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A Polyhedral Bound on the Indeterminate Contact
Forces in Planar Quasi-Rigid Fixturing

and Grasping Arrangements
Elon Rimon, Member, IEEE, Joel W. Burdick, and Toru Omata, Member, IEEE

Abstract—This paper considers multiple-contact arrangements
where several bodies grasp, fixture, or support an object via fric-
tional point contacts. Within a strictly rigid-body modeling par-
adigm, when an external wrench (i.e., force and torque) acts on
the object, the reaction forces at the contacts are typically indeter-
minate and span an unbounded linear space. This paper analyzes
the contact reaction forces within a generalized quasi-rigid-body
framework that keeps the desirable geometric properties of rigid-
body modeling, while also including more realistic physical effects.
We describe two basic principles that govern the contact mechanics
of quasi-rigid bodies. The main result is that for any given external
wrench acting on a quasi-rigid object, the statically feasible con-
tact reaction forces lie in a bounded polyhedral set that depends on
the external wrench, the grasp’s geometry, and the preload forces.
Moreover, the bound does not depend upon any detailed knowledge
of the contact mechanics parameters. When some knowledge of the
parameters is available, the bound can be sharpened. The polyhe-
dral bound is useful for “robust” grasp and fixture synthesis. Given
a set of external wrenches that may act upon an object, the grasp’s
geometry and preload forces can be chosen such that all of these ex-
ternal wrenches would be automatically supported by the contacts.

Index Terms—Fixturing, grasping, polyhedral bound, statically
indeterminate contact forces.

I. INTRODUCTION

THIS paper considers multiple-contact arrangements where
an object is grasped, fixtured, or supported in static equi-

librium by several bodies via frictional point contacts. Under
an ideal rigid-body assumption, the reaction forces at the con-
tacts due to an external wrench acting on the object are typ-
ically indeterminate and span an unbounded linear space. For
instance, in generic -contact planar grasps, the indeterminate
contact forces span a -dimensional linear space. This in-
determinacy is an artifact of the simplicity of rigid-body models,
and it can cause difficulties in the analysis, synthesis, and imple-
mentation of reliable grasping and fixturing systems. However,
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in reality, all bodies possess some degree of natural compliance
due to material deformation at the contacts.1 These elastic defor-
mations induce specific contact forces in response to an applied
external wrench. Unfortunately, the laws governing compliant
deformation depend on various geometric and material prop-
erties of the contacting bodies [15], [35]. If specific values of
these parameters are known, then the reaction forces can often
be uniquely determined. However, a detailed knowledge of these
properties is often not readily available in practice, and mea-
surement of these properties requires sophisticated sensing ca-
pabilities. Clearly, one would like a theory to predict contact
reaction forces that retains the attractive geometric properties
of rigid-body models, while also offering predictions that better
match reality. Moreover, the theory should be “robust” in that it
does not depend heavily upon detailed knowledge of the contact
parameters or specific assumptions about the underlying com-
pliant model.

This paper takes a middle-ground approach between rigid-
body idealization and conventional compliant contact models.
We introduce two generic rules governing the mechanics of
quasi-rigid-body contact: a micro-penetration principle that de-
termines the change in the normal component of the contact
forces and a micro-slip principle that determines the change in
the tangential or frictional component of the contact forces. Put
simply, these two principles are generic normal and tangential
compliance laws whose basic properties hold for all quasi-rigid-
body compliance models. We stress that detailed knowledge of
contact parameters (such as material stiffness) or compliance
models are not needed to apply these principles. Hence, our ap-
proach can be seen as a form of robust contact modeling. Cou-
pling the effects of these principles at the individual contacts
through the rigid-body kinematics of the grasped object yields
a polyhedral bound on the indeterminate reaction forces. More-
over, the polyhedral bound does not depend on specific knowl-
edge of the physical contact parameters, thus allowing grasp
analysis and synthesis under huge uncertainty in these param-
eters. Because we allow for large parametric uncertainty, the
indeterminacy in the contact forces cannot be eliminated, but
can instead be bounded by a polyhedral set, whose connectivity,
convexity, and number of bounding vertices are analyzed.

Relationship to Prior Work: The indeterminate forces
arising from rigid-body analysis are in part an artifact of the
rigid-body modeling paradigm. To measure the actual reac-

1Significant compliance may also exist in the joints of an articulated grasping
mechanism. While these effects are not considered here, they could be analyzed
by extensions of the method proposed in this paper.
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tion forces that arise in an application, thereby resolving the
indeterminate forces predicted by offline analysis, one can
install force sensors at the contacts, e.g., [6], [11], [17], [18],
and [40]. While this approach is useful for controlling the
contact forces, it does not provide any analytical insight or
prediction as to what actual forces might appear in a given
application. The analytical study of the indeterminate contact
forces has been motivated by power grasp and whole-arm
manipulation applications [2], [24], [36], [43].2 In the con-
text of these applications, two approaches were proposed to
deal with the indeterminacy of rigid-body models. The first
approach implements compliant behavior using some suitable
stiffness-control method [7], [11], [27], [32]. The stiffness
matrix of the resulting grasping mechanism can then predict the
reaction forces due to external loads acting on the object [3]. A
second approach is to measure the joint torques of the grasping
mechanism as a means for resolving the indeterminate forces
[2], [29], [31]. Unfortunately, Bicchi [2] has shown that the
kinematics of the grasping mechanism induces a subspace of
indeterminate forces that cannot be measured by joint torques.
In addition to static indeterminacy, the rigid-body modeling
paradigm is sometimes ambiguous in predicting the dynamic
response of a grasped object to an applied wrench [9], [19].
Trinkle calls a contact arrangement strongly stable with respect
to an applied wrench if the only dynamically feasible response
is the one where all contacts remain stationary [30]. While
strong stability deals with dynamic ambiguity that can arise in
rigid-body models, it does not address the static indeterminacy
of the contact forces which is the subject of this paper.

The polyhedral bound reported here builds upon earlier
work by the third author in the area of power grasps [28], [29].
Under a reasonable assumption of one contact per link, Omata
reported that the tangential component of the indeterminate
contact forces lie in a bounded polyhedral set. Our analysis
differs from this earlier work in three fundamental ways. First,
we ignore the grasping mechanism and focus solely on the
interaction between the grasped object and its surrounding
bodies. The polyhedral bound reported here is consequently
useful in applications where joint torques are not necessarily
available, such as fixturing and industrial gripping applications.
Second, the third author previously assumed that the contacting
bodies are perfectly rigid. In contrast, we assume that the
bodies are quasi-rigid and can locally deform at the contacts.
Third, Omata previously focused on bounding the tangential
component of the indeterminate contact forces. We provide
a bound for both the tangent and normal component of the
contact forces.

An important potential application of the polyhedral bound is
the following grasp synthesis approach. We are given a bounded
collection of external wrenches that can act on the object, as
well as a conservative lower bound on the coefficient of fric-
tion at the contacts. Using these two specifications, we can se-
lect the grasp’s geometry and preload forces such that the en-
tire bounded set of indeterminate reaction forces induced by the
external wrenches satisfies the friction-cone constraints at the

2In these applications, an object is manipulated by one or more articulated
mechanisms which are allowed to establish multiple midlink contacts with the
manipulated object [4].

