Privacy-Preserving Data
Mining: Why, How, and When

Data mining is under attack from privacy advocates because
of a misunderstanding about what it actually is and a valid
concern about how it’s generally done. This article shows
how technology from the security community can change

data mining for the better, providing all its benefits while

still maintaining privacy.

n today’s information age, data collection is ubiq-

uitous, and every transaction is recorded some-

where. The resulting data sets can consist of ter-

abytes or even petabytes of data, so efficiency and
scalability is the primary consideration of most data
mining algorithms.

Naturally, ever-increasing data collection, along
with the influx of analysis tools capable of handling
huge volumes of information, has led to privacy con-
cerns. Protecting private data is an important concern
for society—several laws now require explicit consent
prior to analysis of an individual’s data, for example—
but its importance is not limited to individuals: corpo-
rations might also need to protect their information’s
privacy, even though sharing it for analysis could bene-
fit the company. Clearly, the trade-off between sharing
information for analysis and keeping it secret to pre-
serve corporate trade secrets and customer privacy is a
growing challenge.

But is it even possible to perform large-scale data
analysis without violating privacy? Given sufficient care,
we believe the answer is yes. In this article, we’ll describe
why data mining doesn’t inherently threaten privacy, and
we’ll survey two approaches that enable it without reveal-
ing private information: randomization and secure mul-
tiparty computation (SMC).

The problem

In 2002, concerns over government collection of data
led to street protests in Japan.' In 2003, concern over
the US Total Information Awareness program even led
to the introduction of a bill in the US Senate that
would have stopped any US Department of Defense
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data mining program. Such knee-
jerk reactions don’t just ignore the ben-

efits of data mining—they display a lack of under-
standing of its goals.

Models

The goal of data mining is to extract knowledge from
data. David Hand, Heikki Mannila, and Padhraic Smyth2
categorize data mining into five tasks:

* Exploratory data analysis (EDA). Typically interactive
and visual, EDA techniques simply explore the data
without any preconceived idea of what to look for.

Descriptive modeling. A descriptive model should com-
pletely describe the data (or the process generating it);
examples include models for the data’s overall probabil-
ity distribution (density estimation), partitions of the p-
dimensional space into groups (cluster analysis and seg-
mentation), and descriptions of the relationship
between variables (dependency modeling).

Predictive modeling: classification and regression. The goal
here is to build a model that can predict the value of a

single variable based on the values of the other vari-
ables. In classification, the variable being predicted 1s
categorical, whereas in regression, it’s quantitative.

Discovering patterns and rules. Instead of building models,
we can also look for patterns or rules. Association rules

aim to find frequent associations among items or fea-
tures, whereas outlier analysis or detection focuses on
finding “outlying” records that differ significantly from
the majority.

* Retrieval by content. Given a pattern, we try to find simi-
lar patterns from the data set.
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The first three tasks output models that essentially
summarize the data in various ways; the last two find spe-
cific patterns, but they’re often generalized and don’t re-
flect particular data items. Because these models generally
don’t contain individual data values, they don’t present an
immediate threat to privacy. However, there’s still the
issue of inference. A “perfect” classifier, for example,
would enable discovery of the target class, even if the in-
dividuals’ target classes weren't directly disclosed. In prac-
tice, though, probabilistic inferences are more likely, giv-
ing the model’s possessor a probabilistic estimate of
private values. We’ll discuss some recent work that re-
stricts the results of data mining in more detail later. The
more immediate privacy problem with data mining is
based not on its results, but in the methods used to get
those results.

Methods

Most data mining applications operate under the as-
sumption that all the data is available at a single central
repository, called a data warehouse. This poses a huge pri-
vacy problem because violating only a single reposi-
tory’s security exposes all the data. Although people
might trust some entities with some of their data, they
don’t trust anyone with all their data. This was the root
of the protests in Japan—the national government
wasn’t collecting new information, but simply creating
a single repository for information previously kept by
the prefectures.

Mediators and federated databases don’t solve this
centralization problem—they just change the nature of
attacks. Mediators provide access to distributed data, and
it is this access—rather than the data’s location—that cre-
ates the opportunity for misuse. Whether a data ware-
house is real or virtual is irrelevant: if the data mining al-
gorithm can access the data, the opportunity exists for an
attacker to getit, too.

