
Implementing Signatures for C++

GERALD BAUMGARTNER and VINCENT F. RUSSO

Purdue University

We outline the design and detail the implementation of a language extension for abstracting
types and for decoupling subtyping and inheritance in C++. This extension gives the user more
of the flexibility of dynamic typing while retaining the efficiency and security of static typing.
After a brief discussion of syntax and semantics of this language extension and examples of its
use, we present and analyze three different implementation techniques: a preprocessor to a C++
compiler, an implementation in the front end of a C++ compiler, and a low-level implementation
with back-end support. We follow with an analysis of the performance of the three implementation
techniques and show that our extension actually allows subtype polymorphism to be implemented
more efficiently than with virtual functions. We conclude with a discussion of the lessons we
learned for future programming language design.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and
Features—abstract data types; D.2.2 [Software Engineering]: Tools and Techniques—modules
and interfaces; D.1.5 [Programming Techniques]: Object-Oriented Programming; D.3.4 [Pro-

gramming Languages]: Processors—compilers

General Terms: Design, Languages, Measurement, Performance

Additional Key Words and Phrases: C++, dispatch tables, inheritance, object interfaces, poly-
morphism, subtyping

1. INTRODUCTION

In C++, as in several other object-oriented languages, the class construct is used
to define a type, to implement that type, and as the basis for inheritance, type
abstraction, and subtype polymorphism. We argue that overloading the class con-
struct limits the expressiveness of type abstraction, subtype polymorphism, and
inheritance. In an earlier paper [Baumgartner and Russo 1995], we proposed to
remedy these problems by introducing a new C++ type definition construct: the
signature. Signatures provide C++ with a conservative extension to its type system
that allows for clean separation of interface from implementation and achieves more
of the flexibility of dynamic typing without sacrificing the efficiency and security of
static typing. This article details and analyzes three different implementations of
this extension.

This work was supported in part by Purdue Research Foundation grant 690-1398-2278.
Authors’ address: Department of Computer Sciences, Purdue University, West Lafayette, IN
47907; email: {gb; russo}@cs.purdue.edu.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 1997 ACM 0164-0925/97/0100-0153 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997, Pages 153–187.



154 · G. Baumgartner and V.F. Russo

The remainder of the article is structured as follows. First we review the motiva-
tion for the addition of a type abstraction facility other than classes to C++. We
then briefly present syntax and semantics of the core constructs of our language
extension. The main sections of the article then discuss and compare three differ-
ent implementation possibilities and presents an analysis and measurements of the
performance of each. We conclude with a discussion on the lessons we learned from
this experiment and their implications for future programming language design.

2. MOTIVATION

Using inheritance as a subtyping mechanism suffers from two specific problems:

(1) In some cases, it is difficult (if not impossible) to retroactively introduce ab-
stract base classes to a class hierarchy for the purpose of type abstraction.

(2) The hierarchies of abstract types and the class hierarchies of implementations
may be difficult to reconcile with each other.

We will show how signatures allow us to overcome these problems without a major
overhaul of the C++ type system.

2.1 Retroactive Type Abstraction

A practical example [Granston and Russo 1991] illustrates the need to introduce
type abstractions of existing class hierarchies. Summarizing their presentation,
suppose we have two libraries containing hierarchies of classes for X-Window display
objects. One hierarchy is rooted at OpenLookObject and the other at MotifObject.
Further suppose all the classes in each hierarchy implement virtual display() and
move() member functions and that both libraries are supplied in “binary-only”
form. Can a display list of objects be constructed that can contain objects from
both class libraries simultaneously? The answer is yes, but not without either
explicit type discrimination or substantial software engineering costs due to the
introduction of additional classes.

Obviously, the straightforward solution would be to create a common abstract
superclass for both hierarchies. However, if only header files and binaries but no
source code are available for the two libraries, retroactive code modification is not
possible since the root classes of the hierarchies would need to be declared to inherit
from the new abstract base class, which would require recompilation. If the member
functions needed for the abstract type are nonvirtual member functions, introducing
an abstract superclass is not possible either, since it would modify the behavior.
The only choices remaining are to use a discriminated union for the display list
elements, to use multiple inheritance to implement a new set of leaf classes in each
hierarchy, or to use a hierarchy of forwarding classes.1 The former solution is rather
inelegant, and the latter two clutter up the name space with a superfluous set of
new class names.

The problem is that C++ provides only one type abstraction mechanism, the
class, and that implementations must explicitly state their adherence to an ab-
stract type by inheriting from the abstract class defining the type. The nature
of the restriction to binaries in this example prevents us from doing this. What

1In C++, the task of creating these leaf and forwarding classes can be simplified using templates.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 155

we would like is a type abstraction mechanism that does not rely on classes and,
therefore, leaves classes free to be used for implementation specification. Likewise,
the adherence of a particular class to an abstract type would ideally be inferred
from the class specification and not need to be explicitly coded in the class. This
leaves us free to introduce new abstract types at a later time without altering any
implementations.

Another, perhaps more realistic scenario for retroactive type abstraction would
be that only one implementation is given in compiled form and that we would
like to abstract the type of some of the given classes and provide an alternative
implementation. If the original implementation was not designed with this form of
reuse in mind, or if the alternative implementation uses different data structures,
we end up with the same problems as above.

2.2 Implementation of Conflicting Type and Class Hierarchies

The abstract type hierarchy and the implementation class hierarchy cannot always
be made to agree. An example similar to one in Snyder [1986] illustrates this
point. Consider two abstract types Queue and DEQueue (doubly ended queue).
The abstract type DEQueue provides the same operations as Queue as well as two
additional operations for enqueuing at the head and for dequeuing from the tail of
the queue. Therefore, DEQueue is a subtype of Queue.

However, the easiest way to implement Queue and DEQueue is to structure the
inheritance hierarchy opposite to the type hierarchy. A doubly ended queue is
implemented naturally as a doubly linked list. A trivial implementation of queue
would be to copy the doubly ended queue implementation through inheritance and
remove, or ignore, the additional operations.

In Cook et al. [1990], it is argued that in order for a type system to be sound
it should not be possible to use inheritance for subtyping purposes and allow the
removal of operations. Most object-oriented languages choose instead to restrict
the use of inheritance for code sharing to situations where there is also a subtype
relationship and to disallow inheriting only a portion of the superclass.

3. SYNTAX AND SEMANTICS OF THE SIGNATURE LANGUAGE EXTENSION

We term the key language construct we add to C++ to support type abstraction
a signature. A signature declaration defines an abstract type by specifying the
member functions that any implementation of the abstract type needs to have. To
associate an implementation with a signature type, we introduce the notion of a
signature pointer into the language. For an assignment of an object pointer to
a signature pointer, the compiler verifies that the class implements all the mem-
ber functions declared in the signature, i.e., it insures that the class structurally
conforms to the signature. When calling a signature member function through a
signature pointer, the appropriate class member function will be invoked.

In this section, we describe only those parts of our language extension that are
relevant to contrasting the different implementation techniques discussed later in
the article. Specifically, this section details the syntax and semantics of signatures,
signature pointers, and signature references, as well as the conformance-checking

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



156 · G. Baumgartner and V.F. Russo

algorithm.2

3.1 Signature Declarations

A signature declaration is similar to a class declaration except that the keyword
signature is used instead of class, or struct, to introduce the declaration.

A signature declaration, like a class declaration, defines a new C++ type. The
key difference is that a signature declaration contains only interface descriptions.
For example, the signature declaration

signature T {
int * f ();
int g (int *);
T & h (int *);

};

defines an abstract type T with operations (member functions) f, g, and h.
The specific difference from a class declaration is that only type declarations,

member function declarations, operator declarations, conversion operator decla-
rations, and a destructor declaration are allowed within a signature declaration.
Specifically

—A signature cannot have constructors, friends, or data member declarations.
—The visibility specifiers private, protected, and public are not allowed either

in the signature body or in the base type list. They are unnecessary, since
signatures define interfaces, and therefore all members are implicitly public.

—Signature base types have to be signatures themselves (a signature cannot inherit
from a class). Similarly, a signature cannot be the base type of a class.

—The storage class specifiers (auto, register, static, extern), the function spec-
ifiers inline and virtual, and the pure specifier =0 are not allowed. The latter
two are needed in class declarations only to specify abstract classes and are,
therefore, superfluous in signature declarations.

As with a class, an implicit destructor declaration is added if the destructor is not
explicitly declared.

The type T in the above example could have been defined as an abstract class, i.e.,
a class containing only pure virtual member function declarations [Ellis and Stroustrup
1990]. The behavior of both implementations would be similar except that classes
implementing the abstract class’s interface need to explicitly code that fact by in-
heriting from the abstract class. When using signatures to specify abstract types,
this relationship is, instead, inferred by the compiler.

Signatures allow a type hierarchy to be structured independently from the class
hierarchy. This facilitates building complex type hierarchies and the decoupling of

2The additional features of signature inheritance, the sigof construct (as in
Granston and Russo [1991]), and views are left out, since they are straightforward to im-
plement in the typechecking phase of the compiler. The experimental constructs for default

implementations, constants in signatures, and opaque types have been removed from our
design and implementation, since they do not allow full static typechecking. For informa-
tion on these constructs, as well as for more details on the semantics of signatures, see
Baumgartner and Russo [1995].

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 157

subtyping and code reuse. Also, signatures can be used to define type abstractions
of existing class hierarchies. With abstract classes, it would be necessary to retrofit
abstract classes on top of the existing class hierarchy. This cannot be done without
recompiling all existing source files as described earlier. Signatures can, therefore,
improve C++’s capabilities for reusing existing code.

