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Abstract—Entropy is well known to be Schur concave on finite
alphabets. Recently, the authors have strengthened the result by
showing that for any pair of probability distributions P and Q
with Q majorized by P , the entropy of Q is larger than the
entropy of P by the amount of relative entropy D(P ||Q). This
result applies to P and Q defined on countable alphabets. This
paper shows the counterpart of this result for the Rényi entropy
and the Tsallis entropy. Lower bounds on the difference in the
Rényi (or Tsallis) entropy are given in terms of a new divergence
which is related to the Rényi (or Tsallis) divergence. This
paper also considers a notion of generalized mutual information,
namely α-mutual information, which is defined through the Rényi
divergence. The convexity/concavity for different ranges of α is
shown. A sufficient condition for the Schur concavity is discussed
and upper bounds on α-mutual information are given in terms
of the Rényi entropy.

I. INTRODUCTION

The Rényi entropy Hα(P ) of a probability distribution P
of order α was introduced in [1]. The concavity of Hα(P ) for
P defined on a finite support was shown in [2]. If α ∈ (0, 1],
Hα(P ) is strictly concave in P and it is also Schur concave
[3]. When α > 1, Rényi entropy is neither convex nor concave
in general but it is pseudoconcave. Since all concave functions
and pseudoconcave functions are quasiconcave, Rényi entropy
is Schur concave for α > 0 [4].

It is well known that the (Shannon) entropy of finitely-
valued random variables is a Schur-concave function [4]. This
result was strengthened and generalized for countably infinite
random variables in [5], which shows that if a probability
distribution Q is majorized by a probability distribution P ,
their difference in entropy was shown to be lower bounded
by the relative entropy D(P ||Q). This motivates the search
for strengthened results for the Schur-concavity of the Rényi
entropy.

In order to strengthen the Schur-concavity of the Rényi
entropy, this paper investigates the Schur-concavity of the
Tsallis entropy. Tsallis entropy was introduced by Tsallis [6]
to study multifractals. The same paper showed that the Tsallis
entropy of order β is concave for β > 0 and convex for β < 0.
The Schur-concavity of the Tsallis entropy was discussed in
[7]. Tsallis divergence of order β was introduced in [8] and it is
also known as the Hellinger divergence of order β [9]. Indeed,
the Tsallis divergence is an f -divergence with f(x) = x−xβ

1−β

and the Tsallis entropy is the corresponding entropy with the
form −

∑
i f(P (i)) for any probability distribution P .

This paper also considers the convexity of a notion of
generalized mutual information, namely α-mutual information.
This notion of mutual information was introduced by Sibson
[10] in the discrete case, as the information radius of order α
[11]. Alternative notions of what could be called Rényi mutual
information were proposed by Csiszár [12] and Arimoto
[13]. α-mutual information is closely related to Gallager’s
exponent function and plays an important role in a number
of applications in channel capacity problems (e.g., [14]).

In Section II, the Schur concavity of the Rényi entropy and
the Tsallis entropy are revisited. A new divergence is defined
and new bounds on entropy in terms of the new divergence are
derived. The α-mutual information is defined and discussed
in Section III. Its concavity, convexity, Schur concavity and
upper bounds under different settings are illustrated. Due to
space limits, some of the proofs are omitted. For simplicity,
only countable alphabets are considered in this paper. All log
and exp have the same arbitrary base. We use P � Q to
denote that the support of P is a subset of the support of Q.
Furthermore, if P 6� Q, it means that P � Q does not hold.

II. SCHUR-CONCAVITY OF RÉNYI ENTROPY AND TSALLIS
ENTROPY

Definition 1: For any probability distribution P , the Rényi
entropy of order α ∈ (0, 1) ∪ (1,∞) is defined as

Hα(P ) =
1

1− α
log

(∑
i∈A

P (i)α

)
, (1)

where A is the support of P . By convention, H1(P ) is the
Shannon entropy of P .

Definition 2: For any probability distributions P and Q,
let A be the union of the supports of P and Q. The Rényi
divergence [1] of order α ∈ (0, 1) ∪ (1,∞) is defined as

Dα(P ||Q) =
1

α− 1
log

(∑
i∈A

P (i)αQ(i)1−α

)
, (2)

which becomes infinite if α > 1 and P 6� Q.



