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Abstract
Security of embedded devices is a timely and important issue, due to
the proliferation of these devices into numerous and diverse settings,
as well as their growing popularity as attack targets, especially, via
remote malware infestations. One important defense mechanism is
remote attestation, whereby a trusted, and possibly remote, party
(verifier) checks the internal state of an untrusted, and potentially
compromised, device (prover).

Despite much prior work, remote attestation remains a vibrant
research topic. However, most attestation schemes naturally focus
on the scenario where the verifier is trusted and the prover is not.
The opposite setting—where the prover is benign, and the verifier is
malicious—has been side-stepped. To this end, this paper consid-
ers the issue of prover security, including: verifier impersonation,
denial-of-service (DoS) and replay attacks, all of which result in
unauthorized invocation of attestation functionality on the prover.
We argue that protection of the prover from these attacks must be
treated as an important component of any remote attestation method.
We formulate a new roaming adversary model for this scenario and
present the trade-offs involved in countering this threat. We also
identify new features and methods needed to protect the prover with
minimal additional requirements.

1. INTRODUCTION
Security of embedded devices is a popular and important research

topic and this will likely remain the case for the foreseeable future.
One contributing factor is the constantly increasing integration and
introduction of such devices into many spheres of everyday life,
including: automotive, avionics, factory automations, household,
medical, and public utilities. At the same time, growing presence of
computerized components in previously non-electronic (mechanical
or simply analog) objects and tasks represents an attractive set
of new and exciting attack surface for nefarious individuals and
organizations.

Well-known incidents such as Stuxnet [9] and Duqu [36] are
prominent examples of the impressive scale and penetration capa-
bilities of remote malware infestations. They are also a preview of
future attractions. Although these attacks did not target low-end
devices, they (particularly, Stuxnet) allegedly succeeded in their mis-
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sion of infecting numerous specialized industrial controllers. Mean-
while, researchers have also demonstrated numerous attacks on
various embedded systems, including: automotive components [23],
home appliances, and medical devices [27].

The research community recognized the danger posed by inse-
cure embedded devices and responded with countermeasures. One
important countermeasure is a distinct security service referred to
as attestation: a means for a trusted party (verifier) to obtain the
state of the, possibly remote, untrusted device (prover). Attestation
is also an important building block, useful for constructing more
specialized services, such as secure code update and secure memory
erasure [30].

All attestation techniques involve a protocol between a trusted
verifier and a potentially compromised prover. Even though this
focus is both natural and sensible, it has overshadowed another
important issue—attacks on the prover that can be launched through
the attestation protocol itself. As we argue in this paper, such attacks
that maliciously invoke attestation functionality on the prover pose a
real threat, and any comprehensive attestation method must include
a means to resist them. Attacks that involve verifier impersonation
(e.g., via replay, reorder or delay) are particularly dangerous, since
they amount to an effective denial-of-service (DoS). Such attacks
can waste energy (deplete batteries) and take the targeted device
away from performing its primary tasks, such as control, sensing, or
actuation.

Goals & Contributions. In this paper, we identify and analyze DoS
attacks that target provers running on low-end embedded devices.
As the first step, we show how attestation protocols can be secured
against a simple external adversary using well-known techniques.
Then, we investigate a more sophisticated roaming adversary that
compromises the prover and manipulates it in a way that is unde-
tectable by standard attestation methods. Such attacks are particu-
larly dangerous since the roaming adversary may erase all traces of
its presence and remain stealthy. Next, we demonstrate—through
two implementations—how the roaming adversary can be mitigated
by extended attestation techniques for low-end embedded systems
with minimal hardware assumptions. We believe that countermea-
sures developed in this paper represent a significant improvement
and an advantage over current attestation techniques.

2. RELATED WORK
This section overviews prior results in device attestation. Given

familiarity with the topic, it can be skipped with no loss in continuity.

Software-Based Attestation. There are many software-based attes-
tation techniques. One early example is Pioneer [32]. It computes a
checksum of the device memory using a function with side-effects
(e.g., status registers) in its computation, such that any emulation



of this function incurs an additional timing overhead (delay) that is
sufficient to detect cheating. Attestation that relies on time-based
checksums has also been adapted to embedded devices in [30, 33,
14, 18, 19, 29, 31]. However, some basic assumptions that un-
derlie these techniques are uncertain [34] and several attacks1 on
software-based attestation schemes have been demonstrated, e.g., [6,
16].