3.2 Signature Pointers and References

Since a signature declaration only describes an abstract type, it does not give enough
information to create an implementation for that type. For this reason, it is non-
sensical (and not valid) to declare objects of a signature type, as in

signature S { /* ... */ };
S obj; // illegal! ‘S’ is an interface type

Instead, in order to associate a signature type with an implementation, we declare a
signature pointer and assign to it the address of an existing class object. Signature
pointers, therefore, can be seen as interfaces between abstract (signature) types
and concrete (class) types.

Consider the following declarations:

signature S { /* ... */ };
class C { /* ... */ };
C obj;
S * p = &obj; // legal if ‘C’ conforms to ‘S’

For the initialization of the signature pointer p, or for an assignment to p, to be
type correct, the class type C has to conform to the signature type S. That is, the
implementation of C has to satisfy the interface S, or the signature of C has to be a
subtype of S.

A signature pointer can also be assigned to another signature pointer. In this
case, the right-hand-side (RHS) signature must conform to the left-hand-side (LHS)
signature, or in other words, the right-hand-side signature must be a subtype of
the left-hand-side signature.

A signature pointer can also be assigned to, or implicitly converted to, a pointer
of type void*. To assign a signature pointer to a class pointer, it is necessary to
use an explicit type cast:

S * p = new C;
void * q = p; // ok
C * r = p; // error: explicit cast necessary

In general, we do not know the class of the object pointed to by a signature pointer.
Assigning a signature pointer to a class pointer is, therefore, like casting down the
class hierarchy, which is an unsafe operation.

Like a signature pointer, a signature reference is an interface between signature
and class types. Because of the semantics of references in C++, signature references
can only be initialized to refer to a class object. Any subsequent assignments do not
assign to the signature reference but to the class object. Since the compiler does
not have any information about the layout of the referenced object, assignments to
a signature reference are only valid if the signature contains an assignment operator
declaration.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



158 · G. Baumgartner and V.F. Russo

3.3 The Conformance Check

The conformance check is the typecheck performed when initializing or assigning
to a signature pointer or when initializing a signature reference. The design and
implementation of signatures implies no run-time cost for the conformance check.
The conformance check is performed during the typechecking phase at compile time.

To test whether a class or signature type r on the right-hand side of an assign-
ment symbol conforms to the signature type l on the left-hand side, the structures
of l and r must be recursively compared. To do this we use an algorithm similar
to the recursive subtyping algorithm described in Amadio and Cardelli [1993]. For
efficiency, our algorithm caches both positive and negative results of the confor-
mance check. In a compiler, this cache would typically be maintained as part of
the symbol table.

conforms (l, r) =
(1) If the pair (l, r) has been marked successful in the cache, then

succeed.
(2) If the pair (l, r) has been marked unsuccessful in the cache,

then fail.
(3) If l is the same type as r, then succeed.
(4) If r can be converted to l through built-in or user-defined con-

versions, then succeed.
(5) If l is a base type of r in the class hierarchy, then succeed.
(6) If l is a pointer type tl* and r is tr*, succeed if conforms(tl, tr)

succeeds.
(7) If l is a reference type tl&, succeed if conforms(tl, r) succeeds.
(8) If both l and r are function, member function, member operator,

or conversion operator types, succeed if
(a) l and r have the same name,
(b) r has the same number of parameters as l; or r has more pa-

rameters than l, and any additional parameters have default
values,

(c) for every parameter type al of l and the corresponding pa-
rameter type ar of r, conforms(ar, al) succeeds,

(d) conforms(rl, rr) succeeds, where rl is the return type of l
and rr is the return type of r, and

(e) every exception specifier of l is listed as an exception specifier
of r as well.

(9) If l is a union, succeed if there is a union data member of type
tl, such that conforms(tl, r) succeeds.

(10) If l is a signature, and r is either a class (class, struct, or
union) or a signature, then mark (l, r) as successful in the
cache and recursively compare the structures of l and r. Suc-
ceed if for every member function, member operator, or con-
version operator fl in l there is a corresponding public member
function, member operator, or conversion operator fr in r, such
that conforms(fl, fr) succeeds. If the recursive comparison of

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 159

l and r did not succeed, mark (l, r) as failed in the cache and
fail.

(11) Otherwise fail.

When initializing an array of signature pointers, the conformance check has to be
run for every element in the initialization list. Since arrays are passed to (mem-
ber) functions by reference, the argument type has to be the same as (or can be
converted to) the declared parameter type. Therefore, we do not need any special
case for array types in the conformance check; the conformance of array arguments
is handled in items (3) and (4).

In order to conform to C++’s rules for lexical scoping, type definitions in a
signature S, such as local classes, unions, or enumerations, are ignored in the con-
formance check. A local type t can be referred to outside the signature using the
syntax S::t. If a local type is used as parameter type or return type in signature
member function declarations, classes either need to refer to the type as S::t in
their member function declarations or use a conforming type. Since a typedef only
defines an alias for a type, it is not necessary for the class to refer to it by name;
the type it aliases can be used instead.

Data member declarations as well as private or protected member functions and
constructors in a class C are ignored during conformance checking. Also, C can have
more public member functions or types than those specified in S.

For example, suppose we are testing the conformance of class C to signature S.
Given signatures T and U and classes D and E, let signature U conform to signature
T; let class D conform to signature T; and let class E be derived from class D. The
signature member function

T * S::f (D *, E *);

can be matched with any of the following class member functions:

T * C::f (D *, E *); // the types are the same
T * C::f (D *, D *); // D is a base type of E
T * C::f (T *, E *); // D conforms to T
T * C::f (T *, T *); // D and E conform to T
D * C::f (D *, E *); // D conforms to T
E * C::f (D *, E *); // E conforms to T
U * C::f (D *, E *); // U is a subtype of T
T * C::f (D *, E * = NULL); // dflt. value is ignored
T * C::f (D *, E *, int = 0); // 3rd arg. has dflt. value
T * C::f (D *, E *) throw (X); // S::f allows any exception

Note that conformance is defined using contravariance [Cardelli 1984] of the pa-
rameter types of member functions and covariance of the result types. This makes
subtyping based on signatures more flexible than the subtype relationship defined
by class inheritance, which only allows covariance of the result types.

If several member functions of C conform to one member function of S, we
find the one that conforms best using a variant of C++’s algorithm for find-
ing the function declaration that best matches the call of an overloaded function
[Ellis and Stroustrup 1990]. To apply C++’s overload resolution algorithm, the sig-
nature member function is treated as a class member function in a function call. In

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



160 · G. Baumgartner and V.F. Russo

addition, the overload resolution algorithm has to be extended to consider the cost
of converting an object pointer to a signature pointer to be higher than the cost of
converting an object pointer to an object pointer of a base class or to type void*.

If a member function of C conforms to several member functions of S, an error
must be reported by the compiler. Otherwise, the subtype relationship induced by
the conformance check would be semantically ill defined.

These rules for handling overloading of signature member functions could be re-
laxed by considering different matches of C’s member functions with S’s member
functions and by picking the best match according to some metric on signature
types. That is, instead of finding the best-matching class member function for a
single signature member function, the overload resolution algorithm could be ex-
tended to work with multiple signature member functions in parallel. However, we
feel that any such algorithm would be sufficiently complex to confuse programmers.

Observe that the conformance check does not treat classes and signatures sym-
metrically. While a class can conform to a signature, the reverse is not possible.
The consequence of this is that, because of contravariance, a class that is recursive
in a parameter type cannot conform to a signature that is recursive in the same
parameter type. For example, given the declarations

signature S { int f (S *); };
signature T { int f (T *); };
class C { public: int f (C *); };
class D { public: int f (D *); };

the signature T conforms to S, but the classes do not conform to S (or T). For C and
D to conform to S, contravariance would require the parameter type S* to conform
to C* and D*, respectively. This asymmetry is necessary, since otherwise in the code

S * p = new C; // illegal
S * q = new D; // illegal
int i = p->f (q);

C::f would be called with an argument of type D*. Since C++ allows data members
of arguments to be accessed directly, an argument has to have the same layout as
the declared parameter type; conformance is not good enough. If the parameter
is declared to be a signature pointer, and the argument is a signature pointer of
a different signature type, there is no problem, since the object pointed to by
the signature pointer cannot be accessed directly. In other words, two recursive
signatures can be structurally equivalent [Amadio and Cardelli 1993], i.e., they can
conform to each other. A class can only conform to but cannot be equivalent to a
signature. To make the classes in the above example conform to S, the arguments
would need to be of type S* or T*.

Our conformance algorithm is related to the notion of matching [Abadi and Cardelli
1996; Bruce 1997]. However, since C++ does not have a selftype construct to de-
note the run-time type of an object, conformance does not provide the full flexibility
of matching. It would be possible to add selftype to C++, both for classes and
for signatures. To gain the full flexibility of matching, a pointer of type selftype
would always need to be represented as a signature pointer. Matching would be
a useful mechanism for typechecking template arguments and inheritance in the
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 161

presence of selftype. However, because of the complexity of the interactions of
selftype with subtyping defined by inheritance, structural subtyping defined by
the conformance check, overriding of nonvirtual member functions, passing of ob-
jects by value, and overload resolution, we are not convinced that selftype would
be useful as a conservative extension of C++.

