
 
DEPARTMENT OF STATISTICS 
The Pennsylvania State University 
University Park, PA   16802   U.S.A. 

 
 
 
 
 
 
 
 
 

TECHNICAL REPORTS AND PREPRINTS 
 

Number 12-01:  April 2012 
 
 

Modeling of Dynamic Networks based on 
Egocentric Data with Durational Information 

 
 

Pavel N. Krivitsky 

 
 
 
 
 
 
 
 
 
 
 
 
Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA 



Abstract

Modeling of dynamic networks — networks that evolve over time — has manifold
applications in many fields. In epidemiology in particular, there is a need for
data-driven modeling of human sexual relationship networks for the purpose of
modeling and simulation of the spread of sexually transmitted disease. Dynamic
network data about such networks are extremely difficult to collect, however,
and much more readily available are egocentrically sampled data of a network at
a single time point, with some attendant information about the sexual history
of respondents.

Krivitsky and Handcock (2010) proposed a Separable Temporal ERGM
(STERGM) framework, which facilitates separable modeling of the tie dura-
tion distributions and the structural dynamics of tie formation. In this work,
we apply this modeling framework to this problem, by studying the long-run
properties of STERGM processes, developing methods for fitting STERGMs to
egocentrically sampled data, and extending the network size adjustment method
of Krivitsky, Handcock, and Morris (2011) to dynamic models.



1 Introduction

Modeling of dynamic networks — networks that evolve over time — has ap-
plications in many fields. In epidemiology in particular, there is a need for
data-driven modeling of human sexual relationship networks for the purpose
of modeling and simulation of the spread of sexually transmitted disease. As
Morris and Kretzschmar (1997) show, spread of such disease is affected not just
by the momentary number of partnerships, but by their timing. To that end,
the models used must have realistic temporal structure as well as cross-sectional
structure.

Exponential-family random graph (p∗) models (ERGMs) for social networks
are a natural way to represent dependencies in cross-sectional graphs and depen-
dencies between graphs over time, particularly in a discrete context, and Robins
and Pattison (2001) first described this approach. Hanneke, Fu, and Xing (2010)
also define and describe what they call a Temporal ERGM (TERGM), postulat-
ing an exponential family for the transition probability from a network at time
t to a network at time t+ 1.

Holland and Leinhardt (1977), Frank (1991), and others describe continuous-
time Markov models for evolution of social networks (Doreian and Stokman,
1997), and the most popular parametrization is the actor-oriented model de-
scribed by Snijders (2005), which can be viewed in terms of actors making
decisions to make and withdraw ties to other actors.

Arguing that “social processes and factors that result in ties being formed
are not the same as those that result in ties being dissolved”, Krivitsky and
Handcock (2010) introduced a separable formulation of discrete-time models for
network evolution, parametrized in terms of a process that controls formation
of new ties and a process that controls dissolution of extant ties, in which
both processes are (usually different) ERGMs — a Separable Temporal ERGM
(STERGM). Thus, the model separates the factors that affect incidence of ties
— the rate at which new ties are formed — from their duration — how long
they tend to last once they do.

Most of the attention in modeling of dynamic networks has focused on fitting
the model to a network series (Snijders, 2001; Hanneke et al., 2010; Krivitsky
and Handcock, 2010) or an enumeration of instantaneous events among actors
in the network (Butts, 2008). In the former case, the dyad census of the network
of interest is observed at multiple time points. In the latter case, each event
of interest and its exact time of occurrence is observed. However, observing
a social network of interest at multiple time points is often difficult or even
impossible.

In the case of sexual partnership networks, even observing a full census of all
ties among the actors of interest is rare. One example is the cross-sectional study
focusing on at-risk populations of Colorado Springs, Colorado — female sex
workers and their sexual partners, and injecting drug users and their partners
— by Woodhouse, Rothenberg, Potterat, Darrow, Muth, Klovdahl, Zimmer-
man, Rogers, Maldonado, Muth, and Reynolds (1994) and Klovdahl, Potterat,
Woodhouse, Muth, Muth, and Darrow (1994). With 595 individuals ultimately
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interviewed, a dyad census among those individuals was observed, but a total of
5162 individuals were named as contacts by the respondents (including the re-
spondents themselves), so the dyad census of the network is far from complete.
Helleringer and Kohler (2007) came close to observing a dyad census of sex-
ual partnerships within a geographic region: they took a census of residents of
Likoma Island, Malawi, interviewing those aged 18–35 about their sexual part-
nerships, including names and other personally identifying information about
their partners, and then matching the reported partners to their list of island
residents. This approach might not be practical in areas less isolated and with
greater population densities, and presents severe confidentiality issues, limiting
access to such data. Even these studies produced only a network at a single
time point, rendering the above-mentioned methods unsuitable.

More common are egocentrically-sampled network data — data comprising
information about respondents (egos) and their immediate partners (alters) —
are much easier to collect and may contain temporal information about the
network ties, in the form of each respondent’s past history and (right-censored)
duration of ongoing ties. Examples include the National Health and Social
Life Survey (NHSLS) (Laumann, Gagnon, Michael, and Michaels, 1994) and
Wave III of the National Longitudinal Study of Adolescent Health (Add Health)
(Harris, Florey, Tabor, Bearman, Jones, and Udry, 2003). (Notably, the former
dataset is publicly available for download with no restrictions.) Krivitsky et al.
(2011) described a technique for fitting cross-sectional ERGMs to egocentrically
sampled data, applying it to NHSLS.

In this work, we approach the problem of fitting dynamic models based on
limited, cross-sectional or egocentric, network data by modeling the observed
network cross-section as a long-run product of the dynamic network process
being modeled: its stationary distribution. Focusing on the STERGMs of Kriv-
itsky and Handcock (2010), we derive their long-run properties and propose a
generalized method of moments (GMME) estimation technique for fitting these
networks to available data.

The rest of this paper proceeds as follows. In Section 2, we review the
Separable Temporal ERGMs, and in Section 3, we study their long-run, sta-
tionary behavior of TERGMs in general and STERGMs in particular. Based
on that, in Section 4, we develop a best-effort approach to fit dynamic mod-
els to cross-sectional networks with durational information using Generalized
Method of Moments Estimation (GMME) applied to the stationary distribu-
tion of the dynamic network model. In Section 5, we show that the Conditional
MLE (CMLE) methods of Krivitsky and Handcock (2010) and others cannot
be fit to egocentrically observed network data, even if these data contain fairly
detailed temporal information, necessitating EGMME in that case as well. Fi-
nally, we show how the network size adjustment of Krivitsky et al. (2011) can
be applied to construct network-size-invariant dynamic models in Section 6, and
demonstrate our development on sexual partnership data in Section 7.
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2 Separable temporal ERGM

We now review the model proposed by Krivitsky and Handcock (2010). Using
their notation, let N be the set of n = |N | actors of interest, labeled 1, . . . , n,
and let Y ⊆ {{i, j} : (i, j) ∈ N × N ∧ i 6= j} be the set of dyads (potential
partnerships) among the actors. (Thus, the networks we model are undirected
and have no self-loops, but, unless otherwise noted, our results apply equally to
directed networks where Y ⊆ {(i, j) : (i, j) ∈ N×N∧i 6= j}.) Y may be a proper
subset: for example, if only heterosexual ties are being modeled. Then, the set
of possible networks Y is the power set of dyads, 2Y. For a network at time t−1,
yt−1, Krivitsky and Handcock (2010) define Y+(yt−1) = {y ∈ 2Y : y ⊇ yt−1}
be the set of networks that can be constructed by forming zero or more ties in
yt−1 and Y−(yt−1) = {y ∈ 2Y : y ⊆ yt−1} be the set of networks that can be
constructed by dissolving zero or more ties in yt−1.