Fig. 1. (d ; d ; �) parametrization of B’s c-space.

contacts, even in the presence of huge contact parameter uncer-
tainty. Moreover, the resulting grasp will automatically cancel
all external wrenches in the given collection, without any of the
contacts slipping or breaking away from the object. This can-
cellation occurs strictly due to mechanical effects and does not
require active control of the contact forces. Note that existing
grasp synthesis approaches establish preloaded grasps that resist
only some unspecified local neighborhood of external wrenches
centered at the origin [14], [21], [23], [25], [39]. In contrast, our
synthesis approach generates grasps which are guaranteed to re-
sist an entire specified collection of external wrenches without
resorting to active contact force control.

The paper is organized as follows. In Section II, we describe
the principles of micro-penetration and micro-slip governing the
mechanics of quasi-rigid contacts. In Section III, we derive the
polyhedral bound on the contact forces by coupling the con-
tact-wise effect of the two principles through the rigid body
kinematics of the grasped object. Section IV demonstrates the
polyhedral bound on concrete examples, highlighting various
properties of the bound. To motivate the utility of the polyhedral
bound, Section V sketches a grasp synthesis approach which
is based on the polyhedral bound, demonstrating the approach
with an example. The concluding section discusses an exten-
sion of the polyhedral bound to three dimensions. Finally, the
appendices contain proof details, as well as a polynomial time
algorithm for computing the polyhedral bound.

II. MICRO-PENETRATION AND MICRO-SLIP PRINCIPLES

This section introduces basic grasping terminology and then
describes two principles that govern the possible changes in the
normal and tangential component of the contact forces when an
external wrench is applied to a quasi-rigid body.

A. Grasping Terminology

We assume that a planar object is in frictional point
contact with stationary planar bodies . The bodies

represent fingertips or fixturing elements, but
we shall simply call them “fingers.” The configuration
space (c-space) of a planar object is parametrized by

, where parametrizes
translation and parametrizes the orientation of (Fig. 1).
The linear and angular velocity of at a configuration is
represented by a tangent vector , where
is the tangent space of at . Let denote the contact
point between and , which is expressed in a fixed ref-
erence frame. Let denote the same point when expressed
in ’s body frame (Fig. 1). Then, is related to by the
rigid-body transformation: , where
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is the orientation matrix of . Let denote the
rigid-body transformation with held fixed. When moves
along a c-space trajectory , the velocity of is given
by , where is the matrix
given by , where is a identity matrix

and .
Contact Force Space: Let denote the

finger forces at the contacts, which are expressed with respect
to a fixed world frame. The tangent and normal components of
the contact forces are denoted ,
and the space having these coordinates is called contact force
space. The coordinate representation of is obtained as fol-
lows. Let denote the unit normal to the boundary of and

at , pointing into (Fig. 1). Let denote the unit tangent
to the boundary of and at , such that and form a
right-handed system. Then, and . The
following tangent and normal projection matrices project the
contact forces onto their tangent and normal coordinates:

Thus, and , where and
. Finally, the wrench induced on by a force

acting at , denoted , is given by

where

When bodies apply forces on , the net
wrench acting on is given by , where

is the well-known grasp matrix.

B. Mechanics of Micro-Penetration

We now formulate a generic rule for the change in the normal
component of a contact force due to material deformation at the
contact. The usual assumption made in the solid mechanics liter-
ature is that the contacting bodies are quasi-rigid, meaning that
their deformations due to compliance effects are localized to the
vicinity of the contacts [15], [35]. This assumption allows us to
describe the overall motion of relative to the stationary bodies

using rigid-body kinematics. The quasi-rigidity as-
sumption is generally valid for all bodies which are not made of
exceptionally soft material and do not contain slender substruc-
tures. In practice, quasi-rigidity is quite a satisfactory model
when the normal deformations are significantly smaller than the
characteristic radius of curvature of the contacting bodies [41].

A convenient lumped-parameter model for the mechanics of
compliant contact is based on overlap functions [33]. This quasi-
rigid-body modeling scheme can be described as follows. Con-
sider a single contact between and . In the absence of defor-
mation, the two bodies contact at a single point. When pushed

Fig. 2. Overlap segment representing the interpenetration of A and B.

together, the two contacting surfaces deform. One can concep-
tually think of the two rigid bodies as interpenetrating or over-
lapping their undeformed shapes, as illustrated in Fig. 2. Let

be at a configuration . Then, the overlap3 between and
, denoted , is the minimum amount of translation of

that would separate it from . By definition, vanishes
when is disjoint from . The overlap segment is the seg-
ment whose endpoints lie on the boundary of and , such
that the length of the segment is , and its orientation gives the
direction of separating translation. It can be verified that for suf-
ficiently small and positive , the overlap segment is the unique
segment collinear with the normals to the boundaries of and

(Fig. 2). In this lumped-parameter form of modeling, the net
normal force induced by the local deformation is assumed to act
at ’s endpoint of the overlap segment in the direction of the
overlap segment. The normal component of the th contact force

is assumed to depend on in terms of a function .
This function is required to be differentiable, zero when is
zero, and monotonically increasing when is positive. Thus

such that when (1)

It is important to note that a wide variety of contact models can
be represented in this framework. The simplest contact model
assumes that is a linear function of the overlap

, where the coefficient represents the combined stiff-
ness of and at the contact [13]. The Hertz model [12],
which has been verified theoretically and experimentally, es-
tablishes that where is a specific func-
tion of the bodies’ local material and geometric properties. The
overlap representation (1) is valid even under more general cir-
cumstances than those assumed by the Hertz model. For in-
stance, soft fingertips generate contact areas which are not nec-
essarily small compared with the bodies’ size, yet the resultant
normal force can still be expressed as a function of the overlap
[41], [42]. With this background, the principle of micro-pene-
tration is as follows.

Lemma 2.1 (Micro-Penetration): Let an object contact a
stationary finger , such that both bodies are quasi-rigid. The
change in the normal component of the th contact force due to
an instantaneous motion of is

for some

(2)

3The notion of overlap used here is consistent with the concept of “relative
approach” in the contact mechanics literature.
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where is the inward pointing unit normal to at , and
is a positive multiple of . The interpretation of (2) is as
follows. The vector points outward with respect to . If

, the overlap between and the stationary finger
increases to first-order, due to the instantaneous motion of ,

and consequently . The converse holds when
, since in this case, the overlap between the two bodies

is decreasing.
Proof: Let be the initial preload configuration of

, and let be a c-space trajectory of such that
and . Then a small change

in along can be written as
, where . Using the chain rule on (1),

. According to Lemma
A.2 in the Appendix, . Hence,

, where by the
monotonicity of with respect to .

The lemma can be written in matrix form as the following
principle of micro-penetration:

...
. . .

for some (3)

where is the normal projection ma-
trix and is the grasp matrix. Note that (3) rep-
resents a coupling of the changes in the normal component of
the contact forces through the instantaneous motion of . This
is nothing more than a general linearized stiffness relationship
that holds for any quasi-rigid-body contact compliance model.
Note, too, that (3) merely states that the coefficients
have some unspecified positive value. The ensuing bound on the
indeterminate contact forces is based only on this limited infor-
mation and not on any specific value for these coefficients.

C. Mechanics of Micro-Slip

Next, we formulate a generic rule for the change in the tan-
gential or frictional component of a contact force due to material
deformation at a quasi-rigid contact. This rule covers most com-
pliance models that have been proposed in the literature, and is,
therefore, quite general.

