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Abstract
The Kneser graph K (n, k) has as vertices the k-subsets of {1,2,...,n}
where two vertices are adjacent if the k-subsets are disjoint. In this
paper we use a computational heuristic of Shields and Savage to
extend previous results and show that all connected Kneser graphs
(except the Petersen graph) have Hamilton cycles when n < 27. A
similar result is shown for bipartite Kneser graphs.

1 Introduction

In this paper we use a computational heuristic of the authors to extend the
known results for Hamilton cycles in Kneser graphs, K(n, k), and bipartite
Kneser graphs, H(n, k). With the exception of the Petersen graph, K (5,2),
these have long been conjectured to have Hamilton cycles for n > 2k, but
neither a constructive nor an existential proof is known. For n > 2k, both
K(n,k) and H(n,k) are connected and vertex transitive, so the nonexis-
tence of a Hamilton path in K (n, k) or H(n, k) for some n, k would provide
a counterexample to the Lovédsz conjecture [12] that every connected, undi-
rected, vertex transitive graph has a Hamilton path.

The Kneser graph K(n,k) has as vertices the k-subsets of {1,2,...,n},
where two vertices are adjacent if the k-subsets are disjoint. A related

*Research supported by NSA grant MDA 904-01-0-0083




graph, the uniform subset graph G(n, k,t), also has as vertices the k-subsets
of {1,2,...,n} but here two vertices are adjacent if their intersection has
cardinality ¢t. So K(n, k) = G(n,k,0). The bipartite Kneser graph H(n,k)
has as its partite sets the k- and (n—k)-subsets of {1,2,...,n}, respectively.
Two vertices from different partite sets are adjacent iff one is a subset of
the other.

There is a one-to-one correspondence between the k-subsets of {1, 2, ...,n}
and the set of m-bit binary numbers with exactly k£ ones and n — k zeros,
which simplifies the computer representation and manipulation of these
graphs. The graph K(n,k) has (}) vertices while H(n, k) has twice as
many vertices and both graphs are regular of degree (";k)

Simpson [19] studied bipartite graphs B(G) constructed from a graph G
with vertex set V(G) = {x1, 2, -+ ,zn}. The vertex set of B(G) consists of
two copies of V(G) denoted S = {y1,y2, -+ ,yn} and T = {z1,22, - , 2}
and (y;, z;) is an edge in B(G) iff (z;,2;) is an edge in G. He showed that
H(n,k) = B(K(n,k)).

Chen and Lih [3] showed that G(n, k,t), and therefore K (n, k), are both
vertex transitive and edge transitive. Simpson showed that if G has no loops
and is vertex (edge) transitive then B(G) is also vertex (edge) transitive
and therefore H(n, k) is both vertex and edge transitive.

The graph K (5,2) is the Petersen graph, which has a Hamilton path
but not a Hamilton cycle, although the bipartite graph H(5,2) does have
a Hamilton cycle. It has long been conjectured that K(n, k) and H(n,k)
(with the exception of K (5,2)) have Hamilton cycles when n > 2k.

In [18], we developed a polynomial-time Hamilton path heuristic which
is a refinement of a technique of Pésa [16]. Given a graph G and a vertex
vg of G, Pdsa’s algorithm constructs a path iteratively, starting from wg,
adding (if possible) in the ith iteration a new vertex v; adjacent to v;_j.
If this is not possible, and if v; is a neighbor of v;_; for some j < i — 2,
a rotation is performed on a section of the path vg,v1,...,v;_1 to obtain
a path vo,v1,...,v5,v5-1,v;—2...v;+1. The hope is that v;+1 will have a
neighbor not yet on the path and the path can be extended.

The heuristic in [18] improves the chance for extension by building a
breadth-first search tree to consider sequences of possible rotations and the
new endpoints which would result. Tree building stops when an endpoint
is found from which the path can be extended, at which time a sequence
of one or more rotations is performed and the extension process continues.
If there is no such endpoint, the algorithm terminates without success.
However, if G has a Hamilton path, and if we get lucky, the algorithm finds
a Hamilton path. With minor modification, we can use this heuristic for
Hamilton cycles as well.