Given yt−1, the network Y t at time t is modeled as a consequence of some
ties being formed according to a conditional ERGM

Prη+,g+(Y + = y+|Y t−1 = yt−1;θ+) =
exp

(
η+(θ+) · g+(y+,yt−1)

)
cη+,g+(θ+,yt−1)

, y+ ∈ Y+(yt−1)

specified by model parameters θ+, sufficient statistic g+, and, optionally, a
canonical mapping η+; and some dissolved according to a conditional ERGM

Prη−,g−(Y − = y−|Y t−1 = yt−1;θ−) =
exp

(
η−(θ−) · g−(y−,yt−1)

)
cη−,g−(θ−,yt−1)

, y− ∈ Y−(yt−1),

specified by (usually different) θ−, g−, and η−. Their normalizing constants
cη+,g+(θ+,yt−1) and cη−,g−(θ−,yt−1) sum their respective model kernels over
Y+(yt−1) and Y−(yt−1), respectively. Y t is then evaluated by applying the
changes in Y + and Y − to yt−1: Y t = yt−1∪(y+\yt−1)\(yt−1\y−) = y+\(yt−1\y−) =
y−∪ (y+\yt−1). The transition probability from yt−1 to Y t is itself an ERGM,
making STERGM a submodel of the Temporal ERGM (TERGM) of Hanneke
et al. (2010):

Prη,g(Y t = yt|Y t−1 = yt−1;θ) ∝ exp
(
η(θ) · g(yt,yt−1)

)
, yt,yt−1 ∈ Y, (1)

with η(θ) = (η+(θ+),η−(θ−)) and g(yt,yt−1) = (g+(yt−1∪yt,yt−1), g−(yt−1∩
yt,yt−1)). (Krivitsky and Handcock, 2010)

Krivitsky and Handcock (2010) also noted that this formulation allowed
cross-sectional statistics developed for ERGMs to be “converted” to a dynamic
form by evaluating them on y+ (so g+(y+,yt−1) ≡ g+(y+)) or y− (so g+(y−,yt−1) ≡
g+(y−)), which allowed them to be interpreted in terms of tie formation and
dissolution. They called such statistics “implicitly dynamic”.

For the sake of brevity, for the rest of this paper, we will assume that η(θ) ≡
θ, and omit η.
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3 Long-run behavior of STERGMs

The focus of Krivitsky and Handcock (2010) was on modeling short series of
networks with an unambiguous beginning and end. Consider, instead, a ran-
dom network series Y 0, Y 1, Y 2, . . . generated by the above-described transition
process. For any formation model, there is a nonzero probability of adding
any given set of allowed ties to the network within one time step, and for any
dissolution/preservation model, there exists a nonzero probability of dissolving
any given set of extant ties. The two operate independently within each time
step. Therefore, there is a nonzero probability of transitioning from any given
network to any given network, so the transition process is ergodic, the sequence
Y 0, Y 1, . . . converging to an equilibrium distribution. (Lefebvre, 2007, Thm.
3.2.1, for example) Higher-order Markov variants also have these properties.

As the STERGM is a submodel of the TERGM, and a TERGM has the
same equilibrium properties but is more concise, we use its parametrization for
the purposes of the following discussion.

3.1 General case

As of this writing, we are not aware of any way to express in algebraic form, or
even in terms of a non-recursive integral, the pmf of the equilibrium distribution
Prg(Y t = yt;θ), without placing constraints on the model such as the temporal
dyadic independence discussed in Section 3.2.

At best, it may be defined recursively, by definition of a discrete stationary
distribution (Lefebvre, 2007, eq. (3.55), for example):

Prg(Y t = yt;θ) =
∑

yt−1∈Y

Prg(Y t = yt ∧ Y t−1 = yt−1;θ)

= Eg

(
exp (θ · g(yt,Y ))

cg(θ,Y )
;θ

)
, (2)

with expectation taken over the stationary distribution itself.

3.2 Dyadic independence

3.2.1 Types of dyadic independence

As with cross-sectional ERGM, the tractable class of TERGMs is those models
with dyadic independence. In a cross-sectional ERGM context, dyadic indepen-
dence means simply that the states of all dyads are conditionally independent
given covariates (Hunter, Handcock, Butts, Goodreau, and Morris, 2008b):

Prg(Y = y;θ) =
∏

(i,j)∈Y

Prg(Y i,j = yi,j ;θ)

=
∏

(i,j)∈Y

exp
(
(θ ·∆i,jg(y))yi,j

)
1 + exp (θ ·∆i,jg(y))

,
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with ∆i,jg(y) = g(y ∪ {(i, j)})− g(y\{(i, j)}), a change statistic vector of the
model for dyad (i, j), which, by virtue of being a change statistic for the dyad
(i, j) does not depend on yi,j and by virtue of dyadic independence does not
depend on any other dyads of y, thus not depending on the state of y at all.
(Krivitsky et al. (2011) and others further discuss change statistics and their
uses.)

A dynamic model adds another dimension to the notion of dyadic indepen-
dence. Hanneke et al. (2010) focused on models that have dyadic independence
only given the entirety of the network at the previous time step. In other words,
a dyad Y t

i,j is conditionally independent of a different dyad Y t
i′,j′ , (i, j) 6= (i, j),

but it may depend on its state in the previous time step (i.e., Y t−1
i′,j′). Thus,

while there is dyadic independence within a time step, there is dyadic depen-
dence over time. This dependence structure is somewhat akin to the structure
of the continuous-time models of Snijders (2001): what happens to each dyad
at any given point in time is independent of what happens to other dyads at the
time, but once some dyad does change, and the “clock” advances, it may affect
the evolution of other dyads. Models with this structure are submodels of the
STERGM, since they assume that all dyad changes and non-changes within a
time step are independent conditional on Y t−1, while STERGM only assumes
that changes and non-changes of ties present in Y t−1 are independent of changes
and non-changes of non-ties of Y t−1, conditional on Y t−1, within a time-step:
there may be dependence within the set of those dyads which had ties in Y t−1

and dependence within the set of those dyads which did not have ties in Y t−1.

However, this within-time-step dyadic independence restriction, as of this
writing, does not appear to be sufficient to derive a closed form for the station-
ary distribution. (We note that if it were, a more general result for the station-
ary distribution of general continuous-time Markov network models would have
likely been available as well.)

A further constraint, temporal dyadic independence, that Y t
i,j , may not de-

pend on Y t−1
i′,j′ either, or

Prg(Y t = yt|Y t−1 = yt−1;θ) =
∏

(i,j)∈Y

Prg(Y t
i,j = yt

i,j |Y
t−1
i,j = yt−1

i,j ;θ)

=
∏

(i,j)∈Y

exp
((
θ ·∆i,jg(yt,yt−1)

)
yi,j

)
1 + exp (θ ·∆i,jg(yt,yt−1))

,

can be imposed. Then, ∆i,jg(yt,yt−1) = ∆i,jg(yt−1
i,j ) — the change statistic

only depends on the state of the same dyad during the previous time step. For
brevity, let g0i,j = ∆i,jg(yt,yt−1)|yt−1

i,j =0 and g1i,j = ∆i,jg(yt,yt−1)|yt−1
i,j =1.