The principle of micro-slip is based on tangential compliance
induced at a frictional contact by local material deformation.
The process underlying this phenomenon is as follows. When
two quasi-rigid bodies are preloaded along the normal direc-
tion, they locally deform to establish a contact patch centered at
the original contact point [see Fig. 3(a)]. The deformed bodies
generate a normal force field which is continuously distributed
along the contact patch. (The integral of this force field over the
contact area gives the net normal force.) When the two bodies
are next loaded along a tangential direction, they locally de-
form in a way that generates a tangential force field which is
continuously distributed along the contact patch [see Fig. 3(b)].
The usual assumption made in the solid mechanics literature is
that the normal and tangential force fields interact at the indi-
vidual points of the contact area according to Coulomb’s law.
Under this assumption, elasticity theory as well as experimental

Fig. 3. (a) Initial contact patch is generated by normal loading of B against
A . (b) Tangential loading of B causes tangential displacement of B without
any macro-slip.

measurements indicate that micro-slip takes place in an outer
region of the contact area. However, an inner disc of the con-
tact area remains stationary. As the magnitude of the tangential
loading increases the area of the inner disc shrinks, but the two
bodies do not experience any macro-slip, since there is still a sta-
tionary inner disc. Only when the net tangential loading reaches

times the net normal loading ( being the coefficient of fric-
tion), the inner disc shrinks to a point and the two bodies expe-
rience macro-slip at the contact.

The sequential normal and tangential loading of a contact
is the first loading profile that has been investigated in the
literature by Mindlin and Deresiewicz [22]. Subsequent work
by Walton applied similar principles to a linear loading profile,
where a fixed ratio between tangential and normal displace-
ments is kept during the loading process [37]. This loading
profile generates a tangential compliance law which involves
no micro-slip. However, Elata and Berryman demonstrated that
when a linear loading is followed by a linear unloading of a
different slope, micro-slip occurs along an outer ring of the
contact area [10]. For our purposes, we only need the basic
fact that material deformation at a quasi-rigid contact induces
nonlinear tangential compliance, with certain generic properties
which are common to the various loading profiles.

We now formulate a rule for the change in the tangential com-
ponent of the contact force, assuming that the contacting bodies
deform but do not slip. In our case, the finger is stationary,
while moves along a c-space trajectory . Let de-
note the tangential displacement of relative to the th contact
due to motion of . Then, the derivative of along is given
by projection of the velocity of the overlap-segment endpoint
along the unit tangent as

(4)

Note that in contrast with , the tangential displacement is
not a direct function of , but requires integration of (4) over the
entire loading trajectory [15, p. 221]. The net tangential force
opposes the direction of tangential displacement. The tangential
component of the th contact force has a dominantly elastic
nature which obeys a law of the general form

as long as and (5)

(The tangential force-displacement relationship has an ad-
ditional small dissipative component which is caused by
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micro-slip in an outer region of the contact area. This dissipa-
tion further opposes the motion and does not affect the generic
rule derived below.) The function has the following proper-
ties. It is differentiable, , and for any fixed positive

, it is monotonically increasing in . The monotonicity of
implies that the tangential force in (5) opposes the direction

of tangential displacement. Note that depends both on the
tangential displacement and the normal penetration .
However, in practice, the variation of with respect to is
significantly lower than the variation with respect to . Hence,
we make a simplifying assumption that is approximately

, where is the normal penetration at the
preload configuration . This assumption allows a simple
characterization of the polyhedral bound.4

The following lemma summarizes the rule for the change in
the tangential component of the contact force.

Lemma 2.2 (Micro-Slip): Let an object be in contact with
a stationary finger , such that the two bodies are quasi-rigid.
Let the tangent and normal components of the th contact force
satisfy where . Then the change in the tan-
gential component of the th contact force due to an instanta-
neous motion of is

for some

(6)

where is the unit tangent to at , and is a positive mul-
tiple of .

Proof: The proof is similar to the proof of Lemma
2.1. First, one applies the chain rule

, where denotes derivative with
respect to . Then, one uses (4) to obtain ,
where by the monotonicity of with
respect to .

The lemma simply states that is proportional to the tan-
gential displacement of induced by , with the sign of
opposing the direction of tangential displacement. We can write
(6) in matrix form as the following principle of micro-slip:

...
. . .

for some (7)

where is the tangent projection ma-
trix, and is the grasp matrix. Much like the micro-penetration
principle discussed above, the micro-slip principle represents a
coupling of the changes in the tangential component of the con-
tact forces through the instantaneous motion of . Moreover,
this coupling is based on the limited information that the coef-
ficients have some unspecified positive value.

In summary, the two quasi-rigid modeling principles repre-
sent generic relationships between body movement and finger
reaction forces. Specific information about the contact parame-
ters is not needed, and the principles are valid for a wide range
of different compliance models.

4This assumption can be removed, with the result that the indeterminate con-
tact forces are still bounded in a polyhedral set, albeit one with a more compli-
cated geometry.

Fig. 4. (a) Origin of �f -space is determined by the preload forces. (b)
Feasible set V fills entire quadrants in �f -space.

III. DERIVATION OF THE POLYHEDRAL BOUND

We now derive the polyhedral bound on the indeterminate
contact forces. First, let us clarify our objective. A planar ob-
ject is initially held in a preloaded equilibrium grasp at a con-
figuration . When an external wrench acts on , we as-
sume that none of the contacts breaks or slips in response to

. Our objective is to provide a polyhedral bound on the
possible contact-force changes at the new equilibrium induced
by . Next, we introduce some notation. The coordinates of
contact force space are denoted collectively as ,
where and . The com-
ponents of the preload forces are denoted

. The changes in the contact forces induced by are de-
noted , where and

. These changes lie in a linear space called
-space, which is a copy of based at the preload point

[see Fig. 4(a)].
The grasp matrix maps the contact forces to the net wrench

acting on . We begin by writing as a linear mapping, denoted
, from contact force space to the object’s wrench space. The

contact forces are given in terms of their tangent and normal
components by the formula , where and

are the tangent and normal projection matrices. Pre-
multiplying both sides by gives

where

From now on, we refer to as the grasp matrix.
Next, we write two key expressions involving the matrix .

The preload forces at the initial equilibrium grasp satisfy

(8)

The first key expression is the condition for equilibrium in-
duced by an external wrench acting on . The object and
surrounding fingers respond to by locally deforming at
the contacts. The new forces

form an equilibrium with according to the
linear inhomogeneous equation

(9)
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where we have used (8) to eliminate the preload forces
. The set of all solutions to (9)

forms an affine subspace denoted [see Fig. 4(b)]. Next, we in-
troduce a parametrization for in terms of the null space of .
Let be the dimension of the kernel of , where
in the generic case where has full rank. Let be the
matrix whose columns span the kernel of , i.e., . We
use in the parametrization of the particular solution of (9)
given by , where
is the pseudoinverse of . Using this particular solution,

is parametrized by

(10)

The second key expression specifies what changes in the contact
forces are generated by instantaneous motions of , while the
fingers remain stationary. We call the collection
generated by all instantaneous motions of the feasible set .
Using the micro-penetration and micro-slip principles from the
previous section, the contact force changes induced by are

Since , the feasible set is given by

and (11)

where contains the unspecified positive pa-
rameters and . In the generic case where

has full rank, is a collection of three-dimensional (3-D)
subspaces in -space, each corresponding to a particular value
of . The set of contact force changes due to , denoted ,
is given by . Once is known, the statically fea-
sible contact forces induced by are given by

such that .
We now show that is a bounded polyhedral set in -space.