Definition 3: Given (PX , PY |X , QY |X), the conditional
Rényi divergence of order α ∈ (0, 1) ∪ (1,∞) is

Dα(PY |X ||QY |X |PX) (3)
= Dα(PY |XPX ||QY |XPX) (4)

=
1

α− 1
log

 ∑
(x,y)∈X×Y

PαY |X(y|x)Q1−α
Y |X(y|x)PX(x)

 ,

(5)

where X and Y are the supports of PX and PY , respectively.
The Tsallis entropy is related to the Rényi entropy through

the following one-to-one function. For α ∈ (0, 1)∪(1,∞) and
z > 0, let

ϕα(z) = exp(z − αz) (6)

and

ϕ−1α (v) =
1

1− α
log v. (7)

Definition 4: For any probability distribution P , the Tsallis
entropy of order β ∈ (0, 1) ∪ (1,∞) is defined as

Sβ(P ) =
ϕβ(Hβ(P ))− 1

1− β
=

1

1− β

(∑
i∈A

P (i)β − 1

)
, (8)

where A is the support of P .

Definition 5: For any probability distributions P and Q,
let A be the support of P . The Tsallis divergence of order
β ∈ (0, 1) ∪ (1,∞) is defined as

Tβ(P ||Q) =
1− ϕβ(−Dβ(P ||Q))

1− β
(9)

=
1

1− β

(
1−

∑
i∈A

P (i)βQ(i)1−β

)
, (10)

which becomes infinite if β > 1 and P 6� Q.

Definition 6: For any probability distributions P and Q and
strictly concave function φ : [0, 1]→ IR, let

∆φ(P (i), Q(i))

=(P (i)−Q(i))φ′(Q(i)) + φ(Q(i))− φ(P (i)), (11)

where φ′(x) is the derivative of φ(x) and i ∈ A which is the
union of the supports of P and Q. Define the divergence

Wφ(P ||Q) =
∑
i∈A

∆φ(P (i), Q(i)). (12)

Lemma 1: For any probability distributions P and Q and
strictly concave function φ : [0, 1]→ IR,

∆φ(P (i), Q(i)) ≥ 0 (13)

and

Wφ(P ||Q) ≥ 0, (14)

with equality if and only if P = Q.

In the following, we fix β ∈ (0, 1) ∪ (1,∞) and consider
the strictly concave function

φβ(x) =
xβ − x
1− β

. (15)

Its derivative is denoted by φ′β(x) = βxβ−1−1
1−β . For 0 ≤ x ≤ 1,

φ′β(x) is a decreasing function. Note that the Tsallis divergence
can be seen as an f -divergence with f(x) = −φ(x). The
Tsallis entropy is equal to −

∑
i∈A f(P (i)).

Without loss of generality, we assume that P and Q are
defined on the positive integers and labeled in decreasing
probabilities, i.e.,

P (i) ≥ P (i+ 1) (16)
Q(i) ≥ Q(i+ 1). (17)

We say that Q is majorized by P if for all k = 1, 2, . . .

k∑
i=1

Q(i) ≤
k∑
i=1

P (i). (18)

If Q is majorized by P , then P � Q. If a real-valued
functional f(·) is such that f(P ) ≤ f(Q) whenever Q is
majorized by P , we say that f(·) is Schur-concave. The
following result generalizes [5, Theorem 3].

Theorem 1: For β ∈ (0, 1) ∪ (1,∞), if Q is majorized by
P , then

Sβ(Q) ≥ Sβ(P ) +Wφβ (P ||Q). (19)

Proof: We first consider the case where Q (and therefore
P ) takes values on a finite integer set {1, 2, . . . ,M}.

Sβ(Q)− Sβ(P )−Wφβ (P ||Q) (20)

=
∑
i

φβ(Q(i))−
∑
i

φβ(P (i))−Wφβ (P ||Q) (21)

=
∑
i

φ′β(Q(i))(Q(i)− P (i)) (22)

=
∑
i

(Q(i)− P (i))

M−1∑
k=i

(φ′β(Q(k))− φ′β(Q(k + 1)))+

M∑
i=1

(Q(i)− P (i))φ′β(Q(M)) (23)

=

M−1∑
k=1

(φ′β(Q(k))− φ′β(Q(k + 1)))

(
k∑
i=1

Q(i)−
k∑
i=1

P (i)

)
(24)

≥0, (25)

where (25) follows from the fact that φ′β(x) is a decreasing
function and Q is majorized by P .

Consider the case that Q is non-zero for all integers. We
assume that Sβ(Q) is finite, as otherwise, there is nothing to
prove. We need to take M →∞ in the foregoing expressions.