6



3.2.2 Stationary distribution

Under this constraint, each dyad evolves independently, forming a 2-state time-
homogeneous Markov chain, which has a stationary distribution with

Prg(Y i,j = 1;θ) =
Prg(Y t

i,j = 1|Y t−1
i,j = 0;θ)

Prg(Y t
i,j = 1|Y t−1

i,j = 0;θ) + Prg(Y t
i,j = 0|Y t−1

i,j = 1;θ)
,

giving

Oddsg(Y i,j = 1;θ) =
1 + exp

(
θ · g1i,j

)
1 + exp

(
−θ · g0i,j

) (3)

and

Prg(Y i,j = yi,j ;θ) =
∏

(i,j)∈Y

(
1 +

1 + exp
(
θ · g1i,j

)
1 + exp

(
−θ · g0i,j

))−1 ∏
(i,j)∈Y

(
1 + exp

(
θ · g1i,j

)
1 + exp

(
−θ · g0i,j

))yi,j

.

3.2.3 Example: Formation edge count and dissolution edge count

Consider a STERGM with an edge count statistic for formation and edge
count statistic for dissolution/preservation. That is, g+(y+,yt−1) = (|y+|) and
g−(y−,yt−1) = (|y−|), equivalent to a TERGM with g(yt,yt−1) =

(∣∣yt ∪ yt−1
∣∣ , ∣∣yt ∩ yt−1

∣∣),
with transition probability

Prg(Y t = yt|Y t−1 = yt−1;θ) =
exp

(
θ+
∣∣yt ∪ yt−1

∣∣+ θ−
∣∣yt ∩ yt−1

∣∣)
cg(θ,yt−1)

and change statistic g0i,j = (+1, 0) and g1i,j = (0,+1). Substituting into (3)
gives an equilibrium network density

Prg(Y t = 1;θ) =
1 + exp

(
θ−
)

2 + exp
(
−θ+

)
+ exp

(
θ−
) .

In a sense, the model balances itself in the long run: having greater-than-
equilibrium number of ties gives more room for dissolution to work, while having
fewer-than-equilibrium number give it less room and gives more room to forma-
tion.

The probability of a given tie being preserved during each time step is sim-
ply logit-1(θ−). This means that the duration distribution of a tie is simply
Geometric(logit-1(−θ−)) (with support being N).

Notably, this is not necessarily the same as the distribution of the time
elapsed since the tie was formed as of the time of observation (the “age” of the
tie), given that the tie was observed. On one hand, the probability that a tie is
observed is proportional to its ultimate duration, but on the other hand, every
extant tie in an observed network has its duration right-censored. Let X be the
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duration a tie in the network process given that it was formed. Then, Xobs, the
duration of a tie given that it was observed has the pmf

fXobs
(x;θ−) =

xfX(x;θ−)∑∞
x′=1 x

′fX(x′;θ−)
=
xfX(x;θ−)

E(X;θ−)

Assuming no dependence between time of observation and presence of ties, an
observed tie’s duration will be right-censored at a uniform time point. The
observed age (right-censoring point) Xage |obs ∼ Uniform({1, .., Xobs}), giving it
the pmf

fXage |obs
(x;θ−) =

∞∑
k=x

fXobs
(k;θ−)fUniform({1,..,k})(x)

=

∞∑
k=x

kfX(k;θ−)

E(X;θ−)

1

k

=
1− FX(x− 1;θ−)

E(X;θ−)
.

For the simple case above, this distribution can be derived in closed form: if
X ∼ Geometric(p),

fXage |obs
(x) =

(1− p)x−1

1/p
= (1− p)x−1p = fGeometric(p)(x) (4)

Thus, somewhat surprisingly, the selection effect and the right-censoring cancel
exactly for geometrically-distributed durations.

4 Estimation based on cross-sectional data with
duration information

Momentary or cross-sectional network data observed, whether as a dyad census
or egocentrically, are a product of some social process occurring over time. Sim-
ilarly, the stationary distribution of a stochastic process for network evolution,
such as a TERGM or a continuous-time Markov process, is a product of this
evolution process. Thus, to the extent that the model for network evolution
is an accurate model of the social process, the observed network data may be
viewed as a draw from the equilibrium distribution under the model.

In this section, we discuss avenues of estimation and inference on STERGMs
and TERGMs in general under the assumption that either the social network
evolution process (or, at least, its endogenous components) is, or has been,
fairly homogeneous (in that the network-to-network transition probabilities do
not change) over a long time or that inhomogeneity in this process has been mod-
eled, and thus the social process has converged to a sort of an equilibrium. This
is a very strong assumption, which conditional approaches of Snijders (2001),
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Hanneke et al. (2010), and Krivitsky and Handcock (2010) do not require. How-
ever, these conditional approaches require observing the network at at least two
time points. Furthermore, as we show in Section 5.1.2, even if an egocentric
sample is taken at several time points, conditional methods cannot make use of
such data, without making their own, fairly strong assumptions.

4.1 Likelihood-based estimation

Unconditional, or equilibrium, MLE for θ based on networks observed at T time
points,

θ̂ = arg max
θ

Prg(Y t = yt, . . . ,Y t+T−1 = yt+T−1;θ)

= arg max
θ

Prg(Y t = yt;θ)× (5a)

Prg(Y t+1 = yt+1, . . . ,Y t+T−1 = yt+T−1|Y t = yt;θ), (5b)

while it depends on the equilibrium assumption, is likely to make fuller use of
the information in the data than CMLE: CMLE explicitly ignores information,
embodied in (5a), about the network evolution process that had led up to Y t,
while equilibrium MLE would maximize the product of both (5b) and (5a).

A joint likelihood for an observed network series can be evaluated by multi-
plying the equilibrium probability of the first observed network by the transition
probabilities of the subsequent networks, which can be evaluated per Krivitsky
and Handcock (2010). The main difficulty with finding the equilibrium MLE is,
thus, evaluating (5a) (or a ratio between them for two different values of θ).

Derived from the definition of a stationary distribution, (2) suggests that it
is possible to evaluate the likelihood by simulation: the probability of observing
a network yt is the expectation over the possible networks Y t−1 drawn from the
stationary distribution that could have transitioned to yt, of the probability of
transitioning from that Y t−1 to yt. In this case, cg(θ,Y t−1) depends on Y t−1

and is inside the expectation, so it is not constant. It is fairly straightforward
to simulate from the stationary distribution (it being the equilibrium distribu-
tion), and evaluation of the transition probability, though imprecise, may be
possible, thus allowing the likelihood to be approximated. This estimation is
likely to further suffer from the problem that for almost any realistic dynamic
network process, the probability of transitioning from vast majority of random
equilibrium draws Y to the observed yt will be very small. This is because a
typical network is expected to change slowly over time, so only Y which are
similar to yt significantly contribute to the likelihood. This is not very different
from the problem of evaluating Bayes factors using only direct simulation.