4. EXAMPLE USES OF SIGNATURES

4.1 Signatures for Retroactive Type Abstraction

The solution to the X-Window object example using signatures is simple. All that
is needed is to introduce a signature to define the abstract type XWindowObject

signature XWindowObject {
void display ();
void move ();

};

and to implement the display list as a collection of pointers to XWindowObjects

XWindowObject * displayList[NELEMENTS];

Given a pair of implementation hierarchies, such as

class OpenLookObject {
public:

virtual void display ();
virtual void move ();
// ...

};

and

class MotifObject {
public:

virtual void display ();
virtual void move ();
// ...

};

it is simple to use the display list. For example,

int main ()
{

displayList[0] = new OpenLookCircle;
displayList[1] = new MotifSquare;
// ...

displayList[0]->display (); // OpenLookCircle::display
displayList[1]->display (); // MotifSquare::display

return 0;
}

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



162 · G. Baumgartner and V.F. Russo

where OpenLookCircle is a subclass of OpenLookObject and MotifSquare is a
subclass of MotifObject.

If we have only one implementation provided in compiled form, and we would like
to abstract the type of some of its classes and add an alternative implementation,
the solution is similar as above. The types of classes are abstracted by defining
signatures; an alternative implementation then consists of classes conforming to
those signatures.

4.2 Signatures to Implement Conflicting Type and Class Hierarchies

The solution to the Queue/DEQueue problem presented earlier is also easy using
signatures. We simply define an implementation class and two signatures to specify
the abstract types Queue and DEQueue:

template <class T> class DoublyLinkedList {
public:

void enqueueHead (T);
T dequeueHead ();
void enqueueTail (T);
T dequeueTail ();
// ...

};

template <class T> signature DEQueue {
void enqueueHead (T);
T dequeueHead ();
void enqueueTail (T);
T dequeueTail ();

};

template <class T> signature Queue {
void enqueueTail (T);
T dequeueHead ();

};

Queue<int> * q1 = new DoublyLinkedList<int>;
DEQueue<char *> * q2 = new DoublyLinkedList<char *>;

It should be noted that this same effect can be achieved in C++ without signa-
tures by using multiple inheritance, e.g., by implementing Queue and DEQueue as
abstract classes and having DoublyLinkedList inherit from both. To see where
this type of solution breaks down, consider adding another type, Stack, with mem-
ber functions push and pop. With signatures it is simple to define a Stack sig-
nature, and whenever assigning a DoublyLinkedList use a renaming mechanism
[Baumgartner and Russo 1995] to rename enqueueHead to push and dequeueHead
to pop. With the multiple-inheritance-based solution, it would be necessary either
to introduce a new multiply inherited abstract class that implements push and pop
by delegating to enqueueHead and dequeueHead, or to alter DoublyLinkedList to
implement push and pop directly. The former unnecessarily constrains the imple-
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 163

mentation of other classes that might implement an abstract stack type, while the
latter needlessly clutters the implementation of DoublyLinkedList.

5. IMPLEMENTATION TECHNIQUES

In this section, we detail three options for implementing signatures. The first
method could be used in a compiler preprocessor (e.g., a cfrontfront) that trans-
lates C++ with signatures into C++ without signatures. The second is a compiler-
based implementation that produces an intermediate representation version of sig-
natures and needs direct access to the typechecking phases of a C++ compiler, but
is independent of the compiler back-end and machine architecture. This method
has been implemented in the GNU C++ compiler [Stallman 1995] as a modification
of GCC’s C++ front end, cc1plus. The same techniques are equally applicable to
AT&T’s cfront, or other C++ compilers. Finally, we outline an implementation
technique that requires support from the compiler back-end and code generation
phases to generate assembly-level code to further optimize signature member func-
tion calls.

5.1 Preprocessor-Based Implementation

The central idea of the preprocessor-based implementation technique is to generate
interface objects that encapsulate the class objects. These interface objects forward
the signature member functions to the appropriate class member functions. Sig-
nature pointers are then implemented as regular C++ pointers that point to these
interface objects.

Consider the declarations

signature S {
int f ();
int g (int, int);

};

C obj;
S * p = &obj;

and assume C conforms to S. The signature declaration itself is simply a type decla-
ration, and as such, no code needs to be generated. In the particular case above, an
interface object must be created to redirect the signature member functions S::f
and S::g to the corresponding class member functions C::f and C::g. The code for
this interface object is generated when compiling the assignment to the signature
pointer p.

To create such interface objects for any class C that conforms to a signature S,
we first generate an abstract class S_Interface. For each class C, we then need a
subclass of S_Interface that redirects the signature member functions to the class
member functions of the given class.

For the signature S given above, we generate the following abstract class:

class S_Interface {
public:

virtual ~S_Interface () = 0;

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



164 · G. Baumgartner and V.F. Russo

virtual operator void * () = 0;
virtual int f () = 0;
virtual int g (int, int) = 0;

};

The virtual destructor is used to allow deletion of a class object through a signa-
ture pointer. The conversion operator is used for implicitly converting a signature
pointer to a pointer of type void*. For creating the classes of interface objects, we
generate a template class S_C_Interface as public subclass of S_Interface.

template <class C> class S_C_Interface : public S_Interface {
C * optr;

public:
S_C_Interface (C * q) { optr = q; };
~S_C_Interface () { delete optr; };
operator void * () { return (void *) optr; };
int f () { return optr->f (); };
int g (int x, int y) { return optr->g (x, y); };

};

This template class is then instantiated with some class C to build the class of
objects interfacing S and C.

For a given class C, signature pointers can now be implemented as pointers to
objects of type S_C_Interface<C>. That is, the declaration

S * p = &obj;

is translated to

S_Interface * p = new S_C_Interface<C> (&obj);

Assuming the GNU C++ compiler’s default layout for virtual function tables, the
resulting data structure is displayed in Figure 1 (unused data members in the virtual
function tables are shaded).

If there is another signature pointer q of type S* on the RHS of the assignment,
the preprocessor simply generates an assignment of the resulting pointers of type
S_Interface*. If q is a signature pointer of type T*, we pass q as argument to the
constructor of S_C_Interface<T_Interface>. This has the effect that the data
member optr of the LHS interface object will point to the RHS interface object.

Since a signature pointer is a standard C++ pointer in this scheme, we do not
need to do anything special to compile a signature member function call. The call
p->f() simply invokes S_C_Interface<C>::f, which in turn calls C::f. Similarly,
the statement delete p results in a call of the destructor, which, in turn, deletes
the class object. To convert a signature pointer to a pointer of type void*, the
(implicit) cast expression (void *)p needs to be translated to (void *)*p, which
results in the conversion operator call (*p).operator void*().

Translating a signature pointer to a pointer to an interface object has the advan-
tage that it is straightforward to implement in a preprocessor for a C++ compiler.
However, it requires interface objects to be allocated on the heap. Another dis-
advantage is that assignments with a signature pointer on the RHS can result in
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 165

p: new S_C_Interface<C>:

optr

vptr

S_C_Interface_vtable:

0:

1:

2:

3:

4:

0

pfn

0

pfn

0

pfn

0

pfn S_C_Interface::g

S_C_Interface::f

operator void*

S_C_Interface::

~S_C_Interface

S_C_Interface::

vptr
C_vtable:

0:

1:

2:

3:

0

pfn

0

pfn

0

pfn C::h

C::g

C::f0

obj:

Fig. 1. Preprocessor-based implementation.

the LHS signature pointer accessing the class object through a chain of interface
objects.

To avoid heap allocation, we can use the interface object itself as a signature
pointer. In this case, the declaration of p is translated to

S_C_Interface<C> p = &obj;

This solution requires some more intelligence in the preprocessor to make p behave
as if it were a pointer of type S_Interface*. For example, the signature member
function call p->f() now needs to be translated to p.f(). Signature references are
implemented exactly the same way as signature pointers.

The storage needed for an interface object is two words: the pointer to the class
object, optr, and the pointer to S_C_Interface<C>’s virtual function table. As-
signing to a signature pointer, therefore, requires now only two pointer assignments
instead of allocating memory followed by three pointer assignments. Assigning one
signature pointer to another of the same type now also requires copying two words
of storage. Unfortunately, this optimization is not possible for signature pointers
that are assigned (to) signature pointers of a different type. In this case, heap
allocation is still required.

5.2 Compiler Front-End Implementation

As with the preprocessor-based implementation, the compiler front-end implemen-
tation is centered around the basic idea of encapsulating class objects with interface
objects. However, by translating signatures to the level of abstraction of a com-
piler intermediate representation instead of C++ code, we are able to produce more
efficient executable code. Although the description of the compiler front-end imple-
mentation relies on details of how the GNU C++ compiler [Stallman 1995] compiles
C++ classes, the same ideas can be easily implemented in other compilers as well.

The inefficiency of the preprocessor-based implementation is caused by the im-
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



166 · G. Baumgartner and V.F. Russo

plementation of a signature member function call as a virtual member function
call. When calling a signature member function, two member function calls have
to be performed in the generated code: the virtual call to the interface object’s
member function and the call to the actual class member function. In addition,
assigning a signature pointer to another signature pointer of a different type leads
to a chain of heap-allocated interface objects, since the information from the RHS
virtual function table cannot be copied to the LHS virtual function table. In this
case, a signature member function call results in multiple virtual member function
calls.

To optimize signature member function calls, signature pointers and signature
references are directly used as interface objects. However, rather than relying on the
virtual function call mechanism and specializing the interface object with a template
to the class of the object, we introduce a special table, called the signature table,
that allows us to perform the signature member function call independent of the
class of the object. In essence, we inline the call of the member functions of class
S_C_Interface<C> by storing all the class-specific information contained in those
member functions in the signature table. A signature table is similar in structure
to a virtual function table but contains additional information. A signature table
only depends on a signature and conforming class pair and, therefore, can be shared
between multiple signature pointers.