Although the last term in the right side of (23) can now be
negative, it vanishes due to the finiteness of Sβ(Q):

M∑
i=1

(Q(i)− P (i))φ′β(Q(M)) ≥−
∞∑

i=M+1

Q(i)φ′β(Q(M))

(26)

≥−
∞∑

i=M+1

Q(i)φ′β(Q(i))

(27)

=− β

1− β

∞∑
i=M+1

Q(i)β , (28)

where (27) follows from that φ′β(x) is a decreasing function
and (17). Therefore, the Tsallis entropy is a Schur-concave
function.

Due to the one-to-one correspondence between the Rényi
entropy and the Tsallis entropy through (8), Theorem 1 leads
to the following bounds. If 0 < α < 1, then

ϕα(Hα(Q))− ϕα(Hα(P )) ≥ (1− α)Wφα(P ||Q). (29)

If α > 1, then

ϕα(Hα(P ))− ϕα(Hα(Q)) ≥ (α− 1)Wφα(P ||Q). (30)

These bounds are sufficient to show that the Rényi entropy is
Schur-concave. They can further be used to obtain bounds on
Hα(Q)−Hα(P ) in terms of Wφα(P ||Q) as follows.

Theorem 2: For P defined on a countable alphabet, the
Rényi entropy Hα(P ) is a Schur-concave function for α ∈
(0, 1) ∪ (1,∞). Furthermore, if Q is majorized by P , then

a) If 0 < α < 1, then in nats

Hα(Q)−Hα(P )

= ϕ−1α

(
|A|1−α

|A|1−α − (1− α)Wφα(P ||Q)

)
(31)

≥ Wφα(P ||Q)

|A|1−α
(32)

≥ 0, (33)

where A is the support of Q.
b) If α > 1, then in nats

Hα(Q)−Hα(P ) ≥ ϕ−1α (1− (α− 1)Wφα(P ||Q))
(34)

≥Wφα(P ||Q) (35)
≥ 0. (36)

It would be interesting to obtain an inequality similar to
[5, Theorem 3] for the Rényi entropy. However, the following
example shows that it is not possible.

Example 1: Consider P = {0.4, 0.35, 0.15, 0.1} and Q =
{0.3, 0.3, 0.3, 0.1} so that Q is majorized by P . If α = 0.6,
then Hα(Q)−Hα(P ) > 0 but Hα(Q)−Hα(P ) < Dα(P ||Q).

To end this section, we illustrate the meaning of
∆φ(P (i), Q(i)) and how Wφ(P ||Q) is related to relative

(a) (b)

Fig. 1. An illustration of φ(x) and ∆φ in case a) P (i) < Q(i) and case
b) Q(i) < P (i).

entropy and Tsallis divergence. Consider the tangent at φ(x)
when x = Q(i) as shown in Fig. 1. Lemma 1 shows
that the tangent is always above φ(P (i)) and the amount is
∆φ(P (i), Q(i)).

Theorem 3: For any probability distributions P and Q with
P 6� Q and φ(x) = x log 1

x ,

D(P ||Q) = Wφ(P ||Q) (37)

with the convention 0 log 0 = 0. Furthermore, if φβ(x) = xβ

1−β ,∑
i∈A

Q(i)1−β∆φβ (P (i), Q(i)) = Tβ(P ||Q), (38)

where A is the support of Q, and hence for 0 < β < 1,

Tβ(P ||Q) ≤Wφβ (P ||Q). (39)

III. α-MUTUAL INFORMATION

Definition 7: Let PX → PY |X → PY , with X ∈ X and
Y ∈ Y . The α-mutual information with α ∈ (0, 1)∪ (1,∞) is

Iα(X;Y ) = min
Q

Dα(PY |X‖Q|PX) (40)

=
α

α− 1
log
∑
y∈Y

(∑
x∈X

PX(x)PαY |X=x(y)

) 1
α

.

(41)

By convention, I1(X;Y ) is the mutual information.
Some properties of Iα(X;Y ) related to the parameter α are

summarized in the following theorem.

Theorem 4: For any fixed PX on X and PY |X : X → Y ,
a) Iα(X;Y ) is continuous with α ∈ (0,∞) and

lim
α→0

Iα(X;Y ) = − sup
y∈Y

log

 ∑
x:PY |X(y|x)>0

PX(x)

 .

(42)
lim
α→1

Iα(X;Y ) = I1(X;Y ). (43)

lim
α→∞

Iα(X;Y ) = log

∑
y∈Y

sup
x:PX(x)>0

PY |X(y|x)

 .