Furthermore, if only a single network is observed, even if the equilibrium
likelihood could be could be evaluated, it is unlikely to be sufficient for estimat-
ing a dynamic model. For example, in the model in Section 3.2.3, |y| is sufficient
for both θ− and θ+: two parameters with only one sufficient statistic, leading
to nonidentifiability: one cannot infer both tie incidence and tie duration from
tie prevalence alone (Krivitsky and Handcock, 2010). Thus, to fit these models,
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some form of temporal information is required. This temporal information may
be a part of the dataset, in the form of “ages” of extant ties, or it may come from
a different source. For data of interest — networks of sexual partnerships —
one survey may contain information about momentary network behavior (e.g.,
number of ongoing sexual partnerships of respondent has at the time of the sur-
vey) while a different survey with respondents drawn from similar population
may contain information about partnership duration distribution.

Making use of such information using maximum likelihood estimation re-
quires integrating over possible network series drawn from the equilibrium dis-
tribution to derive the equilibrium distribution at θ of available statistics. This
appears to be infeasible at this time. However, simulating from a network series
is straightforward, so we turn to generalized method of moments estimation
instead.

4.2 Generalized Method of Moments Estimation

A Generalized Method of Moments Estimator (GMME) seeks that parame-
ter configuration θ̃ such that the expected value of the statistic of interest
matches its observed value. That is, for some network process defined by g
and parametrized by θ, let t(yt,yt−1, . . . ) (targeted statistic) be a vector func-
tion of a network or network series, whose values have been observed or inferred
from available data, and let

µ(θ) ≡ Eg

(
t(Y t+1, . . . ,Y t+T );θ

)
, (6)

its expected value under the network process of interest, and

V (θ) ≡ Varg

(
t(Y t+1, . . . ,Y t+T );θ

)
(7)

its variance-covariance matrix. Then, for some observed statistic of interest
t(y1, . . . ,yT ) an optimal GMME minimizes an objective function

J(θ) ≡
(
µ(θ)− t(y1, . . . ,yT )

)T
V (θ)−1

(
µ(θ)− t(y1, . . . ,yT )

)
, (8)

the squared Mahalanobis distance between the observed value of t and its ex-
pected value. (Hansen, Heaton, and Yaron, 1996) (If the dimension of θ is
the same as the dimension of t, often, at GMME θ̃, J(θ̃) = 0.) This es-
timator has asymptotic variance Varg(θ̃) = (G(θ̃)TV (θ̃)−1G(θ̃))−1, where
G(θ) = ∂µ(θ)/∂θ, the gradient matrix of the mapping from the model pa-
rameters to the expected values of target statistics, although asymptotic results
applied to network models fit to a single network are tenuous (Hunter and Hand-
cock, 2006). In linear exponential families (including linear ERGMs), and with
g(y) ≡ t(y), MLE and GMME are the same (Casella and Berger, 2002, p. 367–
368), but we may want to separate the two, because the sufficient statistic may
not have been observed as is the case in the previous sections, while GMME
can make use of any statistics available.
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To distinguish it from the targeted statistic, we refer to g as the generative
statistic. Whereas the elements of the generative statistic are chosen based on
beliefs about the nature of the social process being modeled, targeted statistic’s
elements are determined by what data about the network or network series of
interest are available and what statistics are likely to be informative about the
generative model’s free parameters. We illustrate this distinction in a cross-
sectional context.

4.2.1 Example: Edge count generative statistic with an isolate count
target

Suppose that an undirected network of n actors is modeled as an Erdős-Rényi
graph, that is,

Prg(Y = y;θ) =
exp (θ · |y|)

cg(θ)
, cg(θ) = (1 + exp (θ))|Y|,

but due to the nature of the observation process, only the t(y) =
∑

i∈N 1|yi|=0,
the number of isolates in the network, has been observed, while the sufficient
statistic is g(y) = |y|.

The MLE for θ given data available,

θ̂ = arg max
θ

Prg(t(Y ) = t(y);θ)

= arg max
θ

∑
y′∈Y

1t(y)=
∑

i∈N 1| y′
i
|=0

exp (θ · |y|)
cg(θ)

.

This probability is not straightforward to evaluate on an undirected network.
On the other hand, it is straightforward to evaluate

µ(θ) = Eg

(∑
i∈N

1|Y i|=0;θ

)
=
∑
i∈N

Prg(|Y i| = 0;θ)

= n
(
1− logit-1(θ)

)n−1
,

so GMME

θ̃ = θ : Eg(t(Y );θ) = t(y)

= logit

(
1−

(
t(y)

n

) 1
n−1

)
.

From the point of view of GMME, any correspondence between the generative
and the targeted statistic is entirely arbitrary.

To emphasize our focus on using target statistics evaluated on the equilib-
rium distribution induced by a dynamic model, we refer to such an estimate as
the Equilibrium Generalized Method of Moments Estimator (EGMME).
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4.3 Selecting target statistics

In CMLE, the sufficient statistic for the model parameters is simply the g(yt,yt−1),
the generative statistic. When only a single network is observed, even with du-
rational information, the generative statistic may not be possible to evaluate on
the data, so the only hard requirement is that t must contain information about
g. In this section, we briefly address the question of how t might be selected.
(Snijders, Steglich, and Schweinberger (2007) dealt with a similar problem, al-
beit conditioning on the initial network.) Notably, in GMME, the dimension
of t may exceed the dimension of g, which means that if there are multiple
candidate targets, it may be practical to simply use them all.

4.3.1 Target statistics for structure

If a generative statistic g+k or g−k is implicitly dynamic (g+k (y+,yt−1) ≡ g+k (y+)
and similarly for g−k (y−,yt−1)) it is likely, though not certain, that increasing
their coefficient will increase Eg(g+k (Y t)) or Eg(g−k (Y t)), respectively. For ex-
ample, if g+k (y+) = |y+|, the edge count, increasing the coefficient on g+k (y+)
will increase the expected number of edges at the equilibrium. This suggests,
though does not prove, that when implicitly dynamic statistics are used, their
cross-sectional progenitors may make near-optimal targets.

4.3.2 Target statistics for duration

A network cross-section alone is not sufficient to estimate a model with free
parameters in both formation and dissolution. One form of duration information
comprises duration of past ties (often within some fixed and known time window)
and “ages” of ongoing ties. For example, in the NHSLS, the respondents were
asked to enumerate their sexual partnerships in the 12 months preceding the
interview (Laumann et al., 1994), and, for each partnership, were asked how
many months before the interview it had started and how many months before
the interview it had ended.

From the point of view of survival analysis, this makes the data right-
censored and left-truncated (Klein and Moeschberger, 2003, pp. 72–78). Es-
timates of hazard structure from survival analysis could then be used to specify
the dissolution model, fitting formation model conditional on that.