We first argue that is polyhedral and then demonstrate its
boundedness. Let a -quadrant in be the rectangular cone
spanned by a particular choice of directions along the coordinate
axes of (there are such -quadrants in ). According
to Lemma B.1 in the Appendix, the feasible set consists of
entire -quadrants in -space [see Fig. 4(b)]. Hence, is
an unbounded polyhedral set. On the other hand, is an affine
subspace in -space. Combining these two facts, the
intersection is a polyhedral set. However, it still remains to
show that is bounded. The next proposition is a key result of
the paper.

Proposition 3.1 (Boundedness): The polyhedral set of con-
tact-force changes induced by the action of on

is bounded in -space.
The intuition behind the boundedness of is as follows. Let

the skeletal set of be the subset

It is shown in Lemma B.1 in the Appendix that the feasible set
consists of the -quadrants occupied by . On the other hand,

is spanned by the rows of . Hence, is orthogonal to the
kernel of as well as to the affine subspace [Fig. 4(b)]. It
follows that is transversal to the -quadrants occupied by ,
and consequently, must be bounded. The following
proof is based on an argument presented in a 1964 paper by
Ben-Israel [1].

Proof: According to Lemma B.1, the feasible set fills
the -quadrants in -space whose interior is occupied by the
skeletal set . Let denote the index set of the -quadrants
occupied by . Then, is the union .
Hence, is bounded if each piece is either empty
or bounded. Thus, consider a particular -quadrant such
that is nonempty. Let be a unit vector
in which also lies in the interior of . Since the entries
of are nonzero, is strictly positive.
Let be any vector from . Since ,
it can be written as for some . Since

lies in the same -quadrant as , it satisfies for
. It follows that each satisfies the inequality

where we used the fact that is orthogonal to the
kernel of . Since , we obtain the bound

for . The norm of is
therefore bounded by , which is a
finite constant.

Let us pause to discuss a physical interpretation of the orthog-
onality between the skeletal set and the affine subspace .
Multiplying the representation (9) of with gives

for all and

(12)

Since consists of vectors of the form , (12) represents
the orthogonality between and . However, the entries of

are the contact-point velocities induced by
. The entries of are the contact-force changes

induced by . Letting denote these changes,
the orthogonality between and asserts that

. In other words, the energy flowing into the
grasping system through the action of on is stored as an
elastic energy associated with local deformation at the contacts.5

The following theorem summarizes the results concerning the
indeterminate contact forces.

Theorem 1: Let a planar object be held in an equilibrium
grasp by fingers with preload forces . Let an
external wrench act on , such that none of the contacts
breaks or slips. Then, the statically feasible contact forces in-
duced by are given by

such that

5Physically, some energy is being lost due to micro-slip at the contacts, but
this loss is relatively small in the quasi-static setting considered here.
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where is a bounded -dimensional polyhedral set, and
generically .

Several comments are in order here. First, the polyhedral
bound does not require any specific knowledge of the contact
parameters and . The bound is thus
useful for robust grasp synthesis, as discussed below. How-
ever, while the bound reduces the unbounded linear space of
indeterminate contact forces to a bounded polyhedral subset,
its dimension is generically the same as the dimension of the
original linear space. Special cases where the polyhedral set
has a smaller dimension occur when the kernel of consists
of pure normal forces or pure tangential forces, as illustrated in
Example 2 below. Second, any knowledge of specific intervals
where the contact parameters can vary would only improve the
bound, shrinking to a smaller polyhedral set. This fact is
stated in the following corollary.

Corollary 3.2: Let the contact parameters vary in intervals
and ,

such that and .
Then, based on these intervals is still a bounded polyhedral
set in -space. Moreover, if a polyhedral set is obtained
with contact parameters varying in subintervals of the intervals
used to compute another polyhedral set , then .

A proof of the corollary is relegated to [34]. Third, the the-
orem assumes that none of the contacts break or slip in response
to . In order to satisfy this assumption, one must select con-
tact locations and preload forces such that the friction-cone con-
straints are satisfied for the entire polyhedral set . We postpone
this operation to the last section discussing grasp synthesis.

The remainder of this section contains three results that lead
to a polynomial time algorithm for computing . The first re-
sult asserts that the polyhedral bound is always nonempty and
connected.

Lemma 3.3: The polyhedral set consists of a single con-
nected component in -space. Moreover, this set is always
nonempty and contains the solution .

A proof of the lemma appears in Appendix B. Note that
always contains the solution , since it belongs

to by setting in (10), and it belongs to by setting
and in (11). The lemma implies that

the indeterminate contact forces, which are obtained by adding
the preload forces to the set of contact-force changes, form a
nonempty and connected polyhedral set. In practice, one has
to verify conditions such as friction-cone constraints over the
entire set of possible contact forces, and having to deal with a
single connected component rather than a collection of disjoint
sets greatly simplifies this task. The second result characterizes
the planar facets of .

Lemma 3.4: The planar facets of the polyhedral set are
embedded in the coordinate hyperplane of -space.
Moreover, the th facet of satisfies the formula

where (13)

where is the th row of , and is the th
component of .

A proof of the lemma also appears in Appendix B. The lemma
asserts that each planar facet of is associated with the van-
ishing of a tangent or normal force component at one of the

Fig. 5. Two-finger grasp of an ellipse. (a) Preload forces and solution
� �G www . (b) Forces of the bounded segment P .

contacts. This insight is used below to graphically depict the
polyhedral bound in certain simple grasp arrangements. In more
complex grasps, one must use the algorithm described in the Ap-
pendix. The algorithm is based on the following characterization
of the vertices and convex cells of .

Lemma 3.5: The set is a union of convex polyhedra in
-space. The number of convex polyhedra is bounded from

above by , and the total number of vertices is bounded
from above by , where is the number of contacts.

A proof of the lemma appears in Appendix B. The convex
polyhedra mentioned in the lemma are the pieces of contained
in the individual -quadrants of -space. The bound on the
number of convex pieces is merely a bound on the number of

-quadrants occupied by the feasible set . Since is the in-
tersection of with the affine subspace , the actual number
of convex pieces in is usually smaller. As an illustration of
this fact, let us compare the two bounds with the actual num-
bers obtained in Example 3 below, which computes the set
for a particular three-finger grasp arrangement. First, the more
precise bound on the number of -quadrants occupied by
is (see the proof). Substituting gives

, and, indeed, occupies 24 out of the 64
6-D quadrants in Example 3. Second, the more exact bound on
the number of vertices in is (see
proof). Substituting gives ,
and, indeed, has 18 vertices in Example 3. The lemma leads to
a polynomial time algorithm for computing . The algorithm,
described in Appendix C, accepts as input the grasp matrix
and an external wrench . The algorithm first determines
which -quadrants of -space are occupied by the feasible
set . Then, it determines which of these -quadrants is also
intersected by the affine subspace . Finally, the algorithm con-
structs as its output lists of inequalities describing the convex
pieces of . The details of the algorithm and its time complexity
are discussed in Appendix C.