In general, all current software-only techniques rely on strong
assumptions about adversarial capabilities, and only work if the
verifier communicates directly to the prover, with no intermediate
hops. While applicable to very specific settings (e.g., attestation
of computer peripherals), this general approach is not viable for
attestation performed over a network.

Secure Hardware-Based Attestation. An early example of this
approach is Secure Boot [2]. In it, system integrity is verified at
boot time: the root of trust is a small bootloader which computes
a hash of the content loaded into memory, and compares this to a
signed hash stored in secure ROM. A device is only allowed to boot
if the two hashes match. Trusted platform modules (TPMs) [37] are
present in many modern commercial systems, from smart-phones
to laptops. A TPM can store an integrity checksum computed
over the memory at boot time in protected memory called platform
configuration registers (PCRs). The stored checksum can be sent to
a remote verifier for validation. TPMs can also protect data against
a compromised operating system, e.g., protect encryption keys from
misuse. The root of trust is the TPM plus the BIOS that performs
the very first extension upon boot. Several concrete architectures
have been proposed that rely on a TPM as a foundation [26, 14].

Datta et al. [7] present a logic for secure systems, and use it to
describe attestation protocols standardized by the trusted computing
group (TCG), without providing a definition of attestation. [7] relies
on the presence of a secure TPM device.

Dynamic Root of Trust (DRT). This is an extended mechanism
added to TPM specifications [37]. It has been implemented by major
vendors, e.g., Intel TXT [12] and AMD SVM [1]. Basically, DRT
is a way to perform attestation dynamically, i.e., after boot. This is
accomplished by allowing a specific CPU instruction to reset the
state of some PCRs, isolate a memory region, hash and atomically
execute its content. Flicker [21] is an architecture that establishes
DRT on commodity computers. It takes advantage of Intel TXT
and AMD SVM by executing a piece of application logic (PAL) on
the prover. This architecture was extended by TrustVisor [20] that
provides a dynamic root of trust for PALs from a minimal hypervisor.
TrustVisor significantly improves performance of the DRT primitive.
There are several other proposals that deal with establishment of
trust on remote systems [13, 24, 25, 22, 38]. Underlying platforms
range from Web servers to embedded systems.

Hybrid Techniques. SPM is a hardware-based mechanism for pro-
cess isolation [35]. It relies on a special vault module bootstrapped
from a static root of trust. This vault bootstraps the SPM-protected
programs, which gains exclusive control over the protection of their
own memory pages. Another proposal from 2011 is SMART [8]—a
hardware-based scheme for establishing a dynamic root of trust in
embedded devices. Its focus is on low-end microcontrollers (MCUs)
that lack sophisticated features, such as specialized memory man-
agement or TPMs. SMART requires no additional hardware – only
a few small changes to the MCUs. SPM and SMART share some
key features, such as the use of program counters to restrict access to
secret key storage, and code entry point enforcement. However, un-

1For example, vulnerabilities to Time-Of-Check-Time-Of-Use
(TOCTOU) attacks identified in [16].

like SMART, SPM does not provides a dynamic root of trust. It also
involves a larger TCB and is generally oriented towards higher-end
embedded systems with an MMU or an MPU. Furthermore, SPM
requires the addition of custom instructions to the core. Finally,
its feasibility, i.e., the effort needed to implement SPM on a real
hardware platform, and its overall footprint remain unclear.

A refinement of SMART was recently presented in [10], where
more precise specification of minimal architectural features needed
to support attestation were derived.

