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Abstract—This paper proposes a randomly jittered temporal
sampling scheme with a successive approximation register (SAR)
ADC. The sampling time points are jittered around a uniform
sampling clock. A control logic is implemented on a traditional
SAR ADC to force it to terminate the sample conversion before
reaching the full precision at the jittered time points. As a
result, variable word length data samples are produced by the
SAR converter. Based on a discrete jittered random sampling
theory, this paper analyzes the impact of the random jitters
and the resulting randomized quantization noise for a class of
sparse or compressible signals. A reconstruction algorithm called
Successive Sine Matching Pursuit (SSMP) is proposed to recover
spectrally sparse signals when sampled by the proposed SAR
ADC at a sub-Nyquist rate.

Index Terms—successive approximation, discrete jittered ran-
dom sampling

I. INTRODUCTION

The successive approximation ADC [1] is a type of analog-

to-digital converter that has resolutions ranging from 8 bits to

18 bits and sampling rates ranging from 50 KHz to 50 MHz.

The SAR ADC consists of a few blocks such as one com-

parator, one digital-to-analog converter (DAC) and one control

logic. A special counter called the successive approximation

register (SAR) conducts a binary search through all possible

quantization levels from the most significant bit (MSB) to the

least significant bit (LSB). The resolution of the samples are

determined by the number of iterations in the binary search.

Denote Δ as the 1-bit quantization time. Ideally, a J-bits

resolution can be achieved at a uniform sampling interval of

JΔ. [2] was the fist paper that suggested that if we forced

the SAR to terminate the binary search at a randomly selected

iteration j with variable sampling intervals jΔ, we could still

reconstruct a class of sparse or compressible signal even the

averaged sampling rate is below the Nyquist rate of the signal.

However, [2] fails to analyze the impact of the randomness

on the sampled signal spectrum. The proposed reconstruction

algorithm in [2] cannot deal with situations when there is

a significant spectral leakage which makes the signal not

sufficiently sparse in the frequency domain.

This paper aims to analytically associate the exact probabil-

ity distribution of the sampling jitters with the sampled spec-

trum and offer a more robust signal reconstruction algorithm in

the presence of spectral leakage and randomized quantization

noise. The most striking feature of the proposed sampling

architecture is that it is compatible with conventional SAR

ADC architecture without introducing extra analog mixing

circuits as required in [3], [4]. We can easily switch the

SAR ADC between a conventional uniform sampling scheme

and a jittered random sampling scheme designed specifically

to sample a class of spectrally sparse signal with a wider

bandwidth coverage. Since the average sampling rate is fixed,

the power consumption of the SAR ADC remains unchanged

in both schemes.

II. DISCRETE TIME JITTERED RANDOM SAMPLING

THEORY

The analysis on continuous time random sampling can be

traced back to Beutler and Leneman’s [5]–[8] publications on

the theory of stationary point process and random sampling

of random process in the late 1960s. [9] extended the theory

to address discrete time additive random sampling. In this

section, a theoretical framework for discrete jittered random

sampling will be established.

A random impulse process s(t) is defined as

s(t) =

∞∑
n=−∞

δ(t− tn). (1)

A random process x(t) sampled by s(t) can be written as

y(t) = x(t)s(t). If tn is independent from x(t), then

Φy(f) = Φx(f) ∗ Φs(f), (2)

where Φy(f), Φx(f), Φs(f) are the power spectral densities

(PSD) of y(t), x(t) and s(t), respectively. When tn = nT ,

Φs(f) =
1

T 2

∞∑
n=−∞

δ(f − n

T
). (3)

Therefore, aliases are periodic replicas of the signal spectrum

under uniform sampling. Reference [8] generalized the analyt-

ic expression of Φs(f) when i.i.d continuous time jitters uk

is added to the uniform time grid with spacing T .

tk = kT + uk, uk ∈ [−T/2, T/2] (4)

Φs(f) =
1

T

{
1− |ψuk

(2πf)|2} (5)

+
1

T 2

∞∑
n=−∞

|ψuk

(
2πn

T

)
|2δ(f − n

T
).

where ψuk
(f) is the characteristic function of uk..