(44)



b) Iα(X;Y ) is increasing with α.
Proof: a). The limit in (42) can be obtained by using

L∞−norm. For any ε > 0, there exists a sufficiently small
0 < α such that ∑

x:PY |X(y|x)>0

PX(x)

− ε < ∑
x∈X

PX(x)PαY |X=x(y) (45)

<
∑

x:PY |X(y|x)>0

PX(x). (46)

Since ε > 0 is arbitrary, using L∞-norm gives

lim
α→0

∑
y

(∑
x∈X

PX(x)PαY |X=x(y)

) 1
α

α

(47)

= sup
y∈Y

∑
x:PY |X(y|x)>0

PX(x). (48)

So the limit in (42) follows.
The limits in (43) and (44) can be easily verified by using

L’Hôpital’s rule. Due to (43), Iα(X;Y ) is continuous with
α ∈ (0,∞).

b). For α < β, denote Q∗β = argminQDβ(PY |X ||Q|PX)
so that

Iα(X;Y ) ≤ Dα(PY |X ||Q∗β |PX) (49)

≤ Dβ(PY |X ||Q∗β |PX) (50)

= Iβ(X;Y ), (51)

where (49) and (50) follow from (40) and [15, Theorem 3],
respectively.

Provided that C0f > 0, Theorem 4 intriguingly reveals that
the zero-error capacity of a discrete memoryless channel with
feedback [16] is equal to

C0f = sup
X
I0(X;Y ), (52)

where I0 is defined as the continuous extension of Iα.
Some upper bounds on α-mutual information in terms of

Rényi entropy are illustrated. These bounds provide some
insights about generalizing conditional entropy.

Theorem 5: For any given (PX , PY |X) and 0 < α <∞,

H 1
α

(PX) = Iα(X;X) ≥ Iα(PX , PY |X) (53)

Proof: It is easy to verify the equality in (53). The
inequality can be seen by the following. Let U = X so that
X− −U− −Y forms a Markov chain. The inequality in (53)
follows from [14, Theorem 5.2] for α 6= 1 and [17] for α = 1.

The difference between the sides in (53) is a good candidate
for the conditional Rényi entropy for which several candidates
have been suggested in the past (e.g., [12], [13]).

Since Hα(PX) is decreasing in α [2], the following corol-
lary holds.

Corollary 6: For any given (PX , PY |X) and 0 < α ≤ 1,

Hα(PX) ≥ Iα(PX , PY |X). (54)

The following result shows the convexity (or concavity) of
the conditional Rényi divergence, which proves to be useful
to investigate the properties of α-mutual information.

Theorem 7: Given (PX , PY |X , QY |X), the conditional
Rényi divergence Dα(PY |X ||QY |X |PX) is

a) concave in PX for α ≥ 1 and quasiconcave in PX for
0 < α <∞.

b) convex in (PY |X , QY |X) for 0 < α ≤ 1 and quasiconvex
in (PY |X , QY |X) for 0 < α <∞.
Proof: a). For 0 < α < 1, 1

α−1 log a is a decreasing
function in a. The quasiconcavity of Iα(X;Y ) can be seen
from (5). For α > 1, 1

α−1 log a is concave in a so that the
concavity of Iα(X;Y ) can be seen from (5). Since I1(X;Y )
is concave in PX , part a) is verified.

Part b) is a consequence of (4) together with [15, Theo-
rem 13] and [15, Theorem 11].

Theorem 8: Let PX → PY |X → PY . For fixed PY |X ,
a) Iα(PX , PY |X) = Iα(X;Y ) is concave in PX for α ≥ 1.
b) Iα(PX , PY |X) = Iα(X;Y ) is quasiconcave in PX for

0 < α <∞.
Proof: Consider 0 < λ < 1 and λ̄ = 1 − λ. We first

prove part a). I1(X;Y ) is known to be concave in PX for
fixed PY |X [17]. Consider any probability distributions PX0

and PX1 and let

Q∗ = argmin
Q

Dα(PY |X‖Q|λ̄PX0 + λPX1). (55)

Theorem 7 can be applied to show part a) as follows:

Iα(λ̄PX0
+ λPX1

, PY |X)

= Dα(PY |X‖Q∗|λ̄PX0
+ λPX1

) (56)
≥ λ̄Dα(PY |X‖Q∗|PX0

) + λDα(PY |X‖Q∗|PX1
) (57)

≥ λ̄min
Q

Dα(PY |X‖Q|PX0
) + λmin

Q
Dα(PY |X‖Q|PX1

).

(58)

Similarly, part b) can also be shown by using Theorem 7.