A more direct EGMME-based approach is to use duration-sensitive statistics,
such as the average age of an extant tie, as targets. In some cases, with a
simple dissolution model (and an arbitrarily complex formation model), it may
be possible to estimate dissolution in closed form (e.g., (4)). Otherwise, to
the extent that the assumption that the observed process is an equilibrium
draw is valid, no special adjustment for censoring or truncation is needed: the
duration of a simulated edge existing at a given time will be censored (since
it still exists) and left-truncated (since if it had dissolved earlier, it would not
have been observed) just like the data, so matching the expected value for this
quantity to the observed will arrive at the corrected estimate.
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5 Estimation based on egocentrically sampled
data

Per the discussion in the Introduction, data on sexual partnership networks are
rarely available in the form of a dyad census, much less a series of network ob-
servations over time or exact timings of tie formation and dissolution. It is much
more typical to observe an egocentric sample from the population of interest.
Per Krivitsky et al. (2011), let E be the set of respondents in an egocentric
survey (“egos”), and, for each ego e ∈ E, let Ae be the set of nominations (“al-
ters”) of e, and let A =

⋃
e∈E Ae. While each e ∈ E represents a distinct actor

in the network of interest, a ∈ A represent nominations, not actors: multiple
respondents may (unknowingly) nominate the same actor or may nominate each
other. Each actor (ego and alter) is associated with a set of attributes, denoted
xe and xa.

Krivitsky et al. (2011) fit cross-sectional ERGMs to egocentrically sampled
data by constructing a model invariant to network size, in that for two networks
of different size but similar features of interest (mean degree, degree distribu-
tion, and selective mixing) the model produce (asymptotically) similar MLEs,
and, conversely, a given parameter configuration would induce distributions of
networks with similar features of interest across a variety of network sizes and
compositions. They then considered a hypothetical network made up of the re-
spondents in the survey and having similar structure as the population network,
and computed the statistic of interest that that network would have to have in
order to have produced the observed egocentric sample as an egocentric census;
and this statistic was used to fit an ERGM. More concretely, in an undirected
network, where each tie (i, j) has the potential to be reported twice — once by i
and once by j, a dyad-level statistic of the form gx(y) =

∑
(i,j)∈Y yi,jf(xi,xj),

for some function f of the attributes x of i and j, could be recovered from an ego-
centric census as 1

2

∑
e∈E

∑
a∈Ae

f(xe,xa), and for an actor-level statistic of the
form gx(y) =

∑
i∈N f(xi,xj : j ∈ yi), for f a function of the attributes of i and

attributes of i’s neighbors, including their number, as
∑

e∈E f(xe,xa : a ∈ Ae).

Here, we extend this approach to fit dynamic ERGMs to egocentrically sam-
pled data. Let At

e be the egocentric observation of alters network at time t (the
list of respondents E assumed to be unchanging), and similarly to the earlier
sections, define the age of a nomination, age(a) to be amount of time elapsed
since the relationship (ongoing at time t) began. In egocentric surveys of sexual
history, relationships ongoing at the time t of the survey (At) are most reliably
observed, but many surveys such as the National Health and Social Life Survey
(NHSLS) (Laumann et al., 1994) also ask the respondents to enumerate all rela-
tionships (and their durations) that had ended in the prior T time units. Thus,
At−T , . . . , At−1 may also observed and, furthermore it is possible to distinguish
between alters incident on the same ego at different time points.

In the following, we derive what is needed to fit a Conditional MLE (CMLE)
from egocentrically sampled data, and show that such data do not suffice except
for very simple models.
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5.1 Conditional MLE

5.1.1 Conditional MLE statistics

Generally, a single network observation, even if it contains the age of each
tie, and, in particular, and egocentric observation (E,At,xt) at a single time
point, is not sufficient to evaluate the CMLE for the TERGM (separable or
not) for a transition. To see why, consider a single dyad across two time points:
(yt−1

i,j ,y
t
i,j). It has four possible histories: (0, 0) (no tie), (0, 1) (tie formed),

(1, 0) (tie dissolved), and (1, 1) (tie preserved). If only yt
i,j is observed, it

is possible to identify histories (0, 1) and (1, 1) from (0, 0) and (1, 0), and if
age(yt

i,j) is also observed, it is further possible to identify (0, 1) from (1, 1),
with age(yt

i,j) ≤ 1 indicating the former and age(yt
i,j) > 1 indicating the latter,

but it is not possible to identify (0, 0) from (1, 0) from yt
i,j and age(yt

i,j) alone.
In the context of TERGM, terms like stability (the number of dyads whose state
has changed) cannot be evaluated; and in STERGMs in particular, no implicitly
dynamic dissolution terms can be (though formation terms can).

If egocentric observations at multiple time points are available, the sufficient
statistic for many transition models can be evaluated. For example, a statistic
of the form

gx(yt,yt−1) =∑
(i,j)∈yt−1

i,j ∪yt
i,j

(
(1− yt−1

i,j )yt
i,jf

+(xi,xj) + yt−1
i,j (1− yt

i,j)f
−(xi,xj) + yt−1

i,j y
t
i,jf(xi,xj)

)
:

effectively a sum over those dyads that can be observed of some function of the
incident actors’ attributes that depends on whether a tie was added, removed,
or persisted, can be recovered as

1

2

∑
e∈E

 ∑
a∈At

e\A
t−1
e

f+(xe,xa) +
∑

a∈At−1
e \At

e

f−(xe,xa) +
∑

a∈At−1
e ∩At

e

f(xe,xa)


in an undirected network (or a directed network with observed in-ties). This
statistic has a variety of dyad-independent implicitly dynamic statistics as spe-
cial cases.

Similarly, actor-level statistics of the form

gk(yt,yt−1) =
∑
i∈N

f(xi,xj : j ∈ yt−1
i ,xj : j ∈ yt

i)

where f is local per Krivitsky et al. (2011), in that it only depends on ex-
ogenous attributes of actor i and actors j ∈ yt

i ∪ y
t−1
i could be recovered as∑

e∈E f(e,xa : a ∈ At−1
e ,xa : a ∈ At

i). These include statistics such as the
number of monogamous ties, including their Inherited variants g(yt−1,yt) =∑

i∈N 1|yt−1∪yt|=1 and g(yt−1,yt) =
∑

i∈N 1|yt−1∩yt|=1.
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5.1.2 The problem of conditioning

Section 5.1.1 described how the sufficient statistic of the transition between two
networks can be computed based on egocentrically sampled data, but they are
not, in general, sufficient for evaluation of the likelihood, since the likelihood
for the transition,

L(θ) =
exp

(
θ · g(yt,yt−1)

)∑
y∈Y exp (θ · g(y′,yt−1))

,

has a normalizing constant that can depend on the prior network yt−1, even if
g(yt,yt−1) can be inferred from the data.

For simple models, it may be possible to evaluate it anyway. For example,
for a STERGM described in Section 3.2.3,

cg(θ) =
∑
y∈Y

exp
(
θ+
∣∣yt−1 ∪ y

∣∣+ θ−
∣∣yt−1 ∩ y

∣∣)
=
(
1 + exp

(
θ+
))|Y\yt−1

i,j | (exp
(
θ+
)

+ exp
(
θ+ + θ−

))|yt−1
i,j | ,

and
∣∣yt−1

∣∣ can be evaluated given (E,At−1
e ).

However, it may not be possible to infer normalizing constants in this way
for more complex models. Consider a model with transition statistic

g(y,y′) =

(
|y∆y′| ,

∑
i∈N

1|yi|=1

)
:

Hamming distance (i.e. number of changed dyads) between y and y′ and the
number of actors in y with degree 1. Suppose that the relevant statistic inferred
from egocentric data is

g(yt−1) =

(∣∣yt−1∣∣ ,∑
i∈N

1|yt−1
i |=1

)
= (4, 4),

the number of ties in yt−1 and number of actors in yt−1 with degree 1. But,
while either network in Figure 1 has g0(yt−1) = (4, 4), the normalizing constant
conditional on network in Figure 1(b) would contain a summand exp (θ · (1, 6)),
since toggling 1 tie in that network can result in a network with 6 actors with
degree 1, while no such 1-tie change exists for the network in Figure 1(a), and
exp (θ · (1, 6)) would not be a summand in the normalizing constant conditional
on it. Thus, the normalizing constants would be different.