The algorithm performs surprisingly well on several classes of graphs.



We tested it on the middle two levels graphs H(2k+1, k) in [18] and showed
Hamilton cycles for 1 < k < 15. Several enhancements were required to be
able to run on the very large graphs in this class, but the basic algorithm was
the same. In this paper, we use this program, with additional modifications
described in Section 4, to complete the verification of the hamiltonicity of all
the K(n, k) (except for the Peterson graph) and H(n, k) graphs for n < 27.

In Section 2 we describe the previous work and our results for Kneser
graphs, K (n, k). In Section 3 we extend these results to the corresponding
bipartite Kneser graphs H(n, k) using a result due to Simpson and results
from our prior work. We show that the Simpson technique cannot be used
when n = 2k 4+ 1. In Section 4 we discuss algorithmic tradeoffs used in
reaching these results.

2 Kneser graphs

The Kneser graph K(2k — 1,k — 1) is also known as the odd graph O. O,
is a triangle, which has a Hamilton cycle, while O3 is the Petersen graph,
which has no Hamilton cycle. Balaban [1] studied the odd graph as the “k-
valent halved combination graph” and exhibited Hamilton cycles for k = 4
and k = 5. Meredith and Lloyd [14, 15] established Hamilton cycles in Oy,
for k =6 and k = 7 and Mather [13] showed a Hamilton cycle for k = 8.

Heinrich and Wallis [10] showed that infinitely many of the Kneser
graphs, K (n, k) have Hamilton cycles. In particular, K (n, k) has a Hamil-
ton cycle for k = 1, n > 3 (the complete graph K,,), for k =2, n > 6 and
for k =3, n > 7. Using a theorem of Baranyai [2] they derived the more
general result that K (n, k) has a Hamilton cycle for

k{2
V2 -1
which tends asymptotically to k + k2 /log, e.
The circumference of a graph is the length of its longest cycle. Chen
and Lih [3] studied the uniform subset graphs G(n, k,t) and obtained re-

sults about the circumference of such graphs, from which they proved that
K (n, k) has a Hamilton cycle when n > e(k) where

e(k) = min{n|n > 2k and (Z:i)/(";k) <1}

n>k-+

This implies that K (n, k) has a Hamilton cycle for n > (140(1))k?/log k [7].
Chen [6] used Baranyai’s theorem [2] again to show that K (n,k) has a

Hamilton cycle for n > 3k, a dramatic improvement. She [4] subsequently

improved this to show that K(n, k) has a Hamilton cycle whenever

3k+1++VHk2—-2k+1
n > 5 .




K(n,k) k<n/2
n [1]2]3 4[5 [6][7[8[9l0[il]i2]13
3 | A A - Triangle graph
4 | H P - Petersen Graph
5 |H|P A - Balaban [1]
6 |H|H L - Meredith & Lloyd [14]
7| H|H[A M - Mather [13]
8 |H/H| H H - Heinrich & Wallis [10]
9 |H|H| H| A B - Chen & Lih [3]
10 H H Cg Cl C]_ - Chen [5]
11|/H|H|H|C | L C, - Chen [6]
12|H|H|H|C| S Cs - Chen [4]
13| H|H| H |G, S L S - Current Results
4| H|H|H|Cy| S S
B|H|H|H|C|Co| S| M
W6|H|H|H| B |Cy| S S
Wl H|H|H|B|Cy| S S S
18| H|H| H B |G| Cy| S S
9| H|H|H| B |Cy|Ca| S S| S
200 H| H| H B |G| Cy S S S
21| H| H| H B |Co| C| Gy S S S
22 | H|H| H B B Co | Co | C3 S S
22l H|H| H| B | B |Cy|Ca|Cs]| S S| S
2| H/H| H| B | B |Cy|Ca|Ca| S S| S
25 HIH| H| B | B |Cy|Ca|Ca|Cs| S| S|S
26| H{H| H| B | B |Cy|Ca|Co|Cs| S| S|S
27| H| H| H B B |G |C|Cr|Co|Cs| S S T‘

Table 1: Known results for connected Kneser graphs K(n, k) for n < 27.