A naive solution to the problem is de-identification—
removing all identifying information from the data and
then releasing it—but pinpointing exactly what consti-
tutes identification information is difficult. Worse, even if
de-identification is possible and (legally) acceptable, it’s
extremely hard to do effectively without losing the data’s
utility. Latanya Sweeney® used externally available public
information to re-identify “anonymous” data and proved
that effectively anonymizing the data required removal of
substantial detail.

Better solutions are possible. One is to avoid building
a centralized warchouse in the first place. Distributed data
mining algorithms minimize the exchange of data
needed to develop globally valid models. Later in this ar-
ticle, we’ll show that such algorithms can be performed in
ways that provably preserve privacy and prevent disclo-
sure of data beyond the original sources.

Another approach is data perturbation—modifying
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the data so that it no longer represents real individuals.
Because the data doesn’t reflect real values, even if a data
item is linked to an individual, the individual’s privacy re-
mains intact. (Such data sets must be known to be per-
turbed, though, so that anyone attempting to misuse the
data knows it can’t be trusted.) An example is the US
Census Bureau’s Public Use Microdata Sets. A primary
perturbation technique is data swapping—exchanging
data values between records in ways that preserve certain
statistics but destroy real values.* An alternative is ran-
domization—adding noise to data to prevent discovery of
the real values. Because the data no longer reflects real-
world values, it can’t be used to violate individual privacy.
The challenge is in obtaining valid data mining results
from the perturbed data. Let’s review some techniques
that enable data mining of such noisy data.

Data perturbation

The problem with data perturbation is that doing it in-
discriminately can have unpredictable impacts on data
Vladimir  Estivill-Castro
Brankovic explored the impact of data swapping on

mining. and  Ljiljana
data mining for decision rules (combinations of attrib-
utes that are effective at predicting a target class value).”
Full swapping (ensuring that no original records appear
in the perturbed data set) can prevent effective mining,
but the authors concluded that limited swapping has a
minimal impact on the results. The key for privacy
preservation is that you don’t know which records are
correct; you simply have to assume that the data doesn’t
contain real values.

Randomization, adding noise to hide actual data val-
ues, works because most data mining methods construct
models that generalize the data. On average, adding noise
(if centered around zero) preserves the data’s statistics, so
we can reasonably expect that the data mining models
will still be correct. Let’s assume we're building a model
that classifies individuals into “safe” and “unsafe” driver
categories. A likely decision rule for such a model would
state that drivers between the ages of 30 and 50 are likely
to be safe. Now assume we add random noise to the ages
to prevent discovery of an individual’s driving record sim-
ply by knowing his or her age. Some safe drivers between
the ages of 30 and 50 will be moved into other age brack-
ets, and some unsafe drivers who are younger or older
will be moved into the 30 to 50 bracket, but the 30 to 50
bracket will also lose unsafe drivers and gain safe drivers
from other age brackets. On the whole, drivers in the 30
to 50 range will still likely be safer—even on the per-
turbed data.

The problem is that knowing the overall values is not
sufficient for building a decision tree. Data mining must
also help us figure out where to make the decision
points, not just the decision for those ranges—for ex-
ample, why do we use 30 to 50 as the range? Why not 35



to 55 or 25 to 60? Data mining algorithms automatically
find appropriate points to make such splits, but these
points can be obscured by adding noise to the data. Let’s
assume the data is distributed as shown in Figure 1. On
the original data, the natural breaks in the data fall at
ages 30 and 50, so a data mining algorithm will pick
these as decision points. After adding noise, the data no
longer has these obvious points, so a data mining algo-
rithm is likely to pick bad decision points and produce
poor results.

In a previous work,” Rakesh Agrawal and Ramakr-
ishnan Srikant presented a solution to this problem.
Given the distribution of the noise added to the data, as
well as the randomized data set, they could reconstruct
the data set’s distribution (but not actual data values).
This enabled a data mining algorithm to construct a
much more accurate decision tree than mining the ran-
domized data alone, which approaches the accuracy ofa
decision tree constructed on the real data.