This optimization of inlining the forwarding member functions is only possible if
no conversions of argument and result types are necessary. In the general case, if we
need to convert arguments or the return value in a signature member function call,
we need to generate a conversion function and store a pointer to this function in
the signature table. This means that, as in the preprocessor-based implementation,
we need two member function calls to perform one signature member function call
in the presence of conversions.

5.2.1 Outline of the Implementation. In order to outline the structure of the
compiler front-end implementation, we initially ignore classes with virtual mem-
ber functions and multiple and virtual inheritance of classes. Also, we assume no
conversions of arguments or the result are necessary.

For the signature declaration

signature S {
int f ();
int g (int, int);

};

the compiler generates an internal representation of the following structure of func-
tion pointers:

struct S_Table {
const void * _.dtor;
const int (* _f) (void *);
const int (* _g) (void *, int, int);

};

where the data member _.dtor represents the destructor that is implicitly declared
in every signature. The first argument of type void* of the function pointers is
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 167

used to pass the object pointer this to a member function. The type S_Table will
be the type of signature tables for signature S.

In the preprocessor implementation, an interface object contains a pointer to the
class object and a pointer to a virtual function table. In this scheme, we have a
pointer to the signature table instead of the virtual function table pointer. Since
we store the interface object directly in the signature pointer, this leads to the
following type declaration for signature pointers:

struct S_Pointer {
void * optr;
const S_Table * sptr;

};

Signature references use the same representation. Conceptually, the type of optr
should be pointer to any object instead of pointer to void. Since neither C nor
C++ allow us to express this, the compiler must generate appropriate casts when
using optr.

The intermediate code generated for the declaration S * p = new C; is equiva-
lent to what would be generated from

static const S_Table S_C_Table = { &C::~C, &C::f, &C::g };
S_Pointer p = { new C, &S_C_Table };

To initialize the signature table S_C_Table, the compiler needs to cast the destruc-
tor and member functions of class C to the appropriate function pointer types. If
C does not have a destructor, the default destructor is used. Since C++ does not
allow taking the address of a destructor, this must done in the compiler front-end.

While we can use a default constructor for initializing a signature pointer as
shown above, we need to translate an assignment to a signature pointer into a
compound expression. For the assignment expression p = new C, or for passing an
object to a signature pointer parameter in a function call, the compiler generates
the compound expression

( p.optr = new C,
p.sptr = &S_C_Table,
p

)

as well as the declaration and initialization of the signature table:

static const S_Table S_C_Table = { &C::~C, &C::f, &C::g };

If the assignment is in an inner scope, the signature table declaration needs to be
moved out of this scope into file scope.

Since signature tables are static and constant, only one signature table declara-
tion per signature-class pair needs to be generated in each file.

To compile a function call such as

int i = p->g (7, 11);

we need to dereference p’s sptr and call the function whose address is stored in the
data member _g, which is C::g in our example. The value of p’s optr is passed

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



168 · G. Baumgartner and V.F. Russo

as the first argument so that C::g gets a pointer to the right object passed for its
implicit first parameter called this.

int i = p.sptr->_g (p.optr, 7, 11);

If the compiler knows the current value of p->sptr, this can be optimized to a
direct call of C::g.

5.2.2 Signature Tables. If classes with virtual member functions or classes that
are defined using multiple and/or virtual inheritance are used as implementations of
signature types, we need information in the signature table to perform a signature
member function call correctly.

When a signature member function is implemented by a virtual class member
function, since we do not know the actual type of the object pointed to by the
signature pointer, we do not know the address of the function to call until run
time. Instead, we must look up the address of the function in the appropriate
virtual function table. To facilitate casting objects up and down the class hierarchy,
implementations of C++ typically do not use a single virtual function table per class
but one virtual function table for each base class that contains virtual functions.
To allow finding the appropriate virtual function table in a member function call,
an object contains possibly multiple pointers to virtual function tables. For a given
virtual function, we therefore need to store in the signature table the index into
the virtual function table and the offset in the object at which to find the pointer
to the proper virtual function table.

In GCC, member functions are implemented as regular functions that take a
pointer to the object, called this, as the first argument. If a member function was
inherited from a base class, and multiple inheritance was used, the this pointer
might need to be adjusted to point to the beginning of the subobject of the cor-
rect type. In order to adjust the this pointer correctly for a given class member
function, we need to store the offset that has to be added to this in the signature
table.

To make matters worse, in the case of virtual inheritance we might not even
know the layout of an object at compile time. Virtual inheritance is used to prevent
duplication of members that are accessible through multiple paths in the inheritance
hierarchy. If a member function was inherited through virtual inheritance, we need
to follow an additional indirection for adjusting the this pointer and to find the
appropriate virtual function table pointer. To allow this indirection, we must store
in the signature table the offset into the object at which we find the pointer to a
virtual base object.

Last but not least, we need two flags in a signature table entry to determine
whether a nonvirtual member function or a virtual member function has to be
called and whether or not virtual inheritance was used.

To summarize, a signature table entry has the following structure:

struct sigtable_entry_type {
short delta; // ‘this’ adjustment
short index; // vtable index if positive
union {

void * pfn; // pointer to function

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 169

short vt_off; // offset to vtable pointer
};
short vb_off; // offset to vbase pointer if pos.

};

The data member delta contains the value to be added to this; pfn contains a
function pointer in case of a nonvirtual member function, and, in case of a virtual
member function, vt_off and index contain the offset of the virtual function table
pointer in the object and the index for the virtual function table, respectively. The
flag to discriminate between nonvirtual and virtual member functions is the sign
bit of index; for nonvirtual member functions index is negative. The data member
vt_off occupies the same memory location as pfn. For typechecking purposes, the
compiler needs to cast pfn to the appropriate function pointer type.

If a member function was inherited from a virtual base class, the data member
vb_off contains the offset at which the virtual base pointer is found. If no virtual
inheritance was used, vb_off is negative, i.e., the second flag mentioned above is
the sign bit of vb_off.

Conceptually, a signature table entry is a member function pointer. We expect,
therefore, some similarity in the data structures. Indeed, the data members delta,
index, pfn, and vt_off are the same as used in the data structure of member
function pointers and virtual function table entries. An equivalent declaration for
signature table entries would, therefore, be

struct sigtable_entry_type : public vtable_entry_type {
short vb_off;

};

In vtable_entry_type, the name delta2 is used instead of vt_off.
The lack of the data member vb_off in member function pointers can cause

member functions from virtual base classes to be called incorrectly. If a member
function was inherited through two or more occurrences of virtual inheritance, even
the one data member vb_off in a signature table entry is insufficient. In the general
case, we might have to follow multiple virtual base pointers to find the right base
object. This would require multiple vb_off data members. Since the number of
vb_off data members would depend on the class hierarchy, we could not statically
determine the size of a signature table entry. A better solution would be to change
the object format by introducing additional virtual base pointers so that any virtual
base could be found with only one indirection.

When calling a member function through a member function pointer, the G++

compiler determines the layout of the object based on the class name used in the
member function pointer declaration. In many cases, this strategy works correctly.
However, if an object of a subclass is used, G++ has no way of knowing the ac-
tual layout of the object. In this case, the member function call might produce
unpredictable results. Since the class of the object pointed to by a signature
pointer/reference is not known at compile time, we cannot use this approach of
assuming an object layout that would work in many cases. We always need the
data member vb_off in a signature table entry. To correctly call a member func-
tion through a member function pointer in all cases, it would be necessary to add

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



170 · G. Baumgartner and V.F. Russo

S_C_Table:

_.dtor:

_f:

_g:

0

0 -1

vptr

C::g

C::f0

C::h

3:

2:

1:

0:

C_vtable:

0

pfn

0

pfn

0

pfn

new C:

16

optr

sptr

p:

pfn

-1

-1

C::~C

pfn

-1

C::f

0 2

16

-1

Fig. 2. Compiler front-end implementation.

a vb_off data member to vtable_entry_type as well and to include additional
virtual base pointers in the object.

The signature table is a structure that contains for every member function de-
clared in the signature and for the implicitly declared destructor a data member of
type sigtable_entry_type. For signature S declared earlier, the signature table
looks as follows:

struct S_Table {
sigtable_entry_type _.dtor;
sigtable_entry_type _f;
sigtable_entry_type _g;

};

We will see later why the data members of S_Table cannot be constant. All the
information for initializing the data members of a signature table entry can be
obtained at compile time from the class of the object on the RHS of a signature
pointer assignment or initialization.

Given a signature S with member functions f and g and a conforming class C,
the assignment of an object of class C to a signature pointer p results in the data
structure displayed in Figure 2.

5.2.3 Signature Member Function Call. To call a signature member function, we
need to generate a conditional expression that tests the sign of the data member
index of the signature table entry and, depending on its value, reads the pointer to
a nonvirtual member function from the signature table or the pointer to a virtual
member function from the virtual function table. We also have to make sure that
the right offset gets added to the this pointer. The signature member function call

int i = p->g (7, 11);

from our example above is now translated to

int i = (s = &(p.sptr->_g),

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 171

base = (s->vb_off < 0)
? p.optr
: *(p.optr + s->vb_off),

this = base + s->delta,
pfn = (s->index < 0)

// address of nonvirtual member function
? s->pfn
// address of virtual member function
: ((**(base + s->vt_off))[s->index]).pfn,

pfn (this, 7, 11)
);

where s, base, this, and pfn are compiler-generated temporary variables. The
pointer s contains the address of the signature table entry. If virtual inheritance is
used, base points to the part of the object corresponding to the virtual base class.
Otherwise, base points to the beginning of the object. The pointer this is offset
from base to point to the part of the object corresponding to the base class from
which the member function g was inherited. The function pointer pfn is assigned
a pointer to the nonvirtual or virtual member function depending on the sign of
s.index.