Generally speaking, such kind of jittered random sampling

(JRS) is not aliasing free. The n-th aliasing term is scaled

by a factor of |ψuk

(
2πn
T

) |2. There is also a signal indepen-

dent noise term 1
T

{
1− |ψuk

(2πf)|2} in the power spectrum.

However, when uk is uniformly distributed in [−T
2 ,

T
2 ], we
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have

ψuk
(2πf) =

sin(πfT )

πfT
, (6)

ψuk

(
2πn

T

)
= δ(n). (7)

Equ. (5) becomes

Φs(f) =
1

T

{
1−

∣∣∣∣ sin(πfT )πfT

∣∣∣∣2
}

+
1

T 2
δ(f). (8)

Since there is only a single impulse function in Φs(f), uniform

JRS is aliasing free from a conventional perspective if the

jitters uk are uniformly distributed in [−T/2, T/2]. However,

the aliases take another form as a spread spectrum noise

term 1
T

{
1−

∣∣∣ sin(πfT )
πfT

∣∣∣2} in the sampled spectrum, which

is referred as the aliasing noise thereafter.

Figure 1 and 2 show the sampled power spectra of an

analytic sinusoid with a frequency of 5 Hz with different jitter

distributions. The uniform time grid has a spacing T = 1/3s
so that the average sampling frequency is below the Nyquist

rate of the signal. Aliasing frequencies are present in Fig. 1.

Fig. 2 is free from aliasing frequencies. In both cases, there

is an non-flat aliasing noise floor in the sampled spectrum.
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Fig. 1. Power spectra of a sampled analytic signal with a frequency at 5
Hz for uniformly distributed JRS. The uniform time grid has T = 1/3s. The
jitters are uniformly distributed in [-T/4, T/4].

In practice, it is difficult to implement continuously dis-

tributed jitters. The jitters are usually quantized onto a fixed

time grid determined by a high-speed clock. Suppose we

further divide the uniform sampling time T into a finer uniform

grid with spacing Δ, where T = JΔ is an integer multiple

of Δ, and the jitters uk are quantized onto the finer uniform

time grid, denoted as uq
k. We can define the probability mass

function (PMF) of uq
k as

p[n] = Prob.{uq
k = −T/2 + nΔ}, n ∈ Ω, (9)

where Ω is a subset of [0, ..., J − 1].
The time quantization of uk results in a periodic expansion

of its characteristic function ψuk
(f). Accordingly, Φs(f) also

becomes periodic with a periodicity of 1
Δ . Therefore, we can

ensure that the sampled signal is aliasing free only if x(t)
is bandlimited in [− 1

2Δ , 1
2Δ ]. In other words, the minimum
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Fig. 2. Power spectra of a sampled analytic signal with a frequency at 5
Hz for uniformly distributed JRS. The uniform time grid has T = 1/3s. The
jitters are uniformly distributed in [-T/2, T/2].

spacing Δ rather than the average spacing T of the sampling

intervals determines the highest frequency that can be sampled

without aliasing. However, sampling at the average sampling

frequency is not completely free from the aliasing effect.

Aliases in this case are not replicas of the original signal, but

behave like an additive noise term convolved with the input

signal.

We can define the characteristic function of uq
k as the

discrete time Fourier transform (DTFT) of the PMF of uq
k:

ψuq
k
(ejω) =

∑
n∈Ω

p[n]ejωn, (10)

where the normalized frequency ω is related to the continuous

time frequency f by

ω = 2πfΔ. (11)

According to (5), the normalized aliasing noise power

function for discrete JRS is defined as

Φn(e
jω) = 1− |ψuq

k
(ejω)|2, ω ∈ [0, π]. (12)

Finally, we assume that the quantized jitter uq
k is again

uniformly distributed on [−T/2, T/2), which means

p[n] = Prob.{uq
k = −T/2 + nΔ} = 1/J, n = 0, ..., J − 1.

