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With continuing shrinkage of technology feature sizes, the share of leakage in total energy con-

sumption of digital systems continues to grow. Coordinated supply voltage and body bias throt-

tling enables the compiler to better optimize the total energy consumption of the system in future

technology nodes. We present a compilation technique that targets realtime applications running

on embedded processors with combined dynamic voltage scaling (DVS) and adaptive body biasing

(ABB) capabilities. Considering the delay and energy penalty of switching between operating modes

of the processor, our compiler judiciously inserts mode-switch instructions in selected locations of

the code and generates executable binary that is guaranteed to meet the deadline constraint. More

importantly, our algorithm runs very fast and comes reasonably close to the theoretical limit of

energy optimization using DVS+ABB. At 65nm technology, we improve the energy dissipation of

the generated code by an average of 33.20% under deadline constraints. While our technique’s im-

provement in energy dissipation over conventional DVS is marginal (6.91%) at 130nm, the average

improvement continues to grow to 13.19%, 22.97%, and 33.21% for 90nm, 65nm, and 45nm tech-

nology nodes, respectively. Compared to a recent ILP-based competitor, we improve the runtime by

more than three orders of magnitude, while producing improved results.
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1. INTRODUCTION

Microprocessors are one of the major contributors to energy consumption in
embedded systems. Consequently, a number of circuit-level techniques such as
DVS and ABB have been developed to reduce the energy consumption of the
processor.

Quadratic dependence of active power on supply voltage, along with the
lower-order impact of supply voltage on clock frequency, has motivated dynamic
supply voltage scaling for processors. In this scheme the operating frequency
and supply voltage of processors are throttled at runtime to save energy when-
ever full performance is not required. This technique was very effective in the
old technology nodes, where the share of leakage energy in total energy con-
sumption was negligible. The share of leakage energy, however, increases with
the scaling of CMOS technology. Hence, conventional dynamic voltage scaling
is less effective with advancement of technology [Duarte et al. 2002].

Adaptive body biasing (ABB) is another well-known CMOS design technique
that allows runtime adjustment of transistor threshold voltage. Threshold volt-
age affects both the leakage and delay of transistors. Hence, its effect can be
combined with supply voltage scaling to minimize the total power consumption
for a given frequency [Martin et al. 2002].

We present a compilation methodology that targets embedded processors
with joint DVS and ABB capabilities. We investigate hard realtime systems that
have to meet the application deadline and have lightweight OS. Considering the
delay and energy penalties associated with switching the processor’s operating
modes, our compiler judiciously inserts mode-switch instructions in the code,
subsequently generating code that is optimized for overall energy consumption.
The generated code is guaranteed to meet the execution deadline over the input
data space.

We present a theoretical lower bound on energy reduction and subsequently
show that our compiler approaches this limit reasonably well. Furthermore, our
algorithm runs very fast and is readily scalable to large programs. Compared
to baseline compilation, our compiler improves the energy consumption of the
processor by 11.77%, 20.67%, 33.20%, and 48.72% in 130nm, 90nm, 65nm, and
45nm technologies, respectively. Compared to traditional DVS-only optimiza-
tion, we improve the average energy consumption by 6.91%, 13.19%, 22.97%,
and 33.21% in the four aforementioned technologies. Moreover, our algorithm
improves the result of an ILP-based competitor by about 2%, while running
more than three orders of magnitude faster.

2. RELATED WORK

Extensive research has been done to minimize the dynamic power consumption
of a CMOS design. Dynamic voltage scaling is utilized in several fabricated
academic and commercial processors [Burd et al. 2000]. DVS techniques adjust
supply voltage and clock frequency to minimize dynamic power under timing
constraints. Many task-level voltage scheduling algorithms have been proposed
for such processors [Pillai and Shin 2001; Yao et al. 1995; Kim et al. 2003]. How-
ever, with the continuing shrinkage of device sizes, techniques that only target
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dynamic power will not be effective [Duarte et al. 2002]. Adaptive body biasing
has been utilized to reduce the leakage power consumption [Kesharvarzi et al.
1999; Kao et al. 2002]. Researchers have also studied the application of runtime
ABB techniques [Duarte et al. 2002].

Combined DVS and ABB optimization is well studied in circuit design. In
Martin et al. [2002], a combined DVS+ABB technique is proposed for unrelated
tasks. Also, an expression for obtaining the optimal tradeoff between bias volt-
age and supply voltage is derived. Yan et al. [2003] proposed an algorithm for a
task graph with realtime constraints. None of the previous works on combined
DVS+ABB has considered intratask-level optimization by program structure
analysis. This is of particular interest to resource-constrained embedded ap-
plications that cannot admit complex task-level dynamic voltage scheduling
policies, and demand a lightweight or no operating system to guarantee the
realtime performance.