Agrawal and Srikant define the reconstruction prob-
lem as follows: Given a cumulative distribution F, and the
realizations of n random samples X; + Y}, X, + Y5, ..., X,
+Y,

» estimate F,.. The basic idea is to use Bayes rule to es-

timate the posterior distribution for a given point. For
example,
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Although fx isn'’t really known, we can estimate it by
using the normal distribution as the initial estimate and it-
eratively refine this estimate by applying Equation 2.
Similar approaches have also been developed for learn-
ing association rules from randomized data, so solutions
for other data mining tasks are certainly feasible. Although
we won'’t get the same exact data mining results postran-
domization as prerandomization, researchers have experi-
mentally shown the results to be accurate enough in the
case of both classification® and association rule mining.
One concern with randomization approaches is that
the very techniques that let us reconstruct distributions
also give us information about the original data values. As
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Figure 1. Loss of decision points in randomized data. While the
data shows clear groups of people in their 20s, 40s, and 60s, these

asimple example, let’s reexamine Figure 1. From the dis-
tribution, we don't see any drivers younger than 16. As-
sume we're told that the randomization was done by
adding noise randomly chosen from the range [-15, 15],
and based on this and the noisy data set, we reconstruct
the original distribution. This doesn’t appear to tell us the
age of any individual—a driver who is 40 years old is
equally likely to have his or her age given as anything from
25 to 55—but what about an individual whose age is
shown as 1 in the noisy data? We know (from the recon-
structed distribution) that no drivers are younger than
16—so the driver whose age 1s given as 1 in the noisy data
must be 16 years old!

Secure multiparty computation
Let’s look at an alternative approach based on the premise
that every piece of private information is validly known to
one or more parties. Revealing private data to parties such
as the data set’s owner or the individual to whom the data
refersis not a breach of privacy—they already know it. The
concern is with revealing the data to other parties. To ad-
dress this, we use a specialized form of privacy-preserving,
distributed data mining. Parties that each know some of the
private data participate in a protocol that generates the data
mining results, yet that can be proven not to reveal data
items to parties that don't already know them. Thus the
process of data mining doesn’t cause, or even increase the
opportunity for, breaches of privacy.

The basic idea is that parties hold their own data, but
cooperate to get the final result. In 1986, Andrew Yao’
proposed the idea of secure two-party computation in
which any function with inputs distributed between two

www.computer.org/security/ |
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Global database view

|Transaction ID Brain tumor? Diabetes? Model Battery|
Medical records Cell phone data

RPJ Brain tumor  Diabetic RP] 5210 Li/lon
CAC  No tumor  Nondiabetic CAC None None
PTR  No tumor Diabetic PTR 3650 NiCd

AN
iabetes CAC doesn’t cell phone

Cell phones with Li/lon batteries lead to brain
tumors in diabetics

Figure 2. Vertically partitioned database. Although mining the global
database view could give valuable knowledge, constructing the view

violates privacy. /

\

Global database view

| Transaction ID ~ Status Credit Number of transactions ZIP|

/ﬁ
Bank A (credit card)

RP] Active <$1,000 <20

47906

PTR Passive $5,000 <5 98052

/_\
Bank B (credit card)

ABC Passive $10,000 <20

85732

XYZ Active >$50,000 >100 47907

Figure 3. Horizontally partitioned database. The global view is the
union of the individual databases.

/

parties could be securely computed without revealing

any information to any party other than itslocal input and
output (or anything inferable from the input and output).
Oded Goldreich and colleagues extended and formalized
this approach to multiparty computation.® The whole
class of computation is now known as secure multiparty
computation, or secure distributed computation. Matt
Franklin and Modi Yung’ provide an excellent survey of

secure distributed computation.
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The notion of computational indistinguishability 1s
crucial to SMC. A distribution of numbers is said to be
computationally indistinguishable from another distrib-
ution of numbers if no polynomial time program can
distinguish between the two distributions. As long as
the sequence of numbers revealed during a protocol is
computationally indistinguishable from numbers drawn
from a random distribution, the protocol is assumed to
be secure.

Goldreich proved that any problem representable as a
circuit can be securely solved, but the computation cost
depends on the input’s size. This generic method based
on circuit evaluation is expensive (even for small inputs)
and the computational cost is prohibitive for large inputs,
as 1s the case with data mining. The answer has been to
develop practical secure techniques to perform all the
tasks of data mining.