It may be possible to circumvent this problem. If an ERGM is fit to yt−1’s
statistic, as Hanneke et al. (2010) suggest in a slightly different context, it may
be possible to approximate the likelihood by integrating over Y t−1 drawn from
the induced ERGM distribution. This may be difficult for reasons similar to
those discussed in Section 4.1.
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(a) (b)

Figure 1: Both networks have 4 ties and 4 actors with degree 1. However, in
network (b), it is possible to toggle one dyad ((i, j) = (1, 6)) to create a network
with 6 actors with degree 1, something not possible in network (a).

Another disadvantage of CMLE in this context is that it might not make
use of all available duration information. The NHSLS survey, for instance, only
asked about relationships that ended in the 12 months prior to the survey (and
asked for relationship length in months). Even if the problem of conditioning
could be circumvented, this means that, at least using the inference of Sec-
tion 5.1.1, the transition statistic could only be recovered for twelve distinct
time points. Any relationships that lasted longer than that — which is most
of them — would contribute no additional information. For this reason, we
advocate EGMME for these problems.

6 Adjusting the STERGM network evolution pro-
cess for network size

So far, we have treated the network size and composition as fixed, and focused
only on the evolution of network ties. In practice, many dynamic network
applications involve actors entering and leaving the network and individual actor
attributes changing over time. In this section, we incorporate the adjustments
proposed by Krivitsky et al. (2011) into the dynamic models, and explore the
properties of the resulting process.

The offset described by Krivitsky et al. (2011) operates as a coefficient on
an edge count statistic. As Krivitsky and Handcock (2010) discuss, the edge
count statistic in a TERGM transition probability has a dual effect. In partic-
ular, an increasingly negative coefficient of the offset term of a growing network
would both reduce the incidence and shorten duration. Whether or not this is
a desirable property of the model depends on the network process of interest,
but in particular, in human sexual relationship networks, there is little reason
to believe that duration would change significantly as the population grows or
shrinks. Thus, the offset should only affect the incidence of ties. In a separable
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parametrization, this is easily achieved by only be adding the offset term to the
formation phase of the process. In other words,

Prg+(Y + = y+|Y t−1 = yt−1;θ+) =

exp
(
log
(

1
n(t−1)

)
|y+|+ θ+ · g+(y+,yt−1)

)
1y+⊇yt−1

cg+(θ+,yt−1)

for n(t−1) being the number of actors in the network at time t−1; and Prg−(Y − =

y−|Y t−1 = yt−1;θ−) is unchanged.
In particular consider adding a network size offset to the example Sec-

tion 3.2.3, with edge count formation and edge count dissolution. Adding the
offset to formation yields the transition probability:

Prg(Y t = yt|Y t−1 = yt−1;θ) =

exp
((
θ+ − log(n)

) ∣∣yt ∪ yt−1
∣∣+ θ−

∣∣yt ∩ yt−1
∣∣)

cg(θ,yt−1)
,

which, substituting into (3), and converting odds to probability gives mean
degree, for an undirected network, of

(n− 1) Prg(Y i,j = 1;θ) =
(n− 1)(1 + exp

(
θ−
)
)

1 + n exp
(
−θ+

)
+ 1 + exp

(
θ−
) ,

which asymptotically converges to

lim
n→∞

(n− 1) Prg(Y i,j = 1;θ) = lim
n→∞

(n− 1)(1 + exp
(
θ−
)
)

1 + n exp
(
−θ+

)
+ 1 + exp

(
θ−
)

= exp
(
θ+
)

+ exp
(
θ+ + θ−

)
.

Thus, the offset term can be used to stabilize and control a dynamic model’s
equilibrium mean degree as well.

7 Application to dynamic population simulation
based on the National Health and Social Life
Survey data

We demonstrate these ideas by taking the National Health and Social Life Sur-
vey (NHSLS) data and model fit by Krivitsky et al. (2011), fitting a dynamic
version of the model — easily converted from the cross-sectional using implic-
itly dynamic statistics, and then simulating an evolving and growing population
based on the estimated parameters. The EGMME approach is particularly well-
suited so problems where the ultimate goal is simulation: in a successful fit, for
which J(θ̃) = 0 will, by construction, produce a simulation whose expected
values of statistics of interest will match those observed exactly.

17



7.1 Model for network evolution

Our exploratory survival analysis showed that a geometric distribution was an
adequate approximation to the duration distribution of a relationship, and that
there was little mixing structure in the dissolution hazard. Therefore, we pos-
tulate an approximately geometric relationship duration distribution, and set
g−(y−,yt−1) = |y−| .

This means that we attribute all the structure in the network to differences
in incidence of relations. Per Krivitsky and Handcock (2010), this makes some
intuitive sense: once a relationship is formed, its persistence is likely affected
by fewer factors than its formation. Thus, we “convert” the NHSLS model
of Krivitsky et al. (2011) to a dynamic one by only using Inherited statistics
and setting the formation statistic g+(y+) to the same statistic as that in that
article (though evaluated on y+ rather than on y). The terms used are listed
in Table 1 and described in more detail by Krivitsky et al. (2011). We also add
a network size offset of Section 6.

7.2 Inference

We now describe the procedure for fitting this model to the available data.

7.2.1 Target statistic

Because our goal is simulation, and for simplicity, we set

t(y) =

g+(y),
1

|y|
∑

(i,j)∈y

age(yi,j)

 ,

the formation generative statistic evaluated on the cross-sectional network (sim-
ulated or inferred) and the average age of an extant tie in this network. This
also serves to simplify fitting of this model, because one can fairly safely assume
that G(θ) has a positive diagonal: ∂µ(θk)/∂θk > 0.

For this demonstration, we resample the egos in the network to resample
size 1000.

7.2.2 Time step size

How much time is represented by a single discrete time step is a trade-off be-
tween granularity and computational cost: shorter time steps have a higher
cost to simulate, while longer time steps make the separability assumption that
formation and dissolution are conditionally independent within a time step less
plausible. (Krivitsky and Handcock, 2010) Driven in part by the format of the
data, where all duration measurements are integral counts of months, we set

1 time step = 1 month =
1

12
year.
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7.2.3 Time-varying exogenous covariates

A network series simulated under θ of interest converges to equilibrium, and
statistics of that chain can be used as input to the search for EGMME. How-
ever, the model used includes effects of actors’ ages and age differences on rela-
tionship incidence, and actors age over time. When fitting model parameters,
we ignore this: even as the network evolution process runs forward, all actors’
ages stay the same. Nor are actors added or removed from the network. This is
likely to produce biased estimates, such that the simulation stage, which does
incorporate these vital dynamics, will not reproduce the statistics of interest
exactly, particularly the age-related statistics.

7.3 Simulation

We simulate the evolution of a network of sexual partnerships based on the
network process described above, over 500 simulation years (6,000 1-month time
steps), incorporating a model with vital dynamics: aging (with actors aging out
of the population at 60, maintaining a closed network of 18–59), actors randomly
removed from the population, and actors randomly “reproducing”, to test the
network size adjustment.

