g 

nJk — nbc òxa ò_p ô_fe + ô_ i ò-hòxa n + 1 \àj 

(2) The conformai connection was introduced by J. M. THOMAS, Proc. Nat. Ac. of Sc, 
Vol. 11 (1925) p. 257. It has the law of transformation, 

( i nor i i o x i 

/ l o g 511, / l o g M F ^ôlog -
The formula for its components in terms of the G1 s is due to T. Y. THOMAS. 

(3) Note added 3 May, 1929: In the paper refened to in the last footnote below, I 
called this set the enlarged conformai gronp. But as Professor WEYL has comteonaly pointed 
ont, it is not a gronp and my argument did not actually essume that it wasone. 
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Riemannian geometries, in the second and fifth cases the generahzed conformai 
geometries, in the third case the generahzed affine geometries, in the fourth case 
the generahzed projective geometries. 

These are some, but by no means aU, of the geometries that arise by the 
process which we are considering, namely, to find a differential invariant which 
is significant for an aspect of elementary geometry and then to remove the 
restrictions which tie this invariant to the elementary geometry. 

It would be interesting to compare these geometries with those studied by 
CARTAN, SCHOUTEN, and others. But this would hardly be possible in a short 
address, and besides it would involve questions of interpretation about which 
I am not perfectly sure. In any case, my point is merely that the differential 
invariant approach to these geometries is a significant one, not that it is a unique 
or a dominant one. 

It has among other merits that of determining a straight-forward method 
of working out each geometry in detail. We know how this has been done in 
the affine case. The first step is to determine a suitable class of invariants in 
terms of which to state the properties of particular affine geometries. These 
invariants are the tensors. They have a law of transformation characterized by 
an isomorphism between the totality of analytic transformations at any point 
and the group of linear homogeneous transformations, 

Xi = u}XJt 

which we have already seen to be associated intimately with an affine connection. 
The isomorphism is determined by the equations, 

/ A \ i ax1 

(A) u ) - w . 

The second step is to find a tensor, the curvature tensor, which is an invariant 
of the basic invariant, and the third step to find a recursive process (such as 
covariant differentiation or the process of forming extensions by the method of 
normal coordinates) for generating a complete sequence of tensor invariants of 
the basic invariant. 

These steps can all be paraUeled in the projective and the conformai cases. 
In the projective case we first discover a unique process of associating a Hnear 
fractional transformation 

u)X> X* = 1 + ujXJ 

at each point with each analytic transformation. This amounts to defining the 
quantities Uß by the equations (A) and 

m -J-*S=, —IS 
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The (w + l)-rowed square matrices of the coefficients Uß of these transfor
mations can be used in exactly the same way as the w-rowed matrices u) of (A) 
to define invariants with Hnear laws of transformation. The invariants thus defi
ned* are formaUy analogous to the classical affine tensors, and so may be caUed 
projective tensors (i). A projective tensor has (n + l)k components in each 
coordinate system, instead of nk. The next step is to find a process of projective 
differentiation analogous to covariant differentiation which gives rise to an infi
nite sequence of projective tensors. In this process we use an invariant caUed 
the extended projective connection with (n + 1)3 components which is in a 
simple relationship with the original projective connection. By a suitable eHmi-
nation between the law of transformations of this invariant and that of the 
derivatives of the components of a projective tensor we find a formula which 
leads from any given projective tensor to another projective tensor with one 
more covariant index. This is the process of projective differentation. Since it 
can be repeated indefinitely, it leads from any projective tensor to an infinite 
sequence of projective tensors. 

By forming the integrabihty conditions of the law of transformation of the 
extended projective connection we obtain a projective tensor analogous to the 
curvature tensor. Its components include those of the curvature tensor for pro
jective geometry discovered by WEYL (2). With this tensor and the recursive 
projective differentiation process we have a method of getting a complete set of 
invariants for generahzed projective geometry in a form that is accessible to 
analysis. 

In conformai geometry also an analogous theory can be developed. The 
conformai connection determines a special set of-transformations just as the affine 
and projective connections determine the affine and projective groups respectively, 
and an isomorphism between this set and the totality of transformations of 
coordinates determines a class of invariants with (n + 2)k components. These are 
the conformai tensors. There is also an extended conformai connection and 
conformai differentiation. In this case the extended conformai connection has 
(n + 2)2(n + l) components, and in order to complete the conformai differentiation 
process we have to determine some of the components of the conformai derivative 
by imposing a further invariant condition, 

Gaß T«Tß = 0 

for example. As in the projective case we arrive at formulas which include and 

(£) The projective tensors were introduced by T. Y. THOMAS, Math. Zeitschrift, Vol. 25 
(1926) p. 723, and also have been used implicitly by the writers on Five-dimensional Rela
tivity, cf. O. KLEIN, Zeitschrift für Physik, Vol. 46 (1927) p. 188. For the developments 
referred to in the text, cf. VEBLEN, Proc. Nat. Ac of Sc Vol. 14 (1928) p. 154. 

(2) H. WEYL, Göttinger Nachrichten, 1921, p. 99. 
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clarify those obtained by the geometers who have been studying the question 
from the point of view of infinitesimal displacements. But there is no time in a 
short address Hke this to give details. I must refer you to the papers in which 
some of them have been worked out (*). 

The main point which I wish to make is that there is stiU vitahty in the 
generahzed Riemannian view of geometry, and that there are invariants, as yet 
but Httle known, which have simple laws of transformation and apphcations to 
geometry of a quite elementary type. 

(*) On the conformai geometry see my paper in Proc Nat. Ac of Sc, Vol. 14 (1928) 
p. 735, and the earlier papers by T. Y. THOMAS and J. M. THOMAS which are cited there. 