The model

In the SMC model, the question of privacy doesn't arise
when all the data is centralized—the data holder com-
putes the function. When the input to a function is dis-
tributed among different sources, though, the privacy of
each data source comes into question. The way the data is
distributed also plays an important role in defining the
problem because data can be partitioned into many parts
either vertically or horizontally.

Vertical partitioning of data implies that although dif-
ferent sites gather information about the same set of enti-
ties, they collect different feature sets. Banks, for example,
collect financial transaction information, whereas the
IRS collects tax information. Figure 2 illustrates vertical
partitioning and the kind of useful knowledge we can ex-
tract from it. The figure describes two databases, one
containing individual medical records and another con-
taining cell-phone information for the same set of peo-
ple. Mining the joint global database might reveal such
information as cell phones with Li/Ion batteries can lead
to brain tumors in diabetics.

In horizontal partitioning, different sites collect the
same set of information but about different entities. Dif-
ferent supermarkets, for example, collect the same type of
grocery shopping data. Figure 3 illustrates horizontal par-
titioning and shows the credit-card databases of two dif-
ferent (local) credit unions. Taken together, we might see
that fraudulent customers often have similar transaction
histories. However, no credit union has sufticient data by
itself to discover the patterns of fraudulent behavior.

The methodology

A truly secure SMC protocol doesn’t reveal any informa-
tion other than its input and output or any information
polynomially computable from it, but care in performing
these tasks is required, as this itself might be a privacy
breach. Asa trivial example, consider securely computing
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Vertical partitioning
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TIDs, TID ¢, TID 3/T|D10} Some sample 2 and 3 item sets

AD {TID,, TID,, TID,, TID;y} IADI=2+2=4
IACI=1+2=3
ICDI=1+1=2
IACDI=1+1=2
IADH =1+2=3

J

TID,, TIDg, TID,o, }

AD => C, support = 2/10 = 20%, confidence = 2/4 = 50%

(9

AD => E, support = 3/10 = 30%, confidence = 3/4 = 75%

\

Figure 4. Example database and association rules. For horizontal partitioning, we see the (a) example database, (b) TID list
representation of the database, and (c) sample association rules.

the sum oflocal numbers. For two parties, the sum reveals
the other party’s input—there’s no way to avoid that—so
it’s necessary (even before starting data mining) to analyze
whether the input and output taken together could reveal
too much information.

Once a protocol is developed, we must prove its secu-
rity. Because all interaction occurs through the messages
sent and received, we simulate the views of all the parties
by simulating the corresponding messages. If we can
simulate these messages, then we can easily simulate the
entire protocol just by running it. The key is that the sim-
ulation need not exactly duplicate the messages sent. In-
stead, we use a notion from cryptography—the same
message can be encrypted with different keys to look dif-
ferent, even though they represent the same message. In
the context of SMC, multiple executions of a protocol on
the same input may exchange different messages, gov-
erned by random choices made by the parties (analogous
to the choice ofkeys in cryptography). The protocol s se-
cure if the messages generated over many runs of it are in-
distinguishable from the messages generated over many
runs of the simulator.

Association rule mining

We'll use the common data mining task of association
rule mining to demonstrate SMC-based privacy-
preserving data mining protocols. Association rules are
frequent associations or relationships among items or
features. A common real-life example is the frequent co-
occurrence of beer and diaper purchases in grocery data-
bases. An important data mining task is to find all the “in-
teresting” association rules in a database. We can formally
define the association rule mining problem as follows: Let
1= {i}, i, ..., i,} be aset of literals, called items. Let D be
a set of transactions, where each transaction T is a set of
items such that T'C I. Associated with each transaction is

a unique identifier, called its TID. We say that a transac-
tion T contains X, a set of some items in I, if X € T. (Xis
also known as an item set.) An association rule is an impli-
cation of the form, X= Y, where X1, YCI, and X >
Y= ¢. The rule X= Yholdsin the transaction set D with
confidence cif c percent of transactions in D containing X
also contain Y. The rule X=> Yhas support s in the trans-
action set D if s percent of transactions in D contain X <
Y. Find all association rules in D with support s
> stand confidence ¢ > cf, where st and ct are user-defined
thresholds for “interesting” rules.