The above code assumes that a virtual function table entry contains a data
member pfn that contains the pointer to the function. The delta stored in the
virtual function table entry is not needed, since it is the same as the delta stored
in the signature table entry.

If instead of the signature pointer variable p in our example, we have an ex-
pression that evaluates to a signature pointer, the result needs to be stored in
a temporary signature pointer variable first to prevent the expression from being
evaluated multiple times.

If a signature member function is called while constructing or destructing the
object the signature pointer/reference points to, the behavior is undefined. In
particular, calling a virtual member function through a signature pointer before
the virtual function table pointer in the object is initialized is likely to result in a
crash. However, this is nothing new. If a class pointer is used instead of a signature
pointer, the behavior is the same. The only way for the compiler to detect such
aliasing is through global data flow analysis.

5.2.4 Conversions. So far we have assumed that no conversions of arguments
and/or the return value are necessary when calling a signature member function.
In the following, we lift this restriction and discuss what conversion functions look
like and how they are installed in a signature table.

Assume T is a signature and D a class conforming to T. Consider the declarations

signature S {
int f (D *);
T * g (int);

};

class C {
public:

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



172 · G. Baumgartner and V.F. Russo

int f (T *);
D * g (int, int = 0);

};

The member function C::f conforms to S::f, since the type of S::f’s argument,
D*, is a subtype of C::f’s argument type T*. Similarly, C::g conforms to S::g,
since its return type D* is a subtype of (i.e., conforms to) S::g’s return type T* and
since its second argument has a default value. Therefore, C conforms to S. Since
this is not strict conformance, conversion functions are needed for both member
functions.

These two conversion functions are generated together with the signature table
S_C_Table, i.e., when testing conformance of S and C for compiling an assignment
statement or declaration of the form

S * p = new C;

Like the signature table, the conversion functions have static linkage. They have
the same type as the signature member functions S::f and S::g, for which they
are generated. Since the conversion functions are not in signature scope but in file
scope, we need to explicitly provide them with the first argument this of type C*.
For our example, the compiler would need to generate the conversion functions

static int S_C_f (C * this, D * arg1)
{

return this->f ((T *) arg1);
}

static T * S_C_g (C * this, int arg1)
{

return (T *) this->g (arg1);
}

Since they have a pointer of type C* as first argument, we can treat them like
nonvirtual member functions declared in class C. We, therefore, install pointers
to these conversion functions in the signature table entries S_C_Table._f and
S_C_Table._g, respectively. In these signature table entries, delta is set to zero,
and index and vb_off are set to -1.

The signature member function call p->f() now results in the conversion func-
tion S_C_f being executed. If C::f were virtual or declared in a base class of C,
any adjustments to the this pointer and the virtual function dispatch would be
generated as part of the call sequence for this->f() in S_C_f.

Since, like signature tables, conversion functions are declared static, they may be
duplicated in other translation units.

5.2.5 Signature-Signature Tables. When compiling a signature pointer assign-
ment/initialization with another signature pointer on the RHS, we do not always
have enough information to compute the contents of the LHS signature table. Since
it is not known at compile time which signature table the RHS signature pointer
points to, we might have to initialize the LHS signature table at run time. An alter-
native would be to store the information to call a RHS signature member function
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 173

in a LHS signature table entry. However, this would result in an additional ta-
ble lookup when calling a LHS signature member function. The number of table
lookups needed to call a signature member function would depend on the number
of assignment statements executed and could, therefore, be arbitrarily high.

If the heap is garbage-collected, the most efficient solution is to allocate dynam-
ically initialized signature tables on the heap. Signature tables that result from a
class pointer on the RHS are still initialized statically. When assigning a signature
pointer to another signature pointer of the same type, we simply copy the two data
members optr and sptr. If the types are not the same, but the signature table
entries needed in the LHS signature table are found in the correct order as a con-
tiguous block of data in the RHS signature table, we can share the RHS signature
table and let the LHS sptr point into the RHS table. If the RHS table cannot be
shared, the LHS signature table is allocated on the heap and initialized from the
appropriate RHS signature table entries.

If no garbage collector is available, we have to resort to allocating signature
tables on the stack. To do so the compiler reserves a signature table variable for
every signature pointer (or signature reference). A signature table can now only
be shared if both LHS and RHS signature pointers are in the same scope or if the
RHS signature pointer is in an outer scope. If the LHS signature pointer is in an
outer scope, the RHS signature table has to be copied into the table associated
with the LHS signature pointer. Similarly, if a local signature pointer is returned
as a function value, the signature table has to be copied into the signature table
variable associated with the function return value. These copy rules assure that a
signature pointer always points to a table in static memory, in the same activation
record or in an activation record higher up on the stack. If a signature table variable
associated with a signature pointer was never assigned to, it can be removed during
optimization.

Using data flow analysis, it is often possible to determine that the RHS signature
table has been statically initialized or that it is in an outer scope. In either case,
copying the signature table is unnecessary for assigning to a LHS signature pointer
in an outer scope. Another solution to avoid copying would be to test at run time
whether a signature table is in static memory or in an outer stack frame. An efficient
but architecture-specific implementation of this test would be a comparison of the
address of the table with the current stack pointer. A portable solution for testing
if a signature table is in static memory would be to include an additional flag in
the signature table.

If the RHS signature is derived from the LHS signature using single inheritance,
the RHS signature table type is a subtype of the LHS signature table type. In
this case, the RHS sptr can simply be copied into the LHS signature pointer. To
allow sharing of the RHS signature table in case of multiple signature inheritance,
it is necessary to duplicate the destructor entries in the signature table. For each
base signature, the signature table contains one entry that points to the class’s
destructor. Now for any RHS signature that is a descendent of the LHS signature
in the signature inheritance hierarchy, we can avoid copying of table entries.

We argue that in most cases, copying of signature tables entries, or allocating
signature tables on the heap, can be avoided by carefully designing a signature
hierarchy. Even if the RHS signature is not a descendent of the LHS signature, if

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



174 · G. Baumgartner and V.F. Russo

the LHS signature member functions are in the same order at the beginning of the
RHS signature, copying is avoided.

To alert the programmer of an inefficient signature pointer assignment, the com-
piler could print a warning message whenever signature table entries have to be
copied.

5.3 Implementation with Back-End Support

In the compiler front-end solution, there is room for optimization in the calling
sequence for a signature member function call. In this section, we demonstrate
how to address these inefficiencies using support from the compiler back-end. This
solution can be implemented in any compiler that allows segments of assembly
language code generated outside of functions.

When calling a signature member function in the previous solution, the generated
code tests the information stored in a signature table entry to decide on how to call
the signature member function. All the work of following the virtual base pointer
if necessary, adjusting the object pointer, and possibly looking up the member
function’s address in the virtual function table is performed at the call site.

The key idea in this solution is to customize the calling sequence for calling a
particular class member function and to perform any necessary this adjustment
and virtual member function call on the callee side. To do this, a customized piece
of code, called thunk, is generated for each signature table entry that performs all
the necessary adjustments and then branches to the class member function. Instead
of flags and offsets, the signature table now contains only pointers to these thunks.
A signature member function call can now be translated into simply calling the
thunk. Such an implementation was proposed in Granston and Russo [1991]. The
same idea is used in some compilers for implementing a virtual member function
call.

The advantage of this solution is that there is no unnecessary overhead. In
particular, it is not necessary to test any flags, and if the this adjustment is zero,
the addition does not have to be performed. In the common case of calling a
nonvirtual class member function that does not need any this adjustment, we do
not need any thunk. Instead, the signature table entry can point to the member
function directly.

The only disadvantage of using thunks is that it requires generation of low-level,
machine-dependent code, which complicates or even prohibits its use in a compiler
that generates C code, such as AT&T’s cfront compiler.

For example, given the signature S with member functions f and g as above, the
signature table is of type

struct S_Table {
void * _.dtor;
void * _f;
void * _g;

};

Given a class C conforming to S, assume that C::f is a nonvirtual member function
and C::g is a virtual member function, both of which require a nonzero offset to
be added to the this pointer. The thunk needed for calling C::f is the following
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 175

p:

optr

sptr

S_C_Table:

_.dtor:

_f:
_g:

new C:

vptr

16

C_vtable:

0:

1:

2:

3:

C::f0

C::g

C::h

C::~C

C::f

S_C_g_Thunk

{ goto (**(this + 16))[2]; }S_C_g_Thunk:

Fig. 3. Thunk-based implementations of signature table and virtual function table.

short piece of code:

S_C_f_Thunk:
{

this = this + DELTA;
goto C::f;

}

where DELTA is a compile-time constant determined from C’s base classes. Before
branching to the thunk, the compiler will have set up the activation record correctly
for calling C::f. In particular, all the arguments were either pushed onto the stack
or are in registers. The value passed for the first argument, this, is the data
member optr from the signature pointer. If DELTA were zero, no thunk would be
necessary.

For calling the virtual member function C::g we need the thunk

S_C_g_Thunk:
{

this = this + DELTA;
goto (**(this + VT_OFF))[INDEX];

}

The values DELTA, VT_OFF, and INDEX are constants that can be determined at
compile time and are hard-coded into the thunk. Here we assume that virtual
function tables are implemented using thunks as well. Otherwise, we would need
to select the data member pfn from the virtual function table entry. The resulting
data structure using a thunk-based implementation of the virtual function table is
displayed in Figure 3.