(13)

We will have the following analytic expression for the aliasing

noise floor:

Φn(e
jω) = 1− 1

J2

(
sin(ωJ/2)

sin(ω/2)

)2

. (14)

We can calculate the average power of the aliasing noise floor

as
1

π

∫ π

0

Φn(e
jω)dω = 1− 1

J
, (15)

which gives a key balancing equation as

1

π

∫ π

0

Φn(e
jω)dω︸ ︷︷ ︸

avg. noise power

+
Δ

T︸︷︷︸
normalized avg. fs

= 1. (16)

Equ. (16) represents a fundamental tradeoff between the fine

grid granularity Δ and the aliasing noise power. We can choose

to make Δ small in order to sample a wider bandlimited signal
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[− 1
2Δ , 1

2Δ ] at a constant average sampling rate of 1
T . The

downside of the scenario is that we have to endure a higher

aliasing noise power. As an extreme case when Δ = T , the

aliasing noise term will disappear completely. But the signal

is then required to be bandlimited to [− 1
2T ,

1
2T ].
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Fig. 3. Aliasing noise power spectra Φn(f) for discrete uniform JRS.

Fig. 3 shows the shape of the aliasing noise function and

its average power (horizontal lines) for different choices of

the sub-grid division level J . Two important properties of the

aliasing noise function can be observed:

Φn(e
j0) = 0, (17)

Φn(e
jω) ≤ 1, (18)

which means that the aliasing noise floor has no impact at

ω = 0, where the original signal frequency resides. And there

will not be any overshoots in the aliasing noise floor, which

could behave like an impulse function otherwise. These two

features makes it easier to extract the original signal from the

aliasing noise floor.

III. AMPLITUDE QUANTIZATION ERROR ANALYSIS

Suppose we apply the uniform JRS on a SAR ADC with a

fine time grid of spacing Δ and an average sampling spacing

T = JΔ, where Δ is the 1-bit conversion time of the SAR

ADC and J is the maximum resolution that can be reached.

We can implement a control logic to force the SAR ADC to

stop the conversion process when a uniform JRS sampling

time point is reached. Therefore, the time interval τ between

two consecutive samples determines the maximum resolution

and the amplitude quantization error that can be reached for

the previous sample.

From (13), we can calculate the PMF of the interval τ as

pτ [n] = Prob.(τ = nΔ) =

{
n
J2 n = 1, ..., J
2J−n
J2 n = J + 1, ..., 2J − 1

.

(19)

The i.i.d. amplitude quantization error e follows a condi-

tional distribution:

e ∼
{
U [0, VREF

2n ] with probability pτ [n], n = 1, ...J − 1

U [0, VREF

2J
] with probability

∑2J−1
n=J pτ [n] =

J+1
2J

,

(20)

where U stands for a uniform distribution and VREF is the

reference voltage of the ADC. The quantization noise can be

modeled as a white noise since e is i.i.d. We can evaluate the

power of the noise floor by calculating the expectation and

variance of e

E[e] =

[
2J − J − 1

2JJ2
+

J + 1

2J+2J

]
VREF. (21)

Unlike the uniform sampling case where we only need to

encode the signal amplitude, we also need to encode the jitters

for the random sampling case, which gives a total of J +
log2(J) bits/sample.

IV. SIGNAL RECONSTRUCTION FROM THE RANDOM

SAMPLES

After the data conversion, we can apply DSP techniques

to further process the samples. The clocked time quantization

in the JRS sampling model makes it possible to calculate the

power spectrum using an FFT by replacing missing values with

zeros. After we have collected M time quantized samples with

x(t1)0 0 x(t2) x(tM)0

n1 n2

N

Fig. 4. Interval zero insertion time quantized random samples.

{xq(tk), nk}, k = 1, ...,M and N =
∑M

k=1 nk, we can insert

zeros in between each sample according to nk as shown in Fig.