IV. EXAMPLES OF THE POLYHEDRAL BOUND

This section contains three detailed examples of the polyhe-
dral bound. We describe the bound under the assumption that
none of the contacts breaks or slips in response to the applied
wrench. This assumption is considered in the next section dis-
cussing grasp synthesis.

Example 1: The first example, shown in Fig. 5(a), is an el-
lipse held by two disc fingers in a frictional grasp. The ellipse
is subjected to a horizontal external force that acts at the
ellipse’s center against the fingers. The grasp matrix is ,
and it has a 1-D kernel. It follows from Theorem 1 that is
a bounded segment, and we now determine this segment. Re-
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Fig. 6. (a) Two-finger grasp of an ellipse along the contact normals. (b) Bounded segmentP due to a vertical fff . (c)P is a single point when fff is horizontal.

call that and denote the contact points, while
and denote the tangent and normal directions at the
contacts. Then, the kernel of consists of all forces
which act along the segment connecting and with equal
magnitude and opposite directions. In this example, the line
segment connecting and forms a angle with and

. Hence, the tangent and normal components of
the forces in the kernel of are

, where is an arbitrary scalar. Setting
, the solution is given by

, where denotes the magnitude of
. As depicted in Fig. 5(a), this solution consists of two hori-

zontal forces of magnitude which together oppose the
external force.

Using the expressions for the kernel of and , the
bounded segment corresponds to all solutions of
the equation

. . .

where and (14)

According to Lemma 3.4, the endpoints of lie on the coordi-
nate hyperplanes in -space. Equating the four scalar equa-
tions on the left-hand side (LHS) of (14) with zero, we ob-
tain two pairs of identical equations: and

. Solving these equations for , we obtain
the following description of :

The force changes corresponding to are depicted in Fig. 5(b).
The force changes at are given by

such that

These forces span the sector bounded by and . The force
changes at are given by

with varying in the same interval. These forces span the
sector bounded by and . Note that the normal components

and are nonnegative for all
. Hence, for any preloading of the grasp, none of

the contacts is broken in response to . The possibility that
a contact would break due to insufficient initial preloading is
discussed in Section V-A.

Example 2: The second example, shown in Fig. 6(a), is an el-
lipse held by two disc fingers along the contact normals and

. This particular equilibrium grasp can be established without
any friction at the contacts, and is often preferred by automatic
grasping systems. The kernel of is 1-D, as before. However, in
this grasp, the forces in the kernel of are aligned with the con-
tact normals. The kernel is thus spanned by , where

is an arbitrary scalar. We consider two orientations of an ex-
ternal force acting on .

First, consider a vertical which acts downward at the el-
lipse’s center. Setting , the solution
consists of pure normal forces and is given by

. Since the kernel of also consists of pure
normal forces, we can depict the entire affine subspace in the
plane of normal force components. This plane has coordinates

and is obtained by intersecting -space
with the hyperplanes and . Let de-
note the four quadrants in this plane. As shown in Fig. 6(b), the
intersection of the feasible set with the hyperplanes
and consists of the quadrants and . The
affine subspace intersects only the quadrant . Hence,
the endpoints of are located at

and . The reaction contact
forces induced by are thus pure normal forces, given by

and such that
. Note that the initial preloading must satisfy

so that the contact at would not break in re-
sponse to (see Section V-A).

Next, consider the application of a horizontal force
at the ellipse’s center. In this case, the bounded seg-

ment shrinks to a single point as follows. The solution
consists of pure tangential forces and is given

by . It follows that the
affine subspace lies in the -plane which is
embedded at and in

-space. The solution coincides with the
origin in this plane, while the feasible set fills the quadrants

and . As depicted in Fig. 6(c), this is a non-
generic case where the affine subspace intersects only the
boundary of the feasible set . As a result, the bounded segment

shrinks to a single point which coincides with .
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Fig. 7. (a) Three-finger grasp of a triangular object. (b) Forces corresponding to the portions of P in the 6D-quadrantsK andK .

The reaction forces due to a horizontal are therefore
unique, and are given by and

. However, any perturbation in
the direction of yields a bounded segment of indetermi-
nate reaction forces rather than a unique solution. Finally, the
selection of preload forces that would prevent contact slippage
in response to is discussed in Section V-B.

Example 3: The third example, depicted in Fig. 7(a), is a tri-
angular object which is symmetrically preloaded by three disc
fingers along the contact normals. The object is subjected to an
external torque that acts about the center. There are three
frictional contacts in this example, hence contact force space is
6-D. The grasp matrix is , and its 3-D kernel is spanned
by the following basis vectors. Every pair of contacts contributes
one basis vector, which is given by two forces that act in oppo-
site directions along the line segment connecting the two con-
tacts. The tangent and normal components of the three basis
vectors comprise the columns of the matrix , which
is written below. Next, consider the solution , where

. Let denote the distance from the object’s
center to the three contacts. Then, is given by three
tangent forces of equal magnitude, which together oppose the
external torque [Fig. 7(a)]. The expressions for and
are written in the following equation, that represents the inter-
section with :

. . . (15)

where and . The feasible set fills
entire 6-D quadrants in -space (Lemma B.1). In order to
determine the set , we have to determine which 6-D quad-
rants occupied by are intersected by . Let
denote the possible 6-D quadrants in -space. An
analysis whose details are omitted here reveals that occu-
pies 24 of the 6-D quadrants, while intersects six of these

6-D quadrants. The six 6-D quadrants, denoted ,
consist of two triplets:

and

. Note that the signs in each triplet
are cyclically symmetric, reflecting the cyclic symmetry of the
grasp arrangement. The forces corresponding to and
are depicted in Fig. 7(b). The forces corresponding to and

are cyclic permutations of the ones depicted for , while
the forces of and are cyclic permutations of the ones
depicted for .

We now construct the linear inequalities that define the
convex pieces of . Each convex piece of is associated with
a particular -quadrant . According to Lemma 3.4, the
planar facets of each piece are embedded in the coordinate
hyperplanes of -space. The representation of these facets in
the null space of is obtained by equating the six equations
on the LHS of (15) to zero. Next we convert the six equalities
into inequalities according to the sign vector of the particular
6-D quadrant under consideration. For instance, the piece of

in is parametrized by the
inequalities

The set resulting from the union of convex polyhedra
is depicted in Figs. 8 and 9. Note that both figures

use the null-space parametrization of by . The set
is obtained by mapping the sets depicted in the figures into
-space. Finally, here too the preload forces must be suffi-

ciently high to ensure that none of the contacts would break
or slip in response to . This topic is discussed in the next
section.

V. USING THE POLYHEDRAL BOUND FOR GRASP SYNTHESIS

In this section, we discuss the selection of preload forces such
that none of the contacts breaks or slips in response to an applied
external wrench. The discussion is divided into three parts. First,
we discuss the prevention of contact breakage in response to
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Fig. 8. Null-space parametrization of P for the three-finger grasp.

Fig. 9. Two top views of the null-space parametrization of P for the
three-finger grasp.

. Next, we discuss the prevention of contact slippage in re-
sponse to . Finally, we introduce the notion of robust grasp
synthesis, which is concerned with selection of preload forces
such that a given set of wrenches is passively resisted by the con-
tacts. The selection of preload forces is based on the following
formula. When an external wrench acts on an object held
in a preloaded grasp, the contact reaction forces induced by
are given by

(16)

where is the bounded polyhedral set. The formula specifies
a bounded polyhedral set with a basepoint at the preload forces

. In the following, the set specified by
(16) is denoted .