We have summarized the known results for Kneser graphs K (n, k) with
n < 27 in Table 1. The previous work leaves gaps when

3k+1++Vbk?2—-2k+1
2k+1<n< ks 5 + (k=5,6,7)

and

Sk +1+4V5R? — 2k 1 1
< 2

Our Hamilton cycle program was able to find Hamilton cycles in all of
the graphs in Table 1, thus filling in these gaps.

2%+1<n (k>8).



3 Bipartite Kneser graphs

The bipartite Kneser graph H(n,k) has also been studied under several
names. Dejter, Cordova and Quintana [9] constructed Hamilton cycles in
H(16,7) and H(19,9) and cited earlier work [8] in which Hamilton cycles
had been found using similar methods in H(2k+ 1,k) for k < 8, in H(2k +
2,k) for k < 6 and in H(6,3). Simpson [19] showed that if |G| is odd
and G has a Hamilton cycle then so does B(G). If |G| is even and C' =
X1,%2," - ,Tpn, 21 is a cycle in G then B(G) has a Hamilton cycle if there is
(i) a vertex x; with ¢ odd, adjacent to x1 and (ii) z, is adjacent to either
x; — 1 or z; + 1. He showed that H(n, k) has a Hamilton cycle when
272 =1+ ().

A slightly weaker condition was given in [20] where it was shown that
H(n, k) has a Hamilton cycle when n > (3k? + k + 2)/2.

Hurlbert [11] also studied H(n, k) calling it the antipodal layers problem
and he showed that H(n, k) has a Hamilton cycle for n > ck? + k for large
enough k.

Chen [6] showed that H(n,k) has a Hamilton cycle for n > 3k, and
H(3k, k) has one when (%) is odd, by extending her results for Kneser
graphs in a manner similar to that used by Simpson for extending the results
for a general graph G to the bipartite graph B(G). She [4] subsequently
improved this to show that H(n, k) has a Hamilton cycle whenever

3k+14++Vbk?2 -2k +1
n > 5 .

The special case of H(2k + 1,k) is also known as the middle two levels
problem from its relationship to the middle two levels of the Boolean lattice.
The current best result, due to the present authors [18] is that H(2k+1, k)
has a Hamilton cycle for all & < 15. Earlier results are described in that
paper.

We have summarized the known results for bipartite Kneser graphs
H(n, k) with n < 27 in Table 2. The previous work leaves gaps when

3k+1++bk2—-2k+1

2k+2<n< 5 (k=4,5,6,7)
and ,
k+1+5k2 — 2k + 1
et lan<m LT 2 ks,

We were able to fill in all of these gaps using our Hamilton cycle pro-
gram. Although the heuristic could be run independently for Kneser and
bipartite Kneser graphs, instead we added code to perform the Simpson [19]



K(n,k) k<n/2
n |1 |2 [3 [4 [5 [6 [7 [8 [9 [l0]ii][12]13
3 | D1 D1 - Dejter [§]
4 | Dy D, - Dejter et al [9]
5 |1 D1 I - Simpson
6 I D4 H - Hurlbert [11]
7|1 H | D; M - Moews & Reid [17]
8 |1 I D; S1 - Shields & Savage [18]
9 I I Dl D]_ Cg - Chen [6]
10 | I I Co | D1 Csz - Chen [4]
11 | I I H | S D1 S - Current Results
12 | 1 1 H Cy | Dy
13 |1 I Co | Ca | S D,
14 | 1 I H | C, | C3 | Dg
15 | 1 I H |C | Cy|S D,
16 | I I I Cy | Co | C3 | Dy
17 | 1 I 1 C, | Co | C3 | S D,
18 | I I I Co | Ca | Cs|S S
19 | I I I Co | Cy | Ca | C3 | S D,
20 | I I I H C, | Co | C3 | S S
21 | 1 I I H Cr | Co | C3|S S M
22 | 1 I I H C, | Co | Ca | C3 | S S
23 | 1 I I H |C | Cy | Co|Cs|S S M
24 | 1 I I H |C |Cy | Co|Ca|C3|S S
25 | 1 I I H |C |Cy | Co | Co | C3|S S | S
26 | 1 I I H |C |Cy | Co|Cr | C3|S S |S
27 | 1 I I I Co | Co | Co | Co | Co | Cs|S S S—l\