The canonical data mining solution to this problem is
the Apriorialgorithm. For efficiency, it does filtering first
on the basis of support, then on confidence—support fil-
tering can be done simply by finding frequent item sets.
All the subsets of a frequent item set are guaranteed to be
frequent, thus all frequent item sets are found in a bottom
up fashion: If an item set is infrequent, no superset of that
set can be frequent and we can restrict further search.
Once we have an item set’s frequency, it’s easy to perform
the remaining steps of the algorithm.

As an example, consider the database shown in Figure
4. This database has five attributes, A, ..., E, and 10 trans-
actions, TIDy, ..., TID. If vertically partitioned, assume
that the database is split between two parties, Py and Py,
such that Py, has attributes A, B, and C, and Py, has at-
tributes D and E. If horizontally partitioned, assume that
the database is split between the two parties Py and Ppp,
such that Py has TIDy, ..., TIDs, whereas Py, has TID,
..., TIDy. Figure 4a shows this database, and Figure 4b
shows an alternative representation of the database as a
TID list. Figure 4c shows samples of association rules
along with their confidence and support. If the minimum
support threshold were set at 30 percent, we'd still find the
rule AD — E, but the rule AD — C would be pruned
because the item set <ACD> isn'’t frequent.

www.computer.org/security/ B [EEE SECURITY & PRIVACY
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Result =31 - 11 (mod 100) = 20
X1 = 5

C)—

Xo=12

X2=3

Figure 5. Secure computation of a sum. The addition of the random
value R hides each site’s value from the next site. /

Horizontally partitioned data

As noted previously, with horizontal partitioning of data,
we assume that different sites have the same attributes, but
hold difterent sets of entities. In this case, an item set’s global
frequency is the sum ofits local frequencies divided by the
global number ofitems. Because our goal is to see if the fre-
quency exceeds a threshold, we can simply sum the num-
ber of entities by which each site exceeds or drops below
the threshold; if this sum is positive, the threshold is ex-
ceeded. We can do this by using a protocol for secure sum-
mation. Details on how to efficiently find candidate fre-
quent item sets for which we would evaluate frequency
using this technique appear elsewhere. '’

The secure sum protocol is a simple example of an effi-
cient and (information theoretically) secure multiparty
computation. Consider the following problem. There
exist [ parties P ... P_y. Each party P(i=0...[—1) hasa
local input x;. The parties want to securely compute Y2}
x;, so the number of parties / must be more than two, be-
cause for only two parties, the result will reveal the input
of the other party, thus eliminating privacy. How can this
be done?

Assuming no collusion, the following method securely
computes such a sum. Assume that the value y = Y12} x; to
be computed is known to lie in the range [0..n]. Pick (at
random) one site, k, to be the protocol’s initiator.

Site k generates a random number R uniformly cho-
sen from [0..n], adds this to its local value x;, and then
sends the sum R + x;, (mod ) to site k + 1 (mod /). Be-
cause the value R is chosen uniformly from [1..n], the
number R + x;, mod s also distributed uniformly across
this region, so site k + 1 (mod /) learns nothing about the
actual value of x,.

For the remaining sites, wheneversite z (2 =0 ... [ 1,
z # k) receives a value from site z — 1 (mod [), it adds its
local value x, and then sends the sum on to site z + 1
(mod I). Because the value it receives is also uniformly
distributed across [1..n] (due to the original random R),

site z learns nothing. Finally, site k receives the total sum,
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$=R+ YE)x;, and because it knows R, it can subtract R
from S to get the required result.
Any site g can also determine 2,-:0;; x; by subtracting

x,. Regardless of how it is computed, site ¢ hasn’t learned

arquthing from the global computation. Figure 5 depicts
how this method works for three parties.

Obviously, collusion between sites can cause a serious
problem. Sites z — 1 and z + 1 can compare the values
they send and receive to determine the exact value for x_,
for example. We can extend the algorithm from earlier to
work as long as we have an upper bound on the number
of colluding parties. Each site divides its local value into
an equal number of shares; this algorithm computes the
sum for each share individually. However, the order is
changed for each share, such that no site has the same
neighbor twice. To compute x., z’s neighbors from each
iteration would have to collude. The number of shares is
the security parameter that puts a lower bound on the
minimum number of dishonest (colluding) parties re-
quired to violate security.