If C::g were inherited from a virtual base class and would require a nonzero offset
to be added to this, the thunk would be

S_C_g_Thunk:
{

base = *(this + VB_OFF);

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



176 · G. Baumgartner and V.F. Russo

this = base + DELTA;
goto (**(base + VT_OFF))[INDEX];

}

Also VB_OFF would be a constant hard-coded into the thunk.
When compiling an assignment of an instance of class C to a signature pointer,

the compiler generates the above thunks and a declaration of the signature table:

static
const S_Table S_C_Table = { &C::~C, &C::f, &S_C_g_Thunk };

The signature table is initialized to contain pointers to the appropriate class member
functions whenever possible and to the thunks otherwise.

Instead of resulting in a large conditional expression, the signature member func-
tion call

int i = p->g (7, 11);

now reduces to

int i = p.sptr->_g (p.optr, 7, 11);

as it did in the simplified outline of the front-end implementation.
Another advantage of using thunks is that code for converting argument types

could be included in the thunk. It is not necessary to use a separate conversion func-
tion as we did in the front-end solution. The code for converting arguments would
simply go before the goto. Since a signature table is unique for each signature-class
pair, the compiler can generate the conversion code for each thunk when generating
the signature table. For converting the return type we could call, instead of branch-
ing to, the class member function from the thunk using a lightweight function call
sequence. A thunk for the nonvirtual member function call would then look as
follows:

S_C_f_Thunk:
{

this = this + DELTA;
// convert argument types
call C::f;
// convert return type
return;

}

There is no run-time penalty compared to the front-end implementation if a signa-
ture member function does not require conversions.

As in the front-end implementation, assigning a signature pointer to another
signature pointer might require copying entries of the RHS signature table to the
LHS signature table. In most cases, it is possible to copy the pointer to the thunk.
If a member function of the LHS signature does not have the exact same argu-
ment and return types as the member function of the RHS signature, however, the
compiler needs to generate a new thunk that performs the conversions needed and
then branches to the thunk from the RHS signature table, which might do further
conversions.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 177

In the thunk implementation described in Granston and Russo [1991], copying of
signature table entries is avoided by having the optr of the LHS signature pointer
point to the RHS signature pointer instead of pointing to the object. This makes
assignment more efficient but requires multiple indirections in a signature member
function call. Furthermore, to allow assigning a local signature pointer to a nonlocal
signature pointer, the solution in Granston and Russo [1991] has to be corrected
by allocating signature pointers on the heap.

Observe that the information in thunks that do not contain conversion code is
strictly class specific. To avoid the duplication of thunks across multiple compilation
units, it would, therefore, be possible to generate the thunks together with the
class instead of with signature tables. When compiling a class, the compiler would
generate signature thunks for all public member functions that are virtual and/or
inherited.

6. PERFORMANCE ANALYSIS

In this section, we compare the performance of the three proposed implementation
techniques. Since detailed cost analysis in terms of instruction counts and timings
are architecture and compiler specific, we first analyze space requirements in terms
of words of memory and time requirements in terms of logical operation counts.
Following this high-level cost comparison, we present machine instruction counts
and measurements of signature member function calls in the front-end and thunk-
based implementations and compare them to nonvirtual and virtual class member
function calls on the SPARC architecture.

6.1 High-Level Comparison

The memory required for interface objects in the preprocessor implementation of
signatures is two words, one for the pointer to the object (optr) and one for the
pointer to the interface object’s virtual function table. This is the same as the size
of signature pointers in the other two implementations, where we have the pointer
to the signature table (sptr) instead of the virtual function table pointer. In the
preprocessor implementation, since the interface object is allocated dynamically, an
additional word is needed for the pointer to the interface object.

The space needed for the signature table in the compiler front-end implemen-
tation is 50% more than the space needed for the virtual function table in the
preprocessor implementation: three words for each signature member function and
an additional three words for the implicitly declared destructor. This is not sur-
prising, since a signature table conceptually is a structure containing pointers to
member functions, and as we discussed in the implementation section, a correct
implementation of a pointer to a member function would require three words. A
correct implementation of virtual function tables would need three words per entry
as well. In the thunk implementation, the signature table takes only one third the
space, since we only need one pointer per table entry. But additional static storage
for the thunks is required.

When assigning a class object to a signature pointer in the preprocessor imple-
mentation, we need to call the constructor of the template class S_C_Interface,
allocate the interface object on the heap, and then assign two pointers. In the
compiler-based solutions, only two pointer assignments are required.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



178 · G. Baumgartner and V.F. Russo

In the compiler-based implementations, assigning a signature pointer of a dif-
ferent type than the LHS signature pointer takes time proportional to the LHS
signature table if signature table entries have to be copied. Since in the prepro-
cessor implementation the LHS interface object simply points to the RHS interface
object, the cost is the same as assigning a class object.

In the preprocessor implementation, a signature member function call takes as
much time as two class member function calls, a virtual member function call for
calling the interface object member function, followed by the class member function
call, which may or may not be virtual depending on the class.

In the front-end implementation, dispatching through the signature table to call a
nonvirtual member function takes roughly the same time as a regular virtual mem-
ber function call. Calling a virtual member function through a signature pointer
requires two table lookups, one to get the signature table entry and another to
get the virtual function table entry. In both cases there is the additional constant
overhead of dereferencing the optr and of testing the data members vb_off and
index of a signature table entry.

In the thunks implementation, we do not need to perform any tests when calling
a signature member function. This makes a signature member function call as
efficient as a standard virtual member function call in the case of calling a nonvirtual
member function. When calling a virtual member function through a signature
pointer, we have to perform an additional virtual function table lookup.

6.2 Measured Performance

In order to compare our implementation of subtype polymorphism with the existing
virtual function implementation, this section compares the execution times of the
signature member function dispatch mechanism with the virtual function dispatch
mechanism. We only consider the front-end and thunk-based implementations of
signature tables and compare them with GCC’s standard and thunk-based imple-
mentations of virtual function tables, respectively. We also include virtual member
function calls (no dispatch) and calls of nonvirtual member functions through a
signature pointer (two dispatches) for reference.

We chose not to measure the dispatch mechanism of the preprocessor imple-
mentation, since its performance is both poor and very predictable: the time for
a virtual function call followed by an additional class member function call. We
also did not measure the time for assignments to signature pointers, since in the
common case it is very predictable: the time for two regular pointer assignments.
Furthermore, as we discuss below, this cost is quickly amortized across signature
member function calls.

Since on the SPARC processor the cache cannot be flushed easily, we did not
measure cache behavior. Note, however, that the cache behavior of signature mem-
ber function calls should be better than that of a virtual function calls, since the
object does not have to be brought into the cache to get the pointer to the dispatch
table.

6.2.1 Experimental Setup. All measurements were performed on a SPARCsta-
tion 5 with an 85MHz processor, 32MB of main memory, and a write-through,
virtually addressed cache. The computer was running Solaris 2.4 in single-user
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 179

mode with all network interfaces turned off to minimize the number of random
interrupts. The compiler we used was based on the developers’ snapshot 960323 of
GCC-2.7.2. The test programs were compiled with optimization level -O2.

We improved the code generation for signature member function calls and im-
plemented signature tables using thunks. These changes are not in the released
version of GCC-2.7.2; they are available from the authors on request. Currently,
the compiler is only able to generate thunks for calling nonvirtual class member
functions. For measuring calls of virtual member functions through a signature
pointer in the thunk-based implementation, we hand-coded the thunks in assembly
language.

To get precise measurements with a hardware clock granularity of 500ns, we
measured the time needed for one million member function calls: 100,000 loop
iterations of 10 calls per iteration. We measured the time needed for such loops
of nonvirtual and virtual class member functions called through a regular object
pointer and nonvirtual and virtual member functions called through a signature
pointer. We also measured the time needed for an empty loop. The member
functions did not contain any code other than a return instruction and did not
need any adjustment of the this pointer. To relate the cost of calling a member
function to the cost of argument passing, we measured the calls of member functions
with zero to eight parameters. All arguments passed were small integer constants.
To prevent the optimizer from generating different loop instructions for the different
loops, we generated the assembly instructions for incrementing and testing the loop
variable by hand using asm statements.

Each measurement was repeated 101 times. The first iteration was used to prime
the cache and, thus, discarded. We then calculated the average and the standard
deviation for the remaining 100 measurements and threw out samples more than
four standard deviations away from the average. This process of discarding samples
was repeated twice to eliminate any influence of operating system interrupts. The
number of discarded samples ranged from zero to six out of 100 measurements.
Finally, we calculated the average of the remaining measurements, subtracted the
average time for the empty loop, and divided the result by one million to obtain
the time for one member function call.

The average times for the different member function calls are in the range of
50ns to 500ns. The standard error for the average, computed for 90 degrees of
freedom (i.e., at least 91 valid samples) is less than 0.75ns for all measurements
with a confidence of 99.9%. This means that the true value of the time a member
function call takes is within the line width in the plots that follow.

6.2.2 Compiler Front-End Implementation. Our GCC front-end implementa-
tion still supports the experimental default implementations of signature member
functions proposed in Baumgartner and Russo [1995]. The layout of a signature
table entry is, therefore, slightly different than described earlier. In particular, the
flag to distinguish between nonvirtual and virtual member function calls is in the
additional data member tag instead of encoded in index. This results in one addi-
tional load instruction when calling a virtual function through a signature pointer,
since both tag and index have to be loaded instead of just index. An additional
change from the proposed implementation described earlier is that member func-

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



180 · G. Baumgartner and V.F. Russo

tion inherited through virtual inheritance are not called correctly in our current
GCC implementation. However, this does not bias the comparison in our favor
since GCC’s virtual function table implementation fails to handle this case as well.