Table 2: Known results for connected bipartite Kneser graphs H(n, k) for
n < 27.

test whenever a Hamilton cycle was found in a Kneser graph under test.
This provided a relatively quick check to determine if the bipartite analog,
H(n,k), of a Kneser graph, K(n, k), was Hamiltonian. The cases in which
this test did not prove H(n, k) to be Hamiltonian when K(n, k) was were
all cases where n = 2k+1 or, in other words, H(n, k) was an instance of the
middle two levels problem. In all of these cases the authors had previously
shown H(n, k) to be Hamiltonian [18].

Since the cases where the Simpson test failed represented just one of
many possible Hamilton cycles in K (n, k) the question arises as to whether
a Hamilton cycle in K (n, k) does exist for which the Simpson test would
work. We show this is not possible.



Theorem 1 Ifn = 2k + 1 then no Hamilton cycle in K(n,k) can satisfy
the Simpson test.

Proof. The Simpson test requires that four vertices of K(n,k) form a
cycle. If k =1 then |K(n,k)| = 3 and no 4-cycle exists. Suppose k > 1
and that four vertices, a,b,c,d of K(n,k) form a cycle. Now a,b,c,d are
k—subsets of {1,2,...,n}. Since n = 2k+ 1 there exists ¢ € {1,2,...,n} such
that ¢ ¢ a and ¢ ¢ b. Hence ¢ € ¢ otherwise ¢ = a. Since ¢cNd = ¢ we have
i ¢ d. Since n = 2k + 1 this is impossible since d # b. 2

Thus it can be seen that the Simpson test may fail to show a graph
B(G) to be Hamiltonian even when a Hamilton cycle in the underlying
graph G is known.

4 The heuristic and its performance

As described in Section 1, the heuristic we used to find Hamilton cycles
in the Kneser graphs is the rotation-extension heuristic of Shields and
Savage [18]. K(27,13) has 20,058,300 vertices, each of degree 14, making
140,408,100 edges. K(27,10) has 8,436,285 vertices, each of degree 19,448,
making over 113 % 10° edges.

Handling such large graphs required improvements in both the space
and time requirements for the heuristic. In a system where the program
requires more memory than the system has available, memory is swapped to
disk by the operating system. When this occurred, execution times tended
to increase significantly.

Some optimization was done initially to reduce storage requirements.
Part of this was later taken back to significantly reduce execution time
in the tree building phase. When storage again became a problem with
large graphs of high degree, another tradeoff was required. Even if virtual
memory was large enough to hold all adjacency lists, keeping them resulted
in significant memory swapping, particularly during the tree building phase.
Instead, we used some CPU cycles to generate adjacency lists as required.
The significant saving in swapping more than offset the cost of the extra
computations for these problems. These improvements allowed us to obtain
these results on a 1.6GHz personal computer with 640MB of memory.

The long running times required for larger graphs also made a check-
point function desirable to allow restarting a problem part way through.
To accomplish this we wrote a file containing the partial path along with
some key graph information every half hour.

We have summarized the running times and number of rotation oper-
ations needed in Table 3. Note that the times shown here include (i) the
time to test hamiltonicity of K(n,k), (ii) the time to take a checkpoint



every half hour and (iii) the time required to perform the Simpson test on
all possible rotations of the cycle in K(n,k) to determine if H(n,k) has a
Hamilton cycle.
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