Another follow-on is the TrustLite architecture for embedded
systems [15] which augments SMART with support for so-called
trustlets. TrustLite enables running arbitrary code (trustlets), iso-
lated from the rest of the system. Such isolated code chunks are
called trustlets. Similar to SMART, an execution-aware memory
protection unit (EA-MPU) ensures that the data of a trustlet can
be accessed only by the code of the trustlet to which the data be-
longs. Furthermore, EA-MPU can be used to control access to
hardware components such as peripherals. Authenticity and con-
fidentiality of the code and data of trustlets is ensured by means
of secure boot. TrustLite can be seen as an extension of SMART.
The main difference to SMART is that the memory access control
rules of the EA-MPU in TrustLite can be programmed as required
by trustlets. In contrast, memory access control rules of SMART are
static. Also, TrustLite supports interrupt handling for trustlets, while
the security-critical code in ROM of SMART cannot be interrupted
during execution.

3. SYSTEM & ADVERSARY MODEL
As discussed earlier, an attestation protocol is an interaction be-

tween a prover (Prv) and a verifier (Vrf). Vrf needs to determine
whether Prv is in a known (and therefore trusted) state. Vrf invokes
the attestation protocol by sending a request (attreq) to Prv. We
assume that Prv has a trust anchor responsible for measuring Prv’s
state and sending the result back to Vrf. To authenticate the at-
testation result, the trust anchor of Prv uses a key (KAttest) shared
with Vrf.

3.1 Attestation as Denial-of-Service
Remote attestation techniques typically assume that Vrf is trusted

while Prv is not. However, Prv has no assurance whether it is
interacting with a real verifier. Without authentication, the adversary
can trivially impersonate the verifier by sending bogus attestation
requests to the prover. Believing that a fake attestation request
is genuine, Prv invokes its local attestation functionality, which
results in a waste of energy (by depleting batteries) and takes Prv
away from performing its primary tasks, such as control, sensing, or
actuation.

If the adversary impersonates Vrf and causes Prv to perform
attestation, some particular costs are incurred. First, executing
attestation to compute a response typically involves computing a
message authentication code (MAC) over the prover’s entire writable
memory. A MAC is usually implemented as either a CBC-based
function based on a block cipher (such as AES) or a keyed hash
function (such as SHA1-HMAC [17]). To illustrate MAC costs,
Table 1 shows the time for computing a SHA1-HMAC on variable
input sizes, using the Intel Siskiyou Peak embedded processor as
the hardware platform [28]. Hashing its 512KB of RAM takes
(512KB/64B) · 0.340ms + 0.120ms = 754.032ms

Furthermore, current low-end device attestation techniques as-
sume that attestation runs without interruption [8, 35]. Thus, gra-
tuitous (malicious) invocation of attestation can be detrimental to
the execution of prover’s main (even critical) functions. Techniques
that perform attestation in a manner compliant with real-time op-



SHA1-HMAC [17] AES-128 (CBC) Speck 64/128 (CBC) ECC (secp160r1)
per block per block

Fix per block Key exp. Enc Dec Key exp. Enc Dec Sign Verify
0.340 0.092 0.074 0.288 0.570 0.016 0.017 0.015 183.464 170.907

Table 1: Performance (in milliseconds) of cryptographic primitives on Intel Siskiyou Peak at 24MHz.

eration [5] do not fully address this problem, since they require a
managing software layer, e.g., an operating system. This makes
them inapplicable to low-end embedded devices.

The main reason for the ease of such DoS attacks is that the
prover’s work-load is much higher than that of the verifier. This
asymmetry is not limited to the sheer amount of work performed
by each party; it also occurs because the verifier is generally much
more powerful than the prover, which might be a low-end MCU.

3.2 Adversaries
We now define two types of adversaries envisaged in the context

of verifier impersonation and DoS attacks on the prover. Neither
type is capable of physical attacks.

External Adversary Advext. We first consider the external adver-
sary (Advext) that can control all communication between Prv and
Vrf. Advext can drop, insert and delay messages, following the
well-known Dolev-Yao model. However, being strictly external,
Advext cannot directly manipulate any internal state of Prv.

Roaming AdversaryAdvroam. A stronger and more sophisticated
adversary can, in addition to Advext’s capabilities, infect Prv with
malware and later cover its tracks by erasing that malware. We call
it a roaming adversary (Advroam). As with Advext, we assume
that Advroam’s primary goal is DoS on Prv. Advroam operates in
three phases:
• Phase I: eavesdrops on genuine Vrf-Prv attestation requests.
• Phase II: compromises Prv by introducing malware, changes

local state, and leaves Prv, i.e., erases all traces of its presence.
• Phase III: replays previously recorded attestation requests.
Note that, in Phase II, Advroam only changes dynamic data on Prv.
This is not detectable by subsequent attestation. Also,Advroam can
extract other information from Prv, e.g., authentication key KAttest.