In the presence of these changes, the pseudocode resulting for the signature mem-
ber function call p->f() is

s = &(p.sptr->_f);
base = p.optr;
this = base + s->delta;
pfn = (s->tag == 0)

// address of nonvirtual member function
? s->pfn
// address of virtual member function
: ((**(base + s->vt_off))[s->index]).pfn;

pfn (this);

On the SPARC architecture, GCC compiles the above call into the following as-
sembly language code, where OFFSET is the offset of the signature pointer p relative
to the frame pointer (%fp).

ldd [%fp-OFFSET],%o2 ! load p into %o2 and %o3
ldsh [%o3],%o0 ! load p.sptr->_f.tag
ldsh [%o3+4],%o1 ! load p.sptr->_f.delta
cmp %o0,0 ! tag = 0?
be nonvirt
add %o1,%o2,%o4 ! p.optr + delta
ldsh [%o3+8],%o0 ! load p.sptr->_f.vp_off
ldsh [%o3+6],%o1 ! load p.sptr->_f.index
ld [%o2+%o0],%o0 ! load vptr from p.optr[vp_off]
sll %o1,3,%o1 ! index *= 8
add %o0,%o1,%o0 ! calculate &vptr[index]
b done
ld [%o0+4],%o1 ! load vptr[index].pfn

nonvirt:
ld [%o3+8],%o1 ! load p.sptr->_f.pfn

done:
call %o1,0 ! call class member function
mov %o4,%o0 ! this = p.optr + delta

The path length through this code for calling a nonvirtual member function is
ten instructions, four of which are load instructions. For calling a virtual member
function, the path length is 15 instructions, seven of which are load instructions.3

Note that there are possibilities for further optimizing the above code. Since one
branch of the conditional expression consists of a single instruction, this instruction
could be moved into the delay slot of the branch instruction by enabling the annul
bit of the branch instruction [SPARC International 1991]. This would eliminate the

3The instruction immediately following a branch or call instruction, i.e., the instruction in the
delay slot, is executed prior to the branch and call, respectively.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 181

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8

T
im

e 
pe

r 
m

em
be

r 
fu

nc
tio

n 
ca

ll 
(n

s)

Number of member function parameters

signature virtual
signature nonvirtual

virtual
nonvirtual

Fig. 4. Cost of member function calls in the front-end implementation.

unconditional branch to label done. The last instruction in the sequence, which is
executed before the call instruction, only moves the this pointer into the proper
register. A better register allocator could eliminate this instruction, freeing up the
delay slot for loading an argument. Finally, the shift instruction (sll) used in
indexing the virtual function table could be eliminated by storing the word offset
to the virtual function table entry in index rather than the array index. Even if
it is not eliminated, a better instruction scheduler could move the shift instruction
before the preceding load (ld) instruction to improve pipeline performance.

The additional ldsh instruction to load the data member tag does not cost
anything on a SPARC, since, due to pipelining, the two ldsh instructions to load
vp_off and index take approximately the same time as one ldsh instruction, since
they fetch from consecutive memory locations.

Figure 4 shows, from bottom to top, the measured times for nonvirtual calls,
virtual calls, nonvirtual calls through a signature pointer, and virtual calls through
a signature pointer. Note that even in this straightforward implementation, calling
a nonvirtual member function through a signature pointer is only 7% (for one argu-
ment) to 22% (for three arguments) slower than a virtual function call. Note also
that the execution time does not increase linearly with the number of arguments.
The flat areas in the plots result from instruction scheduling and pipelining. Af-
ter five arguments the plots become steeper, since additional arguments cannot be
passed in registers but have to be stored on the stack.

6.2.3 Implementation with Back-End Support. In the thunk-based implementa-
tion, the calling sequence for the signature member function call p->f() is simply

p.sptr->_f (p.optr);

which GCC compiles to
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



182 · G. Baumgartner and V.F. Russo

ldd [%fp-OFFSET],%o0 ! load p into %o0 and %o1
ld [%o1],%o2 ! load p.sptr->_f
call %o2,0 ! call member fnct. or thunk
nop ! empty delay slot

This calling sequence is very similar to that of a virtual function call. Instead
of a single ldd instruction to load both the object pointer and the pointer to the
signature table into a register pair, two ld instructions would be needed for a virtual
function call to load the object pointer and the pointer to the virtual function table.

Since in our test cases no this adjustment or argument conversion is necessary,
there is no thunk for calling a nonvirtual member function. For calling a virtual
member function, we use the following (currently hand-coded) thunk:

thunk:
ld [%o0],%g5 ! load vptr from *this
ld [%g5+8],%g5 ! load vptr[2]
jmp %g5 ! jump to virt. member fnct.
nop ! empty delay slot

For calling a nonvirtual member function, the path length is three instructions
(excluding the nop instruction in the delay slot), two of which are load instructions.
In the case of a virtual member function, the path length is six instructions, four
of which are load instructions.

To be able to compare the performance of properly optimized call sequences,
we hand-optimized the generated assembly code for all member function calls (in-
cluding class member function calls). The optimizations we performed manually
could easily be done by an optimizing compiler. Since GCC’s instruction scheduler
does not always interleave load instructions with register instructions, we manually
changed the order of some instructions. We also eliminated the register-to-register
mov instructions to get the object pointer into register %o0. With flow analysis
based on registers instead of on declared types, the compiler’s register allocator
would be able to remove these mov instructions as well.

Figure 5 shows the times for the thunk-based implementation. Neither the virtual
function call nor the nonvirtual signature member function call used a thunk. The
tables contained direct pointers to the member function.

Note that the performance of calling a nonvirtual member function through a
signature pointer is almost identical to the performance of a virtual function call
and is actually 8% better when passing less then four arguments. This is not
surprising, given that the code for both cases is almost identical.

Since in our dispatch mechanism the pointer to the dispatch table is kept in the
signature pointer instead of in the object, we can keep the pointer in a register
across multiple signature member function calls. In the virtual function dispatch
mechanism, this optimization is not as straightforward and is not even always
possible, since an object can have multiple virtual function tables. Figure 6 shows
the times for the thunk-based implementation with all object pointers and signature
pointers in registers. The calling sequences for signature member function calls
are the same as above except that the ldd instruction for loading the signature
pointer has been eliminated. This optimization results in a speedup of 4% (for
eight arguments) to 20% (for zero or one arguments) over virtual function calls.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 183

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8

T
im

e 
pe

r 
m

em
be

r 
fu

nc
tio

n 
ca

ll 
(n

s)

Number of member function parameters

signature virtual
virtual

signature nonvirtual
nonvirtual

Fig. 5. Cost of member function calls in the implementation with back-end support.

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8

T
im

e 
pe

r 
m

em
be

r 
fu

nc
tio

n 
ca

ll 
(n

s)

Number of member function parameters

signature virtual
virtual

signature nonvirtual
nonvirtual

Fig. 6. Cost of member function calls in the implementation with back-end support and all pointers
in registers.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



184 · G. Baumgartner and V.F. Russo

As a final observation, note that the added cost of the signature pointer assign-
ment over a class pointer assignment is quickly amortized by keeping the signature
pointer in registers across multiple signature member function calls. Not counting
the improved pipeline behavior of the ldd instruction over two ld instructions, the
cost of assigning to the data member sptr in a signature pointer is amortized after
only two signature member function calls per assignment.

7. CONCLUSION

We have discussed the limitations of inheritance for achieving subtype polymor-
phism and for code reuse. We have proposed language constructs for specifying
and working with abstract types that allow us to decouple subtyping from inheri-
tance, have given the syntax and semantics of such an extension, and have proposed
three possible implementation strategies for this language extension. Not only is
our language extension more flexible for type abstraction and subtyping than classes
and inheritance, it also allows for a more efficient implementation of the dispatch
mechanism necessary for subtyping, as we have shown by our performance mea-
surements.

A signature is a language construct that allows the separation of the concepts of
abstract and concrete types. Using signature conformance, we also have separated
subtyping from inheritance. Not only are these concepts semantically separated,
their implementations are decoupled as well. With the thunk implementation, the
mechanism of dynamically dispatching through signature tables is decoupled from
any mechanism for implementing concrete types and code reuse (i.e., inheritance
in C++).

The signature language construct is very similar to interfaces in Java [Gosling et al.
1997] and is also related to types in Russell [Donahue and Demers 1985], ML’s sig-
natures [MacQueen 1985; MacQueen 1988], Haskell’s type classes [Hudak et al. 1992],
definition modules in Modula-2 [Wirth 1985], interfaces in Modula-3 [Cardelli et al.
1992], abstract types in Emerald [Black et al. 1986], type modules in Trellis/Owl
[Schaffert et al. 1986], categories in Axiom [Jenks and Sutor 1992] and its predeces-
sor Scratchpad II [Sutor and Jenks 1987; Watt et al. 1990], and types in POOL-I
[America and van der Linden 1990].