A. Positive Normal Load Constraint

First, consider the selection of preload forces such that none
of the contacts would break in response to . Let be the
set of contact forces having a nonnegative normal component

where means that each component of the vector is non-
negative. If is contained in [see Fig. 10(a)], none of

Fig. 10. Two intersection arrangements of f(q )+P with H , corresponding
to different normal preloadings.

the contacts would break in response to . If is only
partially contained in [see Fig. 10(b)], some of the reaction
forces can assume negative normal loading in response to .
The corresponding contacts can break, and the response to
would become unpredictable. For purposes of grasp synthesis,
we assert the following fact. For any given , there exist suf-
ficiently high preload forces such that is completely
contained in . The selection of suitable preload forces is illus-
trated in the following example.

Example 4: Consider the two-finger grasp of an ellipse dis-
cussed in Example 1. Let the ellipse be subjected to a force
which acts downward at the ellipse’s center [see Fig. 11(a)].
The kernel of is the same as in Example 1. The solution

requires two parameters depicted in Fig. 11(a). Let
the object-frame origin be located at the intersection point of the
normals and . The first parameter is the distance from
the object’s origin to the ellipse’s center. The second parameter

is the distance from the object’s origin to the contacts and
. Using these parameters, it can be verified that

(The first summand opposes the torque generated by about
the object’s origin, while the second summand opposes the
forces generated by the first summand and .) Substituting
the expressions for the kernel of and , the bounded
segment corresponds to all solutions of the
equation

. . .

Equating the LHS of the resulting equation to zero gives four
scalar equations in . The solutions of the four equations are

and ,
where is the magnitude of . These solutions parame-
trize the candidate endpoints of the bounded segment . Ac-
cording to Lemma 3.3, is connected and contains the solution
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Fig. 11. (a) Ellipse grasped by two fingers is subjected to a downward force fff . (b) Contact force changes in P are parametrized by � 2 I [ I [ I .

. Since corresponds to , the range of
that parametrizes must include the innermost interval

. The outer intervals,

and ,
parametrize segments that lie in specific 4-D quadrants in

-space. Let denote the 16 possible 4-D
quadrants in this space. Then the segments parametrized
by and lie in the 4-D quadrants and

. Moreover, both of these 4-D quadrants are
occupied by the feasible set. It follows that is parametrized
by the interval . Summarizing this example,
the set due to a vertical is

(17)

such that
. The forces corresponding to are depicted

in Fig. 11(b). It is intuitively clear that the action of on
reduces the normal loading at . Indeed, (17) tells us that

when varies
in . In order to prevent breakage of the contact at in re-
sponse to , the normal preloading at both contacts must sat-
isfy for .

B. Friction-Cone Constraint

Next, consider the selection of preload forces that would pre-
vent the contacts from slipping in response to . Let FC be
the set of contact reaction forces at satisfying the th fric-
tion-cone constraint

FC

and

where is the coefficient of friction. Let FC FC FC
be the set of contact forces that simultaneously satisfy the fric-
tion-cone constraints at the contacts. Note that, by definition,
FC is contained in the positive-normal-load set . If
is not completely contained in FC, some of the contacts may
slip, and the response to would be unpredictable. For the

purpose of grasp synthesis, the following lemma asserts that it
is always possible to select preload forces such that
is contained in FC. The lemma is based on the notion of force
closure. A -finger grasp is force closure if the contact forces
can generate any net wrench on the grasped object [26].

Lemma 5.1: Let be held in an equilibrium grasp by fin-
gers. If the grasp is force closure, for any , there exist suf-
ficiently high preload forces such that is completely
contained in FC.

Proof: In general, a planar grasp is force closure iff the
grasping forces lie in the interior of the respective friction
cones [20], [43]. Hence, at each contact , there exists a
scalar , such that . Next, we
define two bounds on the force changes at . The first is a
lower bound on the normal component over
all . The second is an upper bound on the
absolute value of the tangent component
over all . Both and are finite num-
bers since is a bounded set in -space. Next, we split
the normal preload into three summands:

. We
use the first summand to ensure that the net normal force at

is positive: . We use the
remaining two summands to ensure that the net tangent force
at satisfies the friction-cone constraint:

. Since
, selecting the th normal preload such

that ensures that the friction-cone
constraint at is satisfied. The two inequalities on can
be written together in the formula

(18)

where . A selection of according to this for-
mula guarantees that the entire bounded set satisfies
the th friction-cone constraint. Finally, the magnitude of the
preload forces can be freely scaled, since by construction these
forces lie in the kernel of .

The following example illustrates the computation of preload
forces that would prevent contact slippage in response to .

Example 5: Consider the two-finger grasp discussed in Ex-
ample 1. Let a horizontal external force attempt to pull the
ellipse away from the fingers. We wish to compute the preload
forces that would prevent the contacts from slipping in response
to . The kernel of is the same as in Example 1. The
solution consists of two horizontal forces of magni-
tude which oppose the external force,
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. Using the steps described in Ex-
ample 1, the bounded segment is

(19)

The computation now follows the steps described in the proof
of Lemma 5.1. First, we determine the bounds and for

. Using (19), the normal force changes induced by
are

in the interval . Hence,
. The tangent force changes in-

duced by are and
. An upper bound on and

in the interval is thus
. Next, we determine the value of the

scalars and . The preload forces form 45 with and .
Hence, , where is necessarily larger than unity
to allow the preload forces to lie in the interior of the friction
cones. Using the scalars , the friction-cone constraints at
are satisfied by the inequalities
and . Substituting

, the normal component of the preload forces
must satisfy for ,
where .

C. Robust Grasp Synthesis

Finally, consider the task of selecting preload forces such
that the contacts will resist a set rather than a particular ex-
ternal wrench. This set can model an uncertainty neighborhood
about a nominal wrench or it can model a time-varying wrench
that acts on a fixtured workpiece during a particular machining
stage. We describe how to compute the collection of indeter-
minate forces that can arise in response to a bounded convex
polyhedral set of external wrenches. Let denote the convex
polyhedral set of wrenches, and let denote the bounded poly-
hedral set of force changes induced by the action of a specific

on . We compute the union by considering
its individual pieces in the -quadrants of -space. Recall
that the feasible set fills entire -quadrants in -space
(Lemma B.1). Moreover, the -quadrants occupied by are
fixed and do not depend on the specific external wrench acting
on . Let denote the index set of the -quadrants occupied by

. Then, the collection of force changes induced by is given
by . For a given , each
piece is a convex polyhedral set. The following proposi-
tion asserts that this convexity is preserved when varies in .

Proposition 3.2 ([34]): Let be held by fingers in an equi-
librium grasp. Let be a -quadrant occupied by the feasible
set . If is a bounded convex polyhedral set of wrenches, the
collection of force changes is a bounded convex
polyhedral set in -space.

The proposition provides us with an efficient means for com-
puting the collection of contact reaction forces induced by .
First, for each , one computes the convex piece

Fig. 12. Two-finger grasp of an ellipse which is subjected to a torque � 2

[� � ��; � + �� ].