In the following section we discuss mitigation techniques against
these adversaries. In the process, we also identify the requirements
they pose on underlying attestation protocols and device hardware
features.

4. MITIGATING Advext
We now turn to Advext mitigation strategies, starting with re-

quest authentication and proceeding to replay (and related) attack
countermeasures.

4.1 Authenticating Verifier Requests
It is quite evident that, in order to mitigate bogus attestation re-

quests (or, equivalently, verifier impersonation attacks) verifier must
authenticate itself to the prover. This can be done via either public
key or symmetric cryptography. With the former, verifier signs its
attestation request and the prover authenticates it with the verifier’s
public key, which must reside in some non-malleable memory on the
prover. With the latter, assuming the two parties share a secret key,
the verifier appends a MAC to the attestation request and the prover
recomputes the same on its side, thus authenticating the request.

As can be expected, public key cryptography is expensive for
low-end MCU-s. Table 1 shows that even relatively efficient elliptic

curve cryptography (ECC) incurs a computational cost for the prover
170ms. Thus, with the use of ECC, simply authenticating verifier’s
authentication request can be viewed as a kind of DoS. In other
words, we have a paradoxical situation where a supposed way of
preventing DoS attacks can itself result in DoS. Consequently, we
rule out the use of public key cryptography in this context.

Using symmetric cryptography to secure authenticated attestation
requests yields significantly better performance: a SHA-1-based
HMAC can be validated in 0.430ms. Standard block ciphers such
as AES perform slightly better. Using lightweight block ciphers
such as Speck [4] reduces the cost even further, to 0.015ms, if key
expansion is done in advance. Messages are assumed to fit into
one block for each cryptographic primitive (in bits): ECC: 160,
AES: 256, Speck: 64; and HMAC: 512.

Finally, we note that the use of symmetric cryptography to com-
pute a MAC and the requirement to protect this key by access-
restricted hardware-protected key storage (e.g., in ROM) is not new.
It is already mandated by recent attestation architectures such as
SMART, SPM and TrustLite, for the purposes of the prover com-
puting an authenticated response, i.e., a challenge-based MAC over
prover’s memory.

4.2 Handling Replay, Reorder & Delay
Unfortunately, mere authentication of attestation requests is in-

sufficient to mitigate DoS attacks. Advext can simply eavesdrop
on genuine attestation requests and later replay them. Alternatively,
Advext can intercept and arbitrarily delay and/or reorder genuine
requests. There are several standard ways of detecting replay, re-
ordering and delay attacks:
• Nonces: If each attestation request includes a nonce (i.e., a unique

value) provided by the verifier, the prover can keep a complete
nonce history of previously received (and authenticated) attesta-
tion requests. A replayed request is thus detectable.
• Counters: If each attestation request includes a monotonically

increasing counter, the prover accepts a new request only if its
counter is strictly greater than the last one received and processed.
The new counter then replaces the previous one. Requests bearing
out-of-order or duplicate counters are rejected.
• Timestamps: Assuming synchronized clocks among both parties

and sufficiently inter-spaced genuine attestation requests, a ver-
ifier’s timestamp included in the attestation request allows the
prover to detect replayed, reordered and delayed messages.

It is easy to see that using nonces is problematic, for two reasons.
First, keeping a complete nonce history requires a lot of non-volatile
memory on the prover. Second, it only protects against replays,
while reordered or delayed requests cannot be detected. Therefore,
in the rest of the paper we rule out the use of the nonce history.

Keeping a counter (i.e., a sequence number) also requires the
prover to have non-volatile memory, although only a small and fixed
amount thereof. Note that, assuming that non-volatile memory is
already available on the underlying prover MCU, keeping a counter
requires no new architectural features on top of those identified in
[8] as necessary and sufficient to support secure remote attestation
in the trusted-verifier model. On the other hand, a counter does not
protect against delayed request attacks.