4. If we denote the zero-inserted signal vector as x̄, then we

can calculate the normalized power spectrum by an N -point

FFT

p =
1

M2

∣∣FFTN{x̄}∣∣2, (22)

Since the minimal time interval is Δ, the frequency grid spac-

ing is 1
NΔ Hz. We refer this zero insertion operation as interval

zero insertion (IZI) to distinguish it from the conventional trail

zero padding (TZP) operation where zeros are padded at the

end of x̄ to reach a higher frequency sampling density. If

we are only interested in the detection of certain frequency

components from the random samples, calculating the power

spectrum is sufficient. In some applications, it is desirable to

reconstruct the randomly sampled signal onto a fine uniform

time grid so that it can be further processed by classic DSP

systems.

However, not all bandlimited signals can be recovered from

the random samples because the aliasing noise introduced by

the random sampling process could overwhelm the original

signal spectrum. Since the aliases are the convolution of the

original signal with the aliasing noise function according to

the established theory, the aliasing power is proportional to

the spectrum occupancy of the original signal. Therefore,

only those signals with a sparse spectrum occupancy can

be successfully reconstructed. Three factors: aliasing noise,

spectral leakage, and amplitude quantization noise make the

sampled signal not perfectly sparse in the frequency domain.

The aliasing noise floor is introduced by the jittered random
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sampling process. The spectral leakage is caused by the finite

acquisition time window effect. The amplitude quantization

introduces another source of noise that could reshape the total

noise floor.

Inspired by the CoSaMP algorithm [10] and the least

squares periodogram [11], a new reconstruction algorithm,

called successive sine matching pursuit (SSMP), is proposed

in this section to deal with the above mentioned factors.

The SSMP reconstruction algorithm is summarized in the

pseudo code of Algorithm 1. Given M non-uniform samples

{xq(tk), nk} with a time quantization granularity of Δ, we

can calculate the total number of uniform time points N in the

acquisition time window. The mainlobe width of each frequen-

cy bin is 2
NΔ . In the initialization stage, line 3 initializes the

reconstructed signal x to be a zero vector. Line 4 initializes the

residual signal v to be the sampled and amplitude quantized

signal xq . Line 5 evaluates the power in the residual signal v.

For each iteration, line 10 performs interval zero insertion (IZI)

and trail zero padding (TZP) to v. Line 11 performs an FFT on

the resulting vector v̄. Line 12 identifies the frequency f that

corresponds to the largest peak in the spectrum. Due to spectral

leakage and the amplitude quantization and aliasing noise, the

actual signal frequency might deviate slightly from f . Instead

of fitting a single sinusoid at f , a cluster of sinusoids with

frequencies fj centered around f are used to fit the residual

vector v. The frequency search range Δf is set to be half

the width of the mainlobe scaled by a factor r ∈ (0, 1) as

initialized in line 2. The number of sinusoids is denoted as

J . Line 14 fits this cluster of sinusoids with frequencies fj ,

amplitudes αj and phases φj to the residual signal on the

sampled time grid tk according to the least squares criterion.

Finally, line 15 subtracts the identified sinusoids from the

residual vector. This is a critical step as the removal of

the stronger signal frequency components also takes away

the stronger sidelobes associated with them. As a result, the

weaker frequency components become more salient in the

residual spectrum. At the same time, line 16 reconstructs the

identified sinusoids on the uniform time grid and adds them to

the solution. The algorithm ends as in line 18 when the power

in the residual vector can no longer be reduced.