Example 2: Although Iα(PX , PY |X) is concave in PX for
α ≥ 1, it can be shown that in general it is not Schur concave
by considering λ = 0.3, α = 2, 1− PX0

(0) = PX0
(1) = 0.4,

PX1
(0) = PX1

(1) = 0.5, and

PY |X =

[
1 0

0.5 0.5

]
. (59)

However, the Schur concavity can be preserved if PY |X
describes a symmetric channel. In other words, all the rows
of the probability transition matrix PY |X are permutations
of other rows and so are the columns. Since all symmetric
quasiconcave functions are Schur concave [4], Theorem 8
implies the following corollary.

Corollary 9: For any fixed symmetric PY |X ,
Iα(PX , PY |X) = Iα(X;Y ) is Schur concave in PX for
0 < α <∞.

We now fix PX and consider the behavior of Iα(PX , ·).



Theorem 10: Let PX → PY |X → PY . For fixed PX ,
a) Iα(PX , PY |X) = Iα(X;Y ) is convex in PY |X for 0 <

α ≤ 1.
b) Iα(PX , PY |X) = Iα(X;Y ) is quasiconvex in PY |X for

0 < α <∞.
Proof: Consider 0 < λ < 1 and λ̄ = 1 − λ. We first

prove part a). I1(X;Y ) is known to be convex in PY |X [17].
Consider any conditional probability distributions PY0|X and
PY1|X and let

Q∗i = argmin
Q

Dα(PYi|X‖Q|PX) (60)

for i = 0 or 1. Due to 0 < α < 1 and Theorem 7,

Iα(PX , λPY1|X + λ̄PY0|X) (61)
= min

Q
Dα(λPY1|X + λ̄PY0|X ||Q|PX) (62)

≤Dα(λPY1|X + λ̄PY0|X ||λQ
∗
1 + λ̄Q∗0|PX) (63)

≤λDα(PY1|X ||Q
∗
1|PX) + λ̄Dα(PY0|X ||Q

∗
0|PX) (64)

=λIα(PX , PY1|X) + λ̄Iα(PX , PY0|X). (65)

Similarly, Part b) can be verifed by using Theorem 7.

In Theorems 8 and 10, we have made different assumptions
on the ranges of α. The following examples justify that those
assumptions are not superfluous.

Example 3: Let λ = 0.3, 1 − PX0
(0) = PX0

(1) = 1,
PX1

(0) = PX1
(1) = 0.5, and

PY |X =

[
1 0
0 1

]
. (66)

I0.1(PX , PY |X) is not concave in PX and I0.3(PX , PY |X) is
not convex in PX .

Example 4: Let λ = 0.3, PX(0) = PX(1) = 0.5,

PY0|X0
=

[
0.7 0.3
0.3 0.7

]
and PY1|X1

=

[
1 0
0 1

]
. (67)

I2(PX , PY |X) is not concave in PY |X and I3(PX , PY |X) is
not convex in PY |X .

Although Examples 3 and 4 show some unpleasant be-
haviour of Iα(PX , PY |X), the Arimoto-Blahut algorithm [18]
can still be applied to maximize Iα(PX , PY |X) for α > 0.
The following theorem, motivated by [14], illustrates that some
optimization problems about Iα(PX , PY |X) can be converted
into convex optimization problems.

Theorem 11: Consider α ∈ (0, 1) ∪ (1,∞). Let

fα(PX , PY |X) =
1

α− 1
ϕ 1
α

(Iα(PX , PY |X)) (68)

=
1

α− 1

∑
y∈Y

(∑
x∈X

PX(x)PαY |X=x(y)

) 1
α

,

(69)

where 1
α−1 presents in (68) such that 1

α−1ϕ 1
α

(z) is a mono-
tonic increasing function in z.

a) For a fixed PY |X ,

sup
PX

Iα(PX , PY |X) = ϕ−11
α

(
(α− 1) sup

PX

fα(PX , PY |X)

)
,

(70)

where fα(PX , PY |X) is concave in PX .
b) For a fixed PX ,

inf
PY |X

Iα(PX , PY |X) = ϕ−11
α

(
(α− 1) inf

PY |X
fα(PX , PY |X)

)
,

(71)

where fα(PX , PY |X) is convex in PY |X .

Proof: Since 1
α−1ϕ 1

α
(z) is a monotonic increasing func-

tion in z, (70) and (71) follow from the relation in (68). The
function fα(PX , PY |X) in (69) is concave in PX because
1

α−1z
1
α is concave in z. The function fα(PX , PY |X) in (69)

is convex in PY |X due to the Minkowski inequality for α > 1
and the reverse Minkowski inequality for α < 1.

Remark: Note that convexity/concavity were mistakenly
reversed in [14, Theorem 5].
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