Feature:
Attack: Nonces Counter Timestamps
Replay X X X
Reorder - X X
Delay - - X

Table 2: Summary of DoS attack mitigation features.

Timestamps offer the best security, under aforementioned assump-
tions. However the major requirement imposed by timestamps is
availability of a reliable real-time clock on the prover – a feature not
previously identified as necessary for attestation.

Table 2 summarizes security features attainable with each ap-
proach.

5. MITIGATING Advroam
We first show that Advext countermeasures discussed above can

be easily defeated by Advroam and then develop mitigation tech-
niques to protect against Advroam.
• Advroam and Counters: We assume that: (1) each attestation

request contains a monotonically increasing counter, and (2) the
prover stores the counter from the last genuine attestation re-
quest in non-volatile memory. Without loss of generality, we
assume that, in Phase I, Advroam records just one genuine attes-
tation request attreq(i) where i denotes the counter. In Phase
II, Advroam modifies the counter stored by the prover from i to
i− 1. It then leaves the prover, and after waiting arbitrary length
of time, replays attreq(i). After checking its stored (modified)
last counter, the prover accepts attreq(i) as fresh and performs
attestation. The prover’s counter is changed to i.
• Advroam and Timestamps: We assume that: (1) each attestation

request is timestamped by the verifier, (2) the prover has a clock,
and (3) prover’s and verifier’s clocks are synchronized. Again, we
also assume that, in Phase I (see Section 3.2), Advroam records
just one genuine attestation request attreq(ti) where ti denotes
the timestamp. In Phase II, Advroam re-sets the prover’s clock
to time ti − δ. It then leaves the prover, and after waiting for
δ time units, replays attreq(ti). After consulting its (modified)
clock, the prover accepts it as timely and performs attestation.
The prover’s clock remains behind.

Although the DoS attack succeeds in both cases, there are two subtle
differences: First, Advroam is more constrained with timestamps,
since it is bound to δ wait time before replay in Phase III. Second,
resetting the prover’s clock in Phase II leaves some evidence of the
attack since the prover’s clock remains behind. In contrast, resetting
the counter allowsAdvroam to bring the prover back to its expected
state. In other words, the DoS attack is undetectable after the fact.

Protecting Keys, Counters & Clocks: In Phase II,Advroam com-
promises the prover. At this time, it can take certain actions to
prepare for the actual DoS attack in subsequent Phase III. For exam-
ple, Advroam could extract Prv’s KAttest which would allow it to
generate authentic attreq-s. Hence, KAttest must be protected from
read access, except by the trusted attestation code CodeAttest. Note
that this is impossible in software-based attestation (see Section 2).
Similarly, KAttest must be write-protected; otherwise, Advroam
could overwrite it with any key it chooses and achieve the same
result. The counter in the last authentic (processed) attreq as well
as Prv’s local clock state must not be modifiable by Advroam, in
order to prevent replay, delay and reorder attacks described in Sec-
tion 4.2. At the same time, the last counter must be writable only by
immutable CodeAttest on Prv.

In summary, KAttest must be confidential and non-malleable, i.e.,
read-only and readable only by CodeAttest. Meanwhile, the counter

and the clock must be write-protected. This protection can be
achieved with minimal hardware security mechanisms. Low-end
device attestation techniques already rely on hardware means to
protect CodeAttest and KAttest against software attacks. The same
means can be used to protect the counter and the clock, as described
in the next section.

6. IMPLEMENTATION
We now describe a prototype of proposed countermeasures. First,

we overview hardware protection mechanisms from previous attesta-
tion techniques. Then, we describe how to protect againstAdvroam
using those mechanisms. Finally, we provide evaluation results
showing the costs of our countermeasures.

6.1 Background
The primitive used to restrict access to critical components of the

system (i.e., KAttest, the counter and the clock) is called execution-
aware memory access control (EA-MAC). It has been used in several
prior proposals [8, 15], as discussed in Section 2. The main idea of
EA-MAC is to limit read and/or write memory access depending
on currently executing code. For example, in case of KAttest, it
means that only CodeAttest can read it. Hence, if all code (except
CodeAttest) is compromised, KAttest remains protected. CodeAttest
itself is non-malleable, e.g., in SMART [8] it is resident ROM.
TrustLite [15] and TyTAN [5] use secure boot and EA-MAC-based
isolation to maintain CodeAttest integrity.