A SAR ADC based random sampling example is shown

in Fig. 5, where the input signal x(t) is composed of 10

sinusoids with amplitudes uniformly distributed in [0, 1]V

and frequencies randomly distributed in [0, 2.4] MHz. The

maximum sampling frequency is Fs = 1
Δ = 4.8 MHz. The

maximum resolution is set to be J = 20 bits so that the

average sampling frequency is only Fs

J = 240 KHz. The

number of random samples is M = 1024. SSMP is able

to reconstruct the original signal spectrum even a few weak

frequency components are buried under the aliasing noise

floor. The total bit rate is 5.84 Mb/s with a reconstruction

signal to quantization noise ratio (SQNR) of 19.70 dB, which

corresponds to an effective number of bit (ENOB) of 3.27

bit/sample. In another word, we need to sample uniformly at

a frequency of 4.8 MHz or a bit rate of 15.70 Mb/s to reach

the the same level of SQNR as achieved by the jittered random

Algorithm 1: SSMP algorithm

Input:
noisy non-uniform samples: {xq(tk), nk}, k = 1, ...M ,

total number of uniform time grid in the time window:

N =
∑M

k=1 nk,

time quantization granularity: Δ,

FFT size: NFFT ≥ N ,

bandwidth search ratio: r ∈ (0, 1).
Output:
A reconstructed signal: x[n] = x(nΔ), n = 0, ..., N − 1

1 Initialization:
2 Δf = r

NΔ
3 x0 ∈ R

N = 0
4 v0 ∈ R

M = xq

5 e0 = ‖v0‖22
6 k = 0

7 Iteration:
8 repeat
9 k = k + 1

10 v̄ = TZP(IZI(vk−1))
11 p = FFT(v̄)
12 f = |p|(1)
13 fj ∈ [f −Δf, f +Δf ]

14 min
αj ,φj

∑M
k=1(v(tk)−

∑J
j=1 αj cos(2πfjtk + φj))

2

15 vk(tk) = vk−1(tk)−
∑J

j=1 αj cos(2πfjtk + φj)

16 xk[n] = xk−1[n] +
∑J

j=1 αj cos(2πfjnΔ+ φj)

17 ek = ‖vk‖22
18 until ek ≥ ek−1;

sampling case.

Fig. 5. A comparison between the power spectra by means of direct IZI and
reconstruction via SSMP.

REFERENCES

[1] W. Kester, Analog-Digital Converstion. Analog Devices, 2004.

1820



[2] C. Luo and J. H. McClellan, “Compressive sampling with a successive
approximation adc architecture,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2011 IEEE International Conference on, May 2011,
pp. 3920 –3923.

[3] J. Tropp, J. Laska, M. Duarte, J. Romberg, and R. Baraniuk, “Beyond
nyquist: Efficient sampling of sparse bandlimited signals,” Information
Theory, IEEE Transactions on, vol. 56, no. 1, pp. 520 –544, Jan. 2010.

[4] M. Mishali, A. Elron, and Y. Eldar, “Sub-nyquist processing with
the modulated wideband converter,” in Acoustics Speech and Signal
Processing (ICASSP), 2010 IEEE International Conference on, Mar.
2010, pp. 3626 –3629.

[5] F. J. Beutler and O. A. Z. Leneman, “The theory of stationary point
processes,” Acta Math., vol. 116, pp. 159–197, 1966.

[6] ——, “Random sampling of random process: Stationary point process-
es,” Information and Control, vol. 9, pp. 325–344, 1966.

[7] O. A. Z. Leneman, “Random sampling of random process: Impulse
processes,” Information and Control, vol. 9, pp. 347–363, 1966.

[8] F. J. Beutler and O. A. Z. Leneman, “The spectral analysis of impulse
processes,” Information and Control, vol. 12, pp. 236–258, 1968.

[9] C. Luo and J. H. McClellan, “Discrete random sampling theory,”
in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, May 2013, pp. 5430–5434.

[10] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Applied and Computational Har-
monic Analysis, vol. 26, no. 3, pp. 301–321, Apr. 2008.

[11] P. Stoica, J. Li, and H. He, “Spectral analysis of nonuniformly sampled
data: A new approach versus the periodogram,” Signal Processing, IEEE
Transactions on, vol. 57, no. 3, pp. 843 – 858, Mar. 2009.

1821