Vertically partitioned data

A solution to finding association rules in vertically parti-
tioned data is to have each site generate a list of the trans-
action identifiers that contain all the items in the item set
about which that site has information, as in Figure 4b.
The intersection of these lists is the set of transactions that
support the rule. The real goal, however, is simply to find
the number of transactions that contain all the items—we
don’t need to know which transactions these are. Rather,
we need to find the size of the intersection without re-
vealing the transaction identifiers in the lists.

To accomplish this, we can use commutative encryp-
tion; it has the property that the same data item encrypted
with p different keys gives the same cipher text even if the
order of encryption differs.

To compute the list intersection’s size, each site picks a
localkey and uses it to encrypt all of its items. It then sends
the encrypted list to the next site, which does the same
thing. After all the sites have encrypted all the lists, they
can intersect them because the encryption is commuta-
tive. The resulting intersection set’s size gives the required
result. None of the sites ever sees an unencrypted item
other than its own, and decryption is never performed, so
none of the sites learns anything from the other sites.

This description is oversimplified and not truly se-
cure, but it gives a flavor of the solution. We’ve devel-
oped a solution that is both truly secure and more
efficient than the simplified version, but the details are
beyond this article’s scope. !

Distributed )

data mining solutions

Recent research for developing privacy-preserving data
mining algorithms focuses almost exclusively on using



SMC. Yehuda Lindell and Benny Pinkas introduced the
notion of using SMC techniques for data mining (specif-
ically, classification) by constructing a privacy-preserving
ID3 classification algorithm.'? The fundamental feature
of their solution was to develop a secure protocol for
computing the logarithm using the Taylor series approx-
imation. Thus, the protocol is fully secure, but it com-
putes an approximate answer that is as precise as required.
Other recent methods include naive Bayes classification,
an ID3 classifier for vertically partitioned data, and cluster-
ing on both vertically and horizontally partitioned data.?

Advantages and drawbacks
The advantage of an SMC-based solution is that it gives a
good idea of exactly what is revealed. In a perfect SMC
protocol, nothing is revealed, but in the real world, other
more efficient but not completely secure protocols will be
used. Nevertheless, the SMC theory enables proofs that
clearly delineate what is known and what remains secret.
The most common drawback to using SMC protocols
is inefticiency. Generic SMC protocols are impractical for
large inputs, which are typically found in data mining,.
We've implemented the list-intersection-size protocol
discussed earlier and used it to construct a secure distrib-
uted ID3 classifier for vertically partitioned data. It runs on
top of the Weka data mining toolkit; we tested it with
University of California, Irvine, machine-learning repos-
itory data sets. Although computationally expensive—it
took 29 hours to build the 408-node decision tree result-
ing from the 1,728 item car training set—it’s much faster
than obtaining approval to view private data, assuming
such approval could be obtained. The use of special-
purpose encryption hardware (as opposed to a Java imple-
mentation) would have given a significant improvement.
It 1s also necessary to fully understand SMC and the
guarantees it gives. Some proofs, for example, depend on
the assumption that the result comes from a uniform ran-
dom distribution over some range, but is this assumption
true? If not, is the protocol still secure? We must validate
all the assumptions or tailor the protocol to the situation
and then reevaluate the proof of protocol’s privacy.

Inference from
data mining results
One issue that has received little attention in privacy-
preserving data mining research has been the implications
ofinference from the results. Assume two parties collabo-
rate to develop a classifier. 4 holds the target class for each
instances and B the remaining data (vertical partitioning).
A privacy-preserving data mining method would ensure
that the training data’s classes aren’t revealed, but if the re-
sulting classifier is any good, B can effectively predict the
target class for each instance, negating the privacy-
preserving properties.

For some applications, this might be acceptable—US

antitrust law, for instance, generally allows the sharing of
information if it benefits the consumer. Let’s assume that
some pharmaceutical companies want to share propri-
etary information about drug-manufacturing methods to
learn association rules about drug reactions. Knowing
that the actual use of pharmaceuticals is sometimes af-
fected by cost (sometimes people take less than the rec-
ommended dosage of high-cost medications), the com-
panies want to include pricing data in this mix. Although
sharing such proprietary information would normally set
off antitrust flags, the resulting association rules have a
clear benefit to consumers, so sharing the rules would
probably be acceptable, even if they can be used to infer
proprietary information such as cost or pricing. That said,
sharing the data used to learn rules is still questionable; it’s
where privacy-preserving data mining (such as the meth-
ods discussed earlier) shows its value.