The basic operation of EA-MAC is roughly the same in all attesta-
tion architectures: the CPU allows a particular memory access based
on the value of the current program counter (PC). However, specific
implementations differ. For example, SMART has one memory
element (KAttest) protected with a hard-wired EA-MAC. In contrast,
TrustLite allows flexible configuration of protected memory regions
and associated access policies at runtime, by software. An extended
memory protection unit (MPU) specifies which code region has
access to which data region. Notably, controlled-access memory
regions can also contain the memory-mapped configuration registers
of peripheral devices.

6.2 Implementation Details
The prototype of Advroam countermeasures is based on three

components: ROM, EA-MAC and secure boot. Figure 1 shows
two prototype versions: Figure 1a is the basic version while Fig-
ure 1b shows a more advanced one, which requires no new hardware
features at the price of more complex software implementation.
Both versions are based on the TrustLite attestation architecture.
The same countermeasures are easily adaptable to other attestation
techniques, such as SMART or TyTAN. However, due to space
limitations, we omit them.

As discussed earlier, to mitigate Advroam, three components
must be protected: KAttest, the counter, and the real-time clock.

Secure Boot. Protection of critical system components is realized
by setting appropriate memory access rules in EA-MPU. However,
if the adversary controls systems software, it could change those
rules and disable protection. For this reason, the system is started
via secure boot, i.e., at boot time it verifies that correct software is
loaded. This initial software sets up memory protection rules in the
EA-MPU and locks it down to preclude further changes. This can
be done by the EA-MPU itself, via memory-mapped configuration
registers. Setting the EA-MPU-s configuration registers as read-only
protects EA-MPU rules from being changed, as in Figure 1a.

Keys & Counters. The secret attestation key must be both read- and
write-protected. In ROM, it is inherently write-protected. Otherwise,



Siskiyou Peak EA-MPU (TrustLite) Attest-Key Counter 64 bit clock 32 bit clock SW-clock
EA-MPU rules 0 1 1 1 0 0 2
Register 5528 278 + (116 ·#r) 0 0 64 32 0
Look-up Table 14361 417 + (182 ·#r) 0 0 64 32 0

Table 3: Hardware cost per component (#r is the number of protection rules configurable in EA-MPU).
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Figure 1: (a) Base version of Advroam mitigation; KAttest and
counterR are only accessible by CodeAttest. Access control is en-
forced by EA-MPU set up at system start by a secure boot mech-
anism. (b) Advanced version for a common low-end MCU clock
design; ClockLSB is a short-term counter which issues an interrupt
when it wraps around 1 . The immutable interrupt handling engine
ensures that CodeClock serves the interrupt 2 ; CodeClock maintains
a software counter (ClockMSB) such that ClockMSB+ClockLSB form
a real-time clock 3 .

if it is stored in writable memory (e.g., RAM or Flash), it must
be write-protected by a dedicated EA-MAC rule. In both cases,
an EA-MAC rule is required to ensure that only CodeAttest can
read KAttest. Hence, Advroam that controls all software (except
CodeAttest) can neither read nor write the KAttest location. At the
same time, Advroam cannot modify CodeAttest, which is write-
protected (in ROM). Runtime attacks on CodeAttest can be addressed,
e.g., by limiting code entry points, or using control-flow integrity
(CFI) [3]. Similarly, counterR is protected by an EA-MAC rule that
allows it to be writable by CodeAttest only.

Real-Time Clock. A real-time clock is needed if protection against
delay attacks is required. Recall that a counter is enough to mitigate
replay and reorder attacks. Obviously, the clock must be write-
protected. In the simplest case, the clock counter is sufficiently large
bit-wise (see Section 6.3) so that it does not wrap around within the
expected lifetime of the prover, as in Figure 1a.