While interfaces in Java are syntactically closely related to signatures, Java uses
named conformance (i.e., a class must declare to implement an interface using the
implements keyword) instead of structural conformance inferred by the compiler.
The type system of C++ with signatures actually comes closest to those of POOL-I
and Axiom. Unlike C++, POOL-I does not have overloading and private and pro-
tected member functions, and Axiom is an abstract datatype language. While both
categories and domains in Axiom and types in POOL-I are first class, signatures
and classes in our C++ extension are not, which makes the type system slightly less
expressive but allows for a more efficient implementation and for complete type-
checking at compile time. Similarly to C++ with signatures, ML, Modula-2, and
Modula-3 allow a clean separation of specification and implementation. However,
ML and Modula-2 do not have classes but only modules, while Modula-3 has both
classes and modules but provides interfaces only for modules but not for classes.
Russell and Haskell have notions related to signatures, but both lack classes and
other object-oriented features. Emerald has first-class types instead of classes, and
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 185

Trellis/Owl has a class hierarchy with only type inheritance but no implementation
inheritance.

Syntactically, signatures are also very similar to interfaces in the Object Manage-
ment Group’s CORBA Interface Definition Language (IDL) [Object Management
Group 1995], which allows the description of interfaces for distributed objects inde-
pendent of the programming language. However, IDL interfaces are simply trans-
lated into abstract classes in C++. Implementations of these interfaces still need
to inherit from the generated abstract classes. This does not solve the problem of
retroactive abstraction, nor does it solve the problem of decoupling subtyping from
inheritance.

Note that the subtype relationship defined by multiple inheritance in C++ is
subsumed by signature conformance. Assume class D is a derived class of C defined
by C++-style public inheritance and overriding of virtual member functions. Since
D conforms to any signature that C conforms to, an instance of D can be assigned
to a signature pointer wherever an instance of C was assigned before. The run-
time dispatch for signature member function calls gives the same polymorphism
as a virtual function dispatch. Therefore, signature conformance subsumes any
subtype relationship defined by inheritance in which only virtual member functions
are redefined. The only case where signature conformance cannot be used instead of
class inheritance to define a subtype relationship is when the derived class redefines
a nonvirtual member function inherited from a base class. This use of inheritance,
however, is usually considered bad programming style, since semantically it breaks
the subtype relationship between the derived class and the base class. In addition,
when multiple inheritance was used only for subtyping purposes, with signature
conformance we do not need to pay the cost of adjusting the this pointer and of
following pointers to virtual bases.

While we have presented the ideas of such a language extension as an exten-
sion to C++, they would equally well apply to any statically typed object-oriented
programming language. With subtype polymorphism defined by signature confor-
mance and implemented through signature pointers and references, it would no
longer be necessary for inheritance to define a subtype relationship at all. There-
fore, virtual function tables would no longer be needed as a dispatch mechanism
to achieve subtype polymorphism. While virtual member functions are still useful
for code reuse, they could be implemented differently if inheritance does not de-
fine a subtype relationship. For example, by trading space for execution speed, we
could implement inheritance by copying and recompiling the code from the base
class into the derived class. Having decoupled subtyping from inheritance, it is also
possible to change the semantics of inheritance and make it conceptually simpler
and more versatile for code reuse by allowing to inherit only parts of a base class or
by allowing renaming of inherited data members and member functions. While for
pragmatic reasons such changes to C++ are not possible, as they would affect the
behavior of existing programs, future programming languages could take advantage
of this separation.

8. AVAILABILITY

Parts of the language extension have been implemented in G++ as a compiler
extension [Baumgartner 1995]. The implementation is included as part of the GCC

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



186 · G. Baumgartner and V.F. Russo

distribution starting with GCC version 2.6.0.

ACKNOWLEDGEMENTS

We would like to thank Konstantin Läufer and Michal Young for reading parts of
the article and for providing many valuable comments, and Andy Muckelbauer for
numerous discussions about the implementation. The referees’ comments resulted
in a greatly improved presentation.

REFERENCES

Abadi, M. and Cardelli, L. 1996. On subtyping and matching. ACM Trans. Program. Lang.
Syst. 18, 4 (July), 401–423.

Amadio, R. M. and Cardelli, L. 1993. Subtyping recursive types. ACM Trans. Program. Lang.
Syst. 15, 4 (Sept.), 575–631.

America, P. and van der Linden, F. 1990. A parallel object-oriented language with inheritance
and subtyping. In Proceedings of the OOPSLA ’90 Conference on Object-Oriented Programming
Systems, Languages, and Applications. DELETE, DELETE. SIGPLAN Not. 25, 10 (Oct.),
161–168.

Baumgartner, G. 1995. Type abstraction using signatures. In Using and Porting GNU CC, R. M.
Stallman, Ed. Free Software Foundation, Cambridge, Mass, Section 7.6, 180–182. Available as
part of the GCC-2.7.2 distribution.

Baumgartner, G. and Russo, V. F. 1995. Signatures: A language extension for improving type
abstraction and subtype polymorphism in C++. Softw. Pract. Exper. 25, 8 (Aug.), 863–889.

Black, A., Hutchinson, N., Jul, E., and Levy, H. 1986. Object structure in the Emerald sys-
tem. In Proceedings of the OOPSLA ’86 Conference on Object-Oriented Programming Systems,
Languages, and Applications. DELETE, DELETE. SIGPLAN Not. 21, 11 (Nov.), 78–86.

Bruce, K. B. 1997. Typing in object-oriented languages: Achieving expressibility and safety.
ACM Comput. Surv. To be published.

Cardelli, L. 1984. A semantics of multiple inheritance. In Semantics of Data Types, G. Kahn,
D. B. MacQueen, and G. Plotkin, Eds. Lecture Notes in Computer Science, vol. 173. Springer-
Verlag, New York, 51–67.

Cardelli, L., Donahue, J., Glassman, L., Jordan, M., Kalsow, B., and Nelson, G. 1992.
Modula-3 language definition. SIGPLAN Not. 27, 8 (Aug.), 15–43.

Cook, W. R., Hill, W. L., and Canning, P. S. 1990. Inheritance is not subtyping. In Proceedings
of the 17th Annual ACM Symposium on Principles of Programming Languages. ACM, New
York, 125–135.

Donahue, J. and Demers, A. 1985. Data types are values. ACM Trans. Program. Lang. Syst. 7, 3
(July), 426–445.

Ellis, M. A. and Stroustrup, B. 1990. The Annotated C++ Reference Manual. Addison-
Wesley, Reading, Mass.

Gosling, J., Joy, B., and Steele, G. 1997. The Java Language Specification. Addison-Wesley,
Reading, Mass.

Granston, E. D. and Russo, V. F. 1991. Signature-based polymorphism for C++. In Proceedings
of the 1991 USENIX C++ Conference. USENIX Assoc., Berkeley, Calif., 65–79.

Hudak, P., Peyton Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guzmán,

M. M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain, W.,
and Peterson, J. 1992. Report on the programming language Haskell: A non-strict, purely
functional language, version 1.2. SIGPLAN Not. 27, 5 (May), Section R.

Jenks, R. D. and Sutor, R. S. 1992. AXIOM: The Scientific Computation System. Springer-
Verlag, New York.

MacQueen, D. B. 1985. Modules for Standard ML. Polymorphism 2, 2 (Oct.), PAGES.

MacQueen, D. B. 1988. An implementation of Standard ML modules. In Proceedings of the
1988 ACM Conference on Lisp and Functional Programming. ACM, New York, 212–223.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997



Implementing Signatures for C++ · 187

Object Management Group 1995. The Common Object Request Broker: Architecture and Speci-
ficationDOT , Rev. 2.0ED ed. Object Management Group, Framingham, Mass.

Schaffert, C., Cooper, T., Bullis, B., Kilian, M., and Wilpolt, C. 1986. An introduction to

Trellis/Owl. In Proceedings of the OOPSLA ’86 Conference on Object-Oriented Programming
Systems, Languages, and Applications. DELETE, DELETE. SIGPLAN Not. 21, 11 (Nov.),
9–16.

Snyder, A. 1986. Encapsulation and inheritance in object-oriented programming languages. In
Proceedings of the OOPSLA ’86 Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications. DELETE, DELETE. SIGPLAN Not. 21, 11 (Nov.), 38–45.

SPARC International 1991. The SPARC Architecture ManualDOT , Ver. 8, SAV080SI9106ED ed.
SPARC International, Menlo Park, Calif.

Stallman, R. M. 1995. Using and Porting GNU CC. Free Software Foundation, Cambridge,
Mass. Available as part of the GCC-2.7.2 distribution.

Sutor, R. S. and Jenks, R. D. 1987. The type inference and coercion facilities in the Scratchpad II
interpreter. In Proceedings of the SIGPLAN ’87 Symposium on Interpreters and Interpretive
Techniques. DELETE, DELETE. SIGPLAN Not. 22, 7 (July), 56–63.

Watt, S. M., Jenks, R. D., Sutor, R. S., and Trager, B. M. 1990. The Scratchpad II type
system: Domains and subdomains. In Computing Tools for Scientific Problem Solving, A. M.
Miola, Ed. Academic Press, London, 63–82.

Wirth, N. 1985. Programming in Modula-2. Texts and Monographs in Computer Science.
Springer-Verlag, Berlin.

Received July 1995; revised May 1996; accepted July 1996

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997


	Introduction
	Motivation
	Retroactive Type Abstraction
	Implementation of Conflicting Type and Class Hierarchies

	Syntax and Semantics of the Signature Language Extension
	Signature Declarations
	Signature Pointers and References
	The Conformance Check

	Example Uses of Signatures
	Signatures for Retroactive Type Abstraction
	Signatures to Implement Conflicting Type and Class Hierarchies

	Implementation Techniques
	Preprocessor-Based Implementation
	Compiler Front-End Implementation
	Implementation with Back-End Support

	Performance Analysis
	High-Level Comparison
	Measured Performance

	Conclusion
	Availability