In other applications, privacy is paramount. The US
Healthcare Information Portability and Accountability
Act (HIPAA), for example, doesn’t allow companies to
compromise privacy just because the results could benefit
research (and thus the public). Using personal data, even in
aprivacy-preserving manner, is likely to be a problem if the
results enable someone to infer an individual’s private data.

Work related to these issues appears primarily in
three areas:

* Statistical queries."* A statistical database aims to support
queries that give summary results, yet prevent the de-
termination of exact values in the database. In statistical
queries, the adversary has control over what data is used
in the summary; privacy-preserving data mining gen-
erally operates over an entire data set.

Multilevel secure inference." The purpose of multilevel se-
cure inference is to ensure that a subset of the database
(low data) can’t be used to infer exact values of a differ-
ent subset (high data).

Limiting results.'® By limiting the results, we prevent the
inference of specific rules in the data. Privacy-preserving

data mining does the opposite: its goal is to protect the re-
sults, not the source data.

Although work in these areas might address the prob-
lem of inferring private information from data mining
results, none do so directly. Outstanding research chal-
lenges abound. First, how do we measure privacy com-
promise? Most multilevel secure inference work is based
on 100 percent accuracy inference, so is privacy compro-
mised if we estimate a value with 90 percent accuracy?
What about 10 percent accuracy? Estimation accuracy is
not a sufficient metric by itself: for a Boolean value, even
estimating with 50 percent accuracy is unlikely to be a
privacy compromise. Second, how do we relate data
mining models to data compromise? Analyzing an indi-
vidual association rule, for instance, is straightforward:
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Figure 6. Different approaches to privacy-preserving data mining.
Depending on the approach taken, we see trade-offs among
efficiency, accuracy, privacy, and security.
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given an instance that meets the left-hand side, we have a
known confidence that the right-hand side also holds—a
simple prediction of the (presumably private) value. Ana-
lyzing a set of rules is more difficult, though—what if we
know some of the values for an individual, but not all?
Some rules apply, others might apply, and others can’t, so
what does this tell us? Finally, whose privacy are we trying
to preserve? Is it just the data used to build the model, or
do we impose privacy constraints when the model is
used? Although there has been some work in this area, the
field 1s still wide open.

A simple loose notion of privacy is to protect only the
actual data values within any transaction—as long as
none of the data is known exactly, privacy is preserved.
The cryptographic community has formally defined
much stronger notions of privacy. Yao,” for example,
proposes a semantic definition of it: information com-
municated between parties won’t enable one party to
compute any polynomial time predicates with greater
accuracy than they could without the communication.
However, for many functions, coming up with efficient
zero-leakage protocols is difficult. Augmenting a func-
tion with the information leaked during a candidate pro-
tocol makes that protocol fully secure for the modified
function, so a minimum knowledge transfer protocol'”
would be a secure protocol for computing a minimally
modified version of the original function. This provides
a theoretical framework for measuring unintended in-
formation disclosure.

Figure 6 shows where the approaches we’ve described
generally fit relative to privacy, result accuracy, and com-
putational efficiency. We can see that the randomization
model trades security for efficiency, and that the security
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definition of the randomization model is much weaker
than the one in the SMC model. Specifically, the ran-
domization model aims to protect just the (exact) actual
data values. Aslong as no exact values are learned, privacy
is supposedly preserved.

Although the benefits of data mining and analysis
are considerable, no matter what the government says,
they aren’t worth the price of individual privacy. But
what if privacy need not be compromised? Data min-
ing and privacy together don’t constitute a zero-sum
game; ignorance creates problems from both ends of
the political spectrum. Neither giving the government
complete rights over your data nor banning data min-
ing entirely (as has been proposed) is a wise or widely
acceptable solution. We hope this article heralds a new
awareness of the possibilities of performing data mining
without giving up privacy. Our job as security profes-
sionals is to find technical solutions and increase public
awareness about them—soon, society can have its cake
and eat it too. O
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