Figure 1b shows a set-up with a short-term counter (ClockLSB)
which causes an interrupt at wrap-around. The interrupt is handled
by the trusted and integrity-protected CodeClock. This code main-
tains higher-order bits of the clock in writable memory (ClockMSB).
Again, the hardware counter must be read-only and ClockMSB mem-
ory must be protected with an EA-MAC rule, so it is writable only
by CodeClock. Also, system interrupt handling must itself be pro-
tected. For example, if Advroam manipulates the interrupt descrip-
tor table (IDT), it could preclude CodeClock being invoked upon a
wrap-around of ClockLSB, thus effectively stopping the real-time
clock. To prevent this, IDT can be locked down similar to the EA-

MPU, by setting up a read-only access rule for the memory region
storing IDT. Depending on the underlying MCU platform, disabling
the timer interrupt must also be prevented. Moreover, the location
of the IDT itself must be immutable.

6.3 Evaluation
In this section, we evaluate the costs of prototyped mechanisms.

The cost of protecting KAttest and counterR is the same in all variants,
i.e., one EA-MAC policy for each. This is independent of the storage
location of KAttest, since the cost of read protection (in ROM) is
identical to the cost of read/write protection in RAM or Flash.

Clock Implementations. We considered two alternatives. The first
involves a dedicated counter register that does not wrap around
within the lifetime of the prover. For example, a 64 bit register
incremented every clock cycle wraps around after 24,372.6 years
on a 24Mhz CPU. Table 3 shows the hardware cost for a counter
register of this size as well as combinational logic for incrementing it.
Register size can be decreased by changing the clocking frequency.
For example, given a 32 bit register, the wrap-around time is about
3minutes at 24Mhz. By dividing the clock by 220 = 1,048,576
(i.e., incrementing it every one millionth cycle), wrap-around can
be increased to 6 years while keeping clock resolution at 42ms.

The second implementation is based on a clock design in Intel
Siskiyou Peak and other popular low-end MCUs, e.g., TI MSP430 [11].
Hence, the clock involves no additional hardware cost. Protecting
this type of a clock incurs the costs of: (1) protecting interrupt
handling, and (2) storage of software-maintained share of the cur-
rent clock value. Table 3 shows the cost of this “software clock”
(SW-clock) which consists of two EA-MPU protection rules: one to
set IDT as immutable, and another—to protect the location of the
high-order bits of the clock value, ClockMSB in Figure 1b.

Overhead. We compare our implementations against a base-line
system that supports attestation without protection against Advext
or Advroam. The base-line needs an EA-MPU with at least two
rules: one to lock down the EA-MPU itself, and the other – to protect
KAttest. The total cost of the base-line system is 5528+278+(116 ·
2) = 6038 registers and 14361 + 417 + (182 · 2) = 15142 LUTs;
see Table 3 columns “Siskiyou Peak” and “EA-MPU”. For the
64 bit clock implementation, we need an additional EA-MPU rule,
plus the direct cost of the clock: 116 + 64 = 180 registers and
182 + 64 = 246 LUTs, which is 2.98% and 1.62% of the overall
cost, respectively. For the 32 bit clock with a divider, the cost is
116 + 32 = 148 registers and 182 + 32 = 214 LUTs, which is
2.45% and 1.41%, respectively.

The SW-clock implementation requires three new EA-MPU rules:
116 · 3 = 348Registers and 182 · 3 = 546LUTs which is 5.76%
and 3.61% of the overall cost, respectively.

7. CONCLUSIONS & FUTURE WORK
Prior attestation methods assume a trusted verifier and an un-

trusted prover. We have shown that, verifier impersonation and
prover-bound DoS are serious threats, largely overlooked by prior
work. We formulated a new roaming adversary model and devel-
oped and evaluated techniques to protect the prover from attacks by



this powerful adversary. We also showed that desired protection can
be achieved with low additional hardware cost. For future work we
plan to:
1. Trial-deploy proposed methods in the context of connected de-

vices, such as Internet of Things (IoT).
2. Develop mechanisms for secure and reliable synchronization of

verifier’s and prover’s clocks.
3. Generalize proposed techniques to other network protocols (be-

yond attestation) to mitigate DoS attacks on other security ser-
vices on embedded devices.
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