. Next, one takes the union .
Finally, the contact reaction forces induced by are obtained
by adding the preload forces to the collection of force changes,

. Once the set is known,
one selects preload forces such that the entire set satisfies the
friction-cone constraints discussed above. This last stage is il-
lustrated with an example.

Example 6: Consider the two-finger grasp discussed in
Example 1. The ellipse is subjected to a drilling torque

which acts at the ellipse’s center in a counterclock-
wise direction (Fig. 12). Due to process uncertainties,

varies in an interval , where
a nominal torque and is a tolerance parameter.
The corresponding set of external wrenches is given by

. This example
is sufficiently simple so that we can directly solve for the
collection of reaction forces induced by .

Since the kernel of is 1-D, for each fixed , the
set is a bounded segment. The computation of is sim-
ilar to the one carried in Example 1. First, the kernel of is
spanned by . Second, for each , the solution

consists of two horizontal forces that act at and
with equal magnitude and opposite directions (Fig. 12). The two
forces generate a net torque on , and their components
are given by , where is
depicted in the figure. Substituting for in (14) and then
equating the LHS of the resulting equation to zero gives two
identical pairs of equations in . The solutions of these equa-
tions are , and is given by

(20)
Next, we parametrize the external torques by

such that . The union of the segments is
given by

and (21)

In accordance with Proposition 5.2, is a 2-D
convex polygon in -space. We can now compute the
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preload forces that will prevent the contacts from breaking or
slipping in response to any torque in . Using (21),

while
. Hence, the lower bounds on are

and . Using (21) again,
and

. Hence,
the upper bounds on are .
Substituting for and in (18), the normal component of the
preload forces must satisfy
for . These preload forces guarantee that the two
contacts will passively resist any torque in .

Finally, let us put the grasp synthesis method in the con-
text of the existing literature. The synthesis method is most
relevant for fixturing and industrial gripping applications,
where sophisticated contact-force sensors and agile controllers
are not necessarily available. The literature relevant for such
applications focuses on synthesizing grasps that merely satisfy
a specific stability criterion, such as form-closure (e.g., [8])
or potential-energy minimization (e.g., [38]) in frictionless
grasps, and force-closure in frictional grasps (e.g., [21] and
[25]). However, without actively measuring and controlling the
contact forces, the resulting grasps provide passive stabiliza-
tion for some unspecified and perhaps small neighborhood of
disturbance wrenches. Furthermore, when a grasp is statically
indeterminate, it is not clear how to select the preload forces
magnitudes. In contrast, the synthesis method discussed here
specifies how to select suitable preload forces which guarantee
that all disturbance wrenches in an allowed convex set would
be passively rejected by the contacts.

VI. CONCLUSION

When an external wrench acts on a perfectly rigid object
grasped by perfectly rigid finger bodies, the statically feasible
contact reaction forces typically span an unbounded linear
space. However, in reality all bodies exhibit some degree of
compliance due to material deformation. Under a quasi-rigid
body framework these deformations occur only in the vicinity
of the contacts. We described two generic rules that govern
the force-displacement relationship at a quasi-rigid contact.
These rules govern the behavior of a wide range of compliance
models and make no prior assumptions on the specific value
of the contact parameters. When the effect of these rules at the
contacts is coupled through the rigid-body kinematics of the
grasped object, the statically feasible reaction forces span a
bounded polyhedral set. Since the polyhedral bound is obtained
without specific knowledge on the contact parameters, it is
useful for robust grasp and fixture synthesis in highly variable
environments. Given a bounded set of external wrenches that
can act on the grasped object, one first computes the bounded
set of reaction forces induced by this set. In particular, when the
external wrenches form a convex neighborhood, the reaction
forces can be efficiently computed as a convex combination of
the polyhedral sets associated with the vertices of the convex
neighborhood. Moreover, we showed that one can always
select preload forces such that the entire collection of reaction
forces satisfies the friction-cone constraints at the contacts. The
resulting grasp is robust in the sense that the contacts would

passively resist the given set of external wrenches without
requiring active control, even under huge uncertainty in the
contact parameters.

There are several natural paths for future research. First, our
robust grasp synthesis approach is rather preliminary. For in-
stance, we focused only on the selection of preload forces, while
the contact locations should also be used as a design param-
eter. A more thorough approach requires formulation of co-
ordinate invariant functions [16] that can measure the quality
of a grasp arrangement based on its polyhedral bound. Using
such functions, optimal grasps that robustly resist a collection of
external wrenches can be systematically selected. Second, the
quasi-rigid-body framework requires that the deformations be
localized to the vicinity of the contacts. However, complex ob-
jects with slender substructures exhibit global deformations that
can dominate the force-displacement relationship at the con-
tacts. The modeling of such global deformations is a challenging
problem which is currently under investigation. Third, we are in
the process of clarifying the connection between the polyhedral
bound and the notion of strong stability [30].

Finally, consider the extension of the polyhedral bound to
three dimensions. If the fingers can only apply pure forces at
point contacts, the basic relationships that led to the polyhedral
bound in two dimensions also hold in three dimensions. For a

-contact grasp in three dimensions, -space can be identified
with a copy of based at the preload forces . The
skeletal set is given by such that .
The feasible set of force changes is given by such
that and contains the contact parameters. On the
other hand, the contact forces induced by an external wrench

satisfy the equilibrium equation ,
where are the preload forces. Since the preload forces satisfy

, the equilibrium condition defines an affine subspace
in -space. A key step is that here, too, is orthogonal

to in -space. If one makes the reasonable conjecture that
is diagonal and nonnegative, the set is again a

bounded polyhedral set in -space.

APPENDIX

A. Details of the Micro-Penetration Principle

This appendix contains a proof of the formula for the deriva-
tive of the normal penetration . We need the following lemma.

Lemma A.1 ([33]): The overlap segment is perpendicular to
the boundaries of and at its endpoints and (Fig. 2).

Lemma A.2: Let be stationary and let move along a
c-space curve , such that maintains a positive overlap with

. Then , where is the
outward unit normal to at .

Proof: Let and be the endpoints of the overlap seg-
ment (Fig. 2), so that . Using Lemma
A.1, the unit normal pointing into is given by

. Hence

Since is stationary and lies on the boundary of is
tangent to the boundary of at . However, is also normal
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to the boundary of at , according to Lemma A.1. Hence,
, and consequently, . Now

. Hence, . Finally, it
can be shown that the summand is tangent to the boundary
of at . Hence, .

B. Details of the Polyhedral-Bound Derivation

This appendix contains several results which are used in the
derivation of the polyhedral bound. The first lemma character-
izes the feasible set . Recall that the skeletal set of is the
subset

Recall, too, that a -quadrant in is the rectangular cone
spanned by a particular choice of directions along the coordi-
nate axes in this space.

Lemma B.1: Let the skeletal set be transversal to the coor-
dinate hyperplanes in -space (which is the generic
case). Then, the feasible set consists of the interior of all

-quadrants in -space which are intersected by .
In the special case where is aligned with some coordi-

nate hyperplane in -space, fills the -quadrants
whose interior is intersected by , as well as the -quad-
rants of the coordinate hyperplane which is aligned with .

Proof: Let be an instantaneous motion of
such that the vector has nonzero components. Let

denote the rows of . Recall that the contact
parameters are denoted collectively as . Since is
diagonal with entries

...