7.3.1 Population process model

We use a starting network constructed out of the resampled “egos”, with sim-
ulated annealing used to find a particular configuration of ties that has cross-
sectional target statistic similar to that inferred. In the network (tie) evolution
model, we assume that tie formation and dissolution do not affect each other
within a time step, and our incorporation of vital dynamics is done similarly:
within each time step the network evolution process takes place, then popula-
tion evolution process (not affected by network evolution process) takes place.
Thus, within a time step, the vital dynamics changes do not affect the network
process, and the network process does not affect the vital dynamics changes.

The following procedure is iterated every time step (month):

1. The network evolution model, adjusted for network size, is run one time
step forward, forming and dissolving network ties.

2. For each actor, with probability 0.0023, an identical actor, but aged 18
and with sex selected at random is added to the population.

3. For each actor, with probability 0.00042, the actor is removed from the
population.

4. Actors’ ages are incremented by 1 month.
5. For each actor, if the actor’s age equals or exceeds 60, the actor is also

removed from the population.
6. All ties incident on removed actors are dissolved.
7. The state of the population is recorded.

The specific values for “birth rate”, “death rate” were selected to give a modest
but substantial population growth over the length of the simulation.
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7.4 Implementation

Some of the difficulties associated with fitting these models and the algorithm
we use are discussed in Appendix A. As a simple shortcut, we use (4) to estimate

θ̃ = − logit


 1

|y|
∑

(i,j)∈y

age(yi,j)

−1
 .

Software package ergm (Hunter et al., 2008b; Handcock, Hunter, Butts,
Goodreau, Krivitsky, and Morris, 2012) in the statnet (Handcock, Hunter,
Butts, Goodreau, and Morris, 2008) suite of libraries for social network analysis
in R (R Development Core Team, 2009) was used to fit and simulate from these
models, with the package networkDynamic (Leslie-Cook, Almquist, Bender-
deMoll, Morris, and Butts, 2012) used to store and inspect the simulation re-
sults.

7.5 Results

7.5.1 Model fit

The inferred equilibrium target statistic and EGMME parameters are given in
Table 1. To test the fit, we simulated a network series from the model over a
static population: same values for θ+ and θ− were used and the same initial
network, but no actors were added or removed, and actor ages were held fixed.
The simulated values (shown in Figure 2) are essentially the same as those
observed, suggesting that the correct fit was found. For interpretability, we
normalize network statistics we report as follows:

1. if a statistic pertains directly to a particular subset of actors, (e.g. a
particular sex or race category), it is normalized by the total number of
actors in that subset at the time;

2. otherwise, the statistic is normalized by the overall network size at the
time.

Thus, for example, the statistic reported for the actor activity by sex for males is
the number of ties incident on male actors (with male-male ties counting twice)
divided by the number of male actors: that is, the mean degree of a male in
the network. Similarly, the statistic for the monogamy for females (number of
female actors with degree 1) is reported as the proportion of the total number
of female actors in the network. On the other hand, age effects do not pertain
to any particular group, and are thus normalized by the whole network’s size.

7.5.2 Evolution of network structure

Over the course of the simulation with evolving size and composition, the pop-
ulation grew from 1,000 actors to 3,227 actors (shown in Figure 3(a)), with a
total of 28,652 individuals in the population during the period. Because the
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Figure 2: NHSLS dynamic simulation network statistics over time, in a static
population. All values are normalized per Section 7.5.1. Red lines are the
“target” values for their respective statistics.
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Table 1: Parameter estimates and simulation results
All network statistics (t) are per capita in the group they describe (per Sec-
tion 7.5.1); times are in years.

Inference Simulation

t(y) θ̃ t(Y 100) t(Y 300) t(Y 500)
Network size 1000 1000 1469 2111 3227
Formation

Offset −6.908
Actor activity by sex

Female 0.819 −4.563 0.713 0.740 0.715
Male 0.756 −5.520 0.717 0.713 0.701

Same-sex partnership 0.004 −4.318 0.005 0.004 0.004
Monogamy by sex

Female 0.735 2.007 0.637 0.694 0.658
Male 0.740 2.793 0.717 0.701 0.692

Actor activity by race
Black (base) (base)
Hispanic 0.614 0.770 0.504 0.478 0.414
Other 0.900 2.605 0.820 0.898 0.905
White 0.806 1.175 0.726 0.735 0.710

Race homophily by race
Black 0.366 6.334 0.347 0.316 0.341
Hispanic 0.228 3.226 0.160 0.147 0.133
Other 0.233 2.724 0.220 0.320 0.319
White 0.384 2.017 0.344 0.349 0.337

Age effects√
age effect 0.101 3.725 0.127 0.136 0.135

age effect −0.051 −2.735 0.002 0.010 0.011
Age difference effects

Difference in
√

age 0.027 −5.801 0.019 0.018 0.018
Difference in age 0.032 −9.012 0.025 0.024 0.023
Squared difference in

√
age 0.004 5.234 0.002 0.002 0.002

Squared difference in age 0.005 2.264 0.004 0.003 0.003
Older-male-younger-female 0.249 1.116 0.176 0.178 0.158

Dissolution
Mean duration (years) 10.307 4.810 7.160 raw, 10.181 adjusted
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(a) subpopulation sizes (b) subpopulation proportions

Figure 3: NHSLS dynamic simulation population (network size) and subpopu-
lation sizes and proportions over time.

population is fairly small and the population growth is exponential, there were
substantial changes in population composition (shown in Figure 3(b)).

We give snapshots of cross-sectional network statistics at t = 100, t = 300,
and t = 500 years in table Table 1. Plots of trends over time are given in
Figure 4.

The simulation of the evolving population removes individuals and their
ties from the network, and adds only individuals with no ties, something not
taken into account by the algorithm used to fit the parameters, so, after a
short “burn-in” period, the mean degree of the network is uniformly lower than
that targeted. Beyond that, the mean degree (and other such statistics) do
not appear to be sensitive to network size, but do appear to be sensitive to
the population composition: the trends in racial-category-specific mean degrees
(Figure 4, the “homophily on race” and “activity by race” panels) closely follow
those in the population (Figure 3(b)). This is what the model of Krivitsky et al.
(2011) predicts, assuming the “preferences” as modeled remain unchanged: the
more rare a given individual’s preferred partners are in the population, the lower
the expected mean degree for that individual.

7.5.3 Duration distribution

The approach of Section 7.4 gives a target mean duration of 10.31 years, but
because about 28% of ties in the history of the simulated network had been
censored due to the actor being removed from the population of interest and 2%
of ties had been censored due to the simulation ending, the average duration of
a tie that is simulated is 7.16 years. Using a Kaplan-Meier estimator (Therneau,
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Figure 4: NHSLS dynamic simulation network statistics over time, in a growing
population. All values are normalized per Section 7.5.1. Red lines are the
“target” values for their respective statistics; green line is the time point at
which no actors from the original population remain.
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2009) to estimate the survival function 1 − F (x), and estimating the mean of
duration by integrating it (Klein and Moeschberger, 2003, 117–118) gives an
adjusted mean duration of 10.18 years, slightly smaller than the target, likely
due to no simulated tie having duration greater than 60− 18 = 42 years.

