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Abstract

The Kneser graph K(n, k) has as vertices the k-subsets of {1, 2, ..., n}
where two vertices are adjacent if the k-subsets are disjoint. In this
paper we use a computational heuristic of Shields and Savage to
extend previous results and show that all connected Kneser graphs
(except the Petersen graph) have Hamilton cycles when n ≤ 27. A
similar result is shown for bipartite Kneser graphs.

1 Introduction

In this paper we use a computational heuristic of the authors to extend the
known results for Hamilton cycles in Kneser graphs, K(n, k), and bipartite
Kneser graphs, H(n, k). With the exception of the Petersen graph, K(5, 2),
these have long been conjectured to have Hamilton cycles for n > 2k, but
neither a constructive nor an existential proof is known. For n > 2k, both
K(n, k) and H(n, k) are connected and vertex transitive, so the nonexis-
tence of a Hamilton path in K(n, k) or H(n, k) for some n, k would provide
a counterexample to the Lovász conjecture [12] that every connected, undi-
rected, vertex transitive graph has a Hamilton path.

The Kneser graph K(n, k) has as vertices the k-subsets of {1, 2, ..., n},
where two vertices are adjacent if the k-subsets are disjoint. A related
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every half hour and (iii) the time required to perform the Simpson test on
all possible rotations of the cycle in K(n, k) to determine if H(n, k) has a
Hamilton cycle.
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