... (22)

where . It follows from (22) that the set
is the interior of the -quadrant spanned by the coordinate pro-
jections of on the coordinate axes of -space.
In other words, the set fills the interior of the -quad-
rant containing the vectors such that . This im-
plies that fills the interior of the -quadrants containing the
skeletal set .

Next, we provide a proof of Lemma 3.3 that is always
nonempty and connected.

Lemma 3.3: The polyhedral set consists of a single con-
nected component in -space. Moreover, this set is always
nonempty and contains the solution .

Proof: Let be the set of positive parameters
along the diagonal of . First, we show that the

collection of contact-force changes, , is the
image of under a continuous mapping. Consider the equation
representing the intersection of with as

(23)

where and . Since is posi-
tive definite for , we can multiply both sides of (23)

by , to obtain an implicit description of in
-space

(24)

The matrix is positive definite for . Hence,
(24) can be solved for as a function of as

(25)

The function is well-defined and continuous for .
It follows that the function , which maps to

, is also well-defined and continuous. The image of a con-
nected set under a continuous map is connected. Since is
nonempty and connected, the polyhedral set is also nonempty
and connected.

The following is a proof of Lemma 3.4, which is concerned
with the planar facets of .

Lemma 3.4: The planar facets of are embedded in the co-
ordinate hyperplane of -space. Moreover, using the
null-space parametrization (10), the th facet of satisfies the
formula

where (26)

where is the th row of and is the th
component of .

Proof: According to Lemma B.1, the feasible set con-
sists of entire -quadrants in -space. The set is there-
fore bounded by the coordinate hyperplanes in -space. On
the other hand, is an affine subspace in -space with no
boundary points. Hence, all of the boundary points of origi-
nate from the boundary of , which is embedded in the coordi-
nate hyperplanes of -space.

Consider now (23), which represents the intersection of
with . By equating the th entry on the LHS of (23) to zero,
we obtain a parametrization of the intersection of with the th
coordinate hyperplanes in -space. This is precisely formula
(26) above.

Finally, we give a proof of Lemma 3.5, which characterizes
the vertices and convex cells of .

Lemma 3.5: The set is a union of convex polyhedra in
-space. The number of convex polyhedra is bounded from

above by , and the total number of vertices is bounded
from above by , where is the number of contacts.

According to Lemma B.1, the feasible set fills entire
-quadrants in -space. Let denote a -quadrant and let
denote the index set of the -quadrants occupied by . The

set can be written as the union .
Each intersection is a convex polyhedron in -space,
since both and are convex polyhedra. Hence is a union
of convex polyhedra in -space.

Next, consider the number of convex polyhedra in . Lemma
B.1 asserts that the feasible set fills the -quadrants which
are intersected by the skeletal set . Hence, the number of
convex polyhedra in is bounded from above by the number
of -quadrants intersected by . The set is given by
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where can be identified with . When crosses a co-
ordinate hyperplane in -space, some entry in vanishes.
Letting denote the th row of , the vanishing of the th
entry is given by . This equation defines a plane through
the origin in . Since is , there are such planes
in . The planes partition into polyhedral cones having a
common vertex at the origin. Each polyhedral cone corresponds
to a particular -quadrant occupied by in -space. The
number of polyhedral cones can be bounded by considering the
unit sphere in , denoted . The intersection of two planes,
being an infinite line through the origin, induces two antipodal
points on . Hence the total number of vertices induced on
by the planes is twice the number of ways to select two out of

planes. The number of vertices in is therefore bounded
by . Using the fact that
every vertex is generated by the intersection of two circles in

, an argument based on the Euler characteristic of shows
that the total number of spherical cells induced by the planes
is bounded by . This number is an
upper bound on the number of -quadrants intersected by
in -space.

Last consider the number of vertices in . According to
Lemma 3.4, each planar facet of is embedded in a particular
coordinate hyperplane of -space. Since is gener-
ically -dimensional, each vertex of lies at the intersection
of coordinate hyperplanes in -space with the affine sub-
space . Moreover, each -touple of coordinate hyperplanes
can intersect the affine subspace at most at one point. Thus,
the total number of vertices in is bounded from above by the
number of -touples of coordinate hyperplanes in . Since

, the number of -tuples of coordinate hyper-
planes is

.

C. Computation of the Polyhedral Bound

This Appendix sketches an algorithm that computes the set
as a union of convex polyhedra. The algorithm is based on the
proof of Lemma 3.5, which identifies the -quadrants occupied
by with spherical cells on the unit sphere. A key ingredient
in this algorithm is a procedure that checks if an affine subspace

intersects a given -quadrant in . First we define
some terminology. Let denote a -quadrant in . Since
is spanned by a particular choice of coordinate directions in ,
it is uniquely identified by a sign vector
according to the coordinate-axes directions in . Let

denote the coordinates of . Then checking that
intersects a -quadrant amounts to checking that the fol-

lowing set of linear inequalities is nonempty:

...
... such that ... (27)

where is the sign vector of . The
problem (27) is a linear-programming problem that can be
solved in steps using interior point methods [5].

From now on we assume the availability of a procedure
, that returns a yes-answer if the affine subspace

intersects the -quadrant with a sign vector .
The algorithm runs in -space which is identified here with

, where is the number of contacts. Assuming that the
-quadrants of -space are indexed by some method, the al-

gorithm maintains the following data structures. The set con-
tains the indices of the -quadrants occupied by the feasible
set . The set contains the indices of the -quadrants
which are additionally intersected by the affine subspace . The
algorithm stores its output in lists such that . These lists
contain the linear inequalities that bound the convex pieces of .

Polyhedral Bound Algorithm:
Input: Grasp matrix with columns , an

external wrench .
Data Structures: Initially empty index sets and , initially

empty lists .

1) Construct the null-space matrix and the affine subspace
in .

2) For each , construct two vertices on the unit
sphere .

3) Connect each vertex with the circular edges induced
by the planes .

4) Using a line-sweep algorithm, compute a sample point
in each spherical cell.

5) For each spherical cell, determine the sign vector of the
-quadrant associated with the cell, according to the sign

of . Add to the index of the -quadrant.
6) For each -quadrant in :

6.1 call to check if is intersected by
affine subspace .

6.2 If it does, add to the index-set .
7) For each -quadrant in :

7.1 Let be the intersection of with the th coordinate-
hyperplane in .

7.2 For each -quadrant on the boundary of :
7.2.1 Call to check if is inter-

sected by .
7.2.2 If it does, add the index to the list .

Output: For each , a list of coordinate-hyperplanes
containing the facets of .

Each list determines one convex piece of . Using the
null-space parametrization (10), each of these convex pieces is
given by

where

In this formula, is the th component of the sign-vector
of is the th row of , and is the th
component of . Finally, the set is the union

.
The computational complexity of the algorithm is as follows.

In step 4, the arrangement of cells on the unit sphere contains
cells (Lemma 3.5). Hence, a line sweep algorithm would

identify a sample point per cell in time. At this
stage, the index set contains indices. Step 6 invokes
a linear program for each -quadrant in , and this step takes

time to complete. In worst case, the reduced index set
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still contains indices. At the last stage, the algorithm de-
termines which coordinate hyperplanes bound the intersection

for each such that . This inquiry involves execu-
tion of a linear program times per . Since there are
indices in , this last stage takes time. The computational
complexity of the algorithm is therefore .
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