All this suggests that this model is at the very least viable for simulating
networks in populations with changing size, based on fairly limited data.

8 Discussion

We began with the model of Krivitsky and Handcock (2010), described its long-
run properties, especially in the simpler and more tractable special cases; and
discussed approaches — both feasible and not — to fitting these network evo-
lution processes to sociometric data that are not, at first glance, amenable to
dynamic network modeling. We have also described how the network size ad-
justment of Krivitsky et al. (2011) may be incorporated into this model and
demonstrated its efficacy with an application to the NHSLS survey.

Many simplifying assumptions were made in the simulation, aspects left
unanalyzed, and questions unanswered about the properties of the models dis-
cussed. We describe some of them here.

The EGMME approach depends on a very strong assumption, that the so-
cial process being modeled does not significantly change over time in ways that
the model does not account for, so the network data observed can be plausi-
bly modeled a draw from an equilibrium distribution. It is not clear whether
this assumption can be tested, especially if only egocentrically sampled data
are available, beyond the generic goodness-of-fit measures like those of Hunter,
Goodreau, and Handcock (2008a). Conditional approaches do not suffer from
this, but, as we showed in Section 5.1.2, require data not often available, and
methods to circumvent this problem also require fairly strong assumptions,
though those assumptions are arguably weaker than those needed for full equi-
librium inference.

Although we have discussed the effects of dyadic dependence in the disso-
lution phase of the process, we have not discussed nor demonstrated how its
parameters might be fit. In particular, in a sexual partnership network, it is
very plausible that monogamous ties are much more stable than those that are
concurrent. This effect can be modeled in a STERGM with a generative statistic

g−k (y−,yt−1) =
∑
i∈N

1|y−i |=1.

But, if there is expected to be monogamy bias in formation as well, if the only
target statistic with information about degree is

tk(y) =
∑
i∈N

1|yi|=1,

the monogamy biases in formation and dissolution may not be identified. A
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duration-sensitive target statistic like

tk′(y, . . . ) =
1

n

∑
i∈N

1|yi|=1

∑
j∈yi

age(yi,j),

the average duration of all monogamous ties, used alongside tk, may be able
to identify the incidence effects from the duration effects, and can be inferred
from short-term relationship history: all that is needed is to know whether
a relationship was monogamous at the time of the survey and how long the
relationship had lasted.

While the simulation incorporated vital dynamics to demonstrate invariance
to network size, the procedure used to fit the parameters did not take into
account vital dynamics in any way. Taking vital dynamics into account when
learning θ̃ is a subject of ongoing research. One way to do so may be to simulate
the effects of aging and of actors aging out of population of interest (18–59 in
the example above) or otherwise being removed, then “resetting” the age of
each removed actor to the age of a neophyte (18 in this case) breaking all of
the actor’s ties, and reinserting that actor into the population. Such a process
would have a stationary distribution, especially if the removal process were at
least somewhat stochastic to render the combined process aperiodic, and it thus
could still be used for simulated EGMME, but its estimates for the expected
values of the target statistic under a particular parameter configuration would
at least partly reflect the vital dynamics.

The GMME approach to network inference can be extended to other “in-
convenient” data: while the targeted statistics we have used to date have been
network statistics, they do not have to be: for example, infection tree data may
contain information about the underlying network process: rather than find-
ing that network process which produces networks having statistics similar to
those that have been observed, it may be possible to find that network pro-
cess which produces networks, infection processes on which produce infection
trees with similar features to those observed, as an alternative to the method of
Groendyke, Welch, and Hunter (2010).
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A Finding a Generalized Method of Moments
Estimator

Finding a GMME in our setting presents several unusual challenges. The objec-
tive function (8) can only be estimated by simulation, necessitating some sort
of stochastic approximation. However, many network processes of interest, such
as sexual partnership networks, evolve slowly, with relationships lasting months
or years, even decades. On the other hand, the plausibility of the separability
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assumption improves as the length of each discrete time step increases (Kriv-
itsky and Handcock, 2010). Thus, successive networks drawn from the model
are likely to be very similar — highly autocorrelated. This, in turn, means that
a sufficiently precise estimate of J(θ) requires simulating a very long series of
such networks.

Finding the direction of the stochastic search presents a further challenge.
In gradient-based methods,

∇J(θ) =
(
µ(θ)− t(y1, . . . ,yT )

)T
V (θ)−1G(θ).

Some specific combinations of t and g suggest some simple relationship for G.
For example, if tk(yt) ≡ |yt| and gl(y

t,yt−1) ≡
∣∣yt ∪ yt−1

∣∣ (i.e., edge count
formation), it is likely that the Gk,l(θ) > 0. However, for less strongly related
statistics, the gradient would need to be estimated.

Nor are the signs of elements of the G(θ) guaranteed to remain the same
throughout the parameter space. For example, if tk(yt) ≡

∑n
i=1 1|yt

i=1| — the

number of actors with degree 1 — and gl is as before, then the gradient is likely
to be positive when θl is low, and most actors are isolates, since an increase in
θl increases the number who have one tie; but as θl increases to the point where
some actors begin to acquire their second tie, its effect on the number of actors
with one tie reverses, to the point where increasing θl makes it increasingly less
likely that an actor will have fewer than two ties. Thus, the gradient matrix
must be estimated and reestimated continually throughout the search.

Selection of starting values for the optimization presents yet another chal-
lenge. As with ordinary ERGMs, a poor choice of starting parameter config-
uration may induce extreme network distributions, in the sense that µ(θ0) is
close to the edge of the convex hull of possible network statistics, which, in
the discrete space of networks, makes it almost impossible to estimate µk(θ0),
because almost all equilibrium draws tk(Y t) under θ0 equal to miny∈Y tk(y)
or maxy∈Y tk(y). Unlike ordinary ERGMs, where the Maximum Pseudolike-
lihood Estimator (MPLE) provides a plausible θ0, we are aware of no such
methods. Thus, the optimization method must be relatively robust to poor
starting values. In particular, if the initial configuration has some expectations
be near their minimal or maximal values but not others, the algorithm should
not necessarily fail: perhaps finding a parameter configuration where µk(θ) is
close to tk(y1, . . . ,yT ) for some k will shift others to a more convenient region.
An example of this is t(yt) ≡ (|yt| ,

∑n
i=1 1|yt

i=1|)
T: that if that an initial pa-

rameter configuration inducing overly dense networks can cause µ2(θ0) ≈ 0,
but if further optimization using µ1 brings the network density down to where
more actors have one tie, the estimation could begin to incorporate the second
statistic.

We have tried a number of approaches, including Kiefer-Wolfowitz (Kiefer
and Wolfowitz, 1952) and Simultaneous Perturbation Stochastic Approximation
(SPSA) (Spall, 1998), but we have ultimately found that simple gradient descent
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updating, with

θt = θt−1 − γt
(
µ̂(θt−1)− t(y1, . . . ,yT )

)T
V̂ (θt−1)−1Ĝ(θt−1)

works adequately, with γt being a declining sequence, µ(θt) estimated by sim-
ulation, G(θt) being estimated by regressing recent values of t(Y t) on θt (and
an intercept). The covariance of the residuals from this regression is then used
to estimate V (θt). The resulting process produces a Continuous-Updating Es-
timator. (Hansen et al., 1996)
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