Issues of reducing leakage energy consumption of the processor are also dis-
cussed [You et al. 2006; Rele et al. 2002; Zhang et al. 2003]. In You et al. [2006],
the authors proposed an architecture with a clock-gating mechanism and com-
piler framework for reducing the leakage power. Rele et al. [2002] provide a
cooperative compiler and microarchitecture method to utilize the power gating
mechanism of the processor. Zhang et al. [2003] built a compiler framework and
energy optimization strategy to utilize the sleeping mode of functional units.
These results demonstrate that a power-gating mechanism is effective for re-
ducing the leakage energy consumption during the idle time of the function
unit, while our works utilize the ABB technique to reduce the leakage energy
consumption during the computation time of the processor.

Several research groups have proposed static intraprogram voltage scaling
[Xie et al. 2004; AbouGhazaleh et al. 2003; Azevedo et al. 2002; Hsu and Kremer
2003]. An analytical study of the potential power savings using intraprogram
DVS is reported in Xie et al. [2004]. The authors also propose an ILP-based
approach whose savings come reasonably close to the analytical bounds. In
Azevedo et al. [2002], check-points indicating the voltage scaling points are in-
serted into the program during compilation. Hsu and Kremer [2003] introduce
an algorithm that identifies the program regions with time slack for the pro-
cessor, and implement it as a source-to-source transformation. Compiler- and
operating-system-level optimizations are coordinated in AbouGhazaleh et al.
[2003]. None of these techniques considers leakage power, or the effect of tech-
nology scaling on the validity of the results. We utilize the generic power model
derived in Martin et al. [2002], and perform intraprogram simultaneous DVS
and ABB.

3. PROCESSOR MODEL AND OPERATING MODES

Our proposed compilation technique targets a processor with combined DVS
and ABB capabilities that can operate at several discrete frequencies. Accord-
ing to Martin et al. [2002], each frequency has to be associated with a cor-
responding pair of supply and body bias voltages that allow operation of the
processor at that frequency. The combination of the three parameters, namely,
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Table I. Processor Operating Modes at 90nm

Operating frequency (MHz) 1000 800 600 400 200

Supply voltage (V) 1.63 1.47 1.29 1.11 0.95

Bias voltage (V) −0.08 −0.17 −0.25 −0.35 −0.47

frequency, supply voltage, and body bias, constitutes an operating mode of the
processor. The processor is assumed able to switch between operating modes by
execution of a specialized instruction, referred to as a mode-switch instruction.
Executing of a mode-switch instruction initiates the process of setting both the
supply voltage and body bias of the processors to the target mode implied by the
instruction. Note that frequency is a function of supply and body bias voltage,
and need not be specified separately. Execution of the mode-switch instruction,
or, equivalently, switching between modes, incurs delay and energy penalties.
Both delay and energy penalties depend on the voltage difference of the two
modes involved in switching.

We assume that our target processor can operate at five different clock fre-
quencies, from 200 MHz up to 1 GHz at 200 MHz steps. We adopt the pro-
cess technology and processor parameters from predictive technology models
[Berkeley-Model; Andrei et al. 2004] and Intel XScale commercial processors,
respectively. We obtain the energy-optimal supply and body bias voltages corre-
sponding to each frequency by applying the conclusion in Martin et al. [2002].
Table I demonstrates the characteristics of the operating modes for our target
processor in 90nm.

4. ILP-BASED INTRAPROGRAM SUPPLY AND BIAS VOLTAGE SCALING

The ILP-based approach aims to achieve this goal by the insertion of static
mode-switch instructions on all control flow edges of the application. To formu-
late the problem as an ILP instance, profiling and simulation should be carried
out to capture the frequency of executing each edge of the application control
flow graph (CFG), and the average energy dissipation and delay of applica-
tion basic blocks in each of the operating modes. To determine the appropriate
mode for each edge of the CFG, a set of binary decision variables is assigned
to each edge of the application CFG. Subsequently, integer linear constraints
are formed to guarantee: (1) the assignment of each CFG edge to exactly one
mode; (2) execution of the application, considering delay penalty when switch-
ing modes, within deadline. The objective function would be another integer
linear expression that estimates the total energy consumption, including the
energy penalty of mode-switches using integer variables [Xie et al. 2004; Huang
and Ghiasi 2006].

The ILP-based technique has two major drawbacks. Firstly, the ILP formula-
tion widely used for intraprogram frequency scaling is NP-hard. Therefore, its
runtime is not scalable to large programs. Moreover, it inserts a mode-switch
instruction before entering each basic block (1 mode switch per about 5 in-
structions, on average!). Some modes will be redundant, that is, they set the
processor to the mode at which it is already operating, and can be removed
using classic compiler optimization passes. Nevertheless, the performance and
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energy overheads associated with mode switches partially diminishes the sav-
ings. In our previous work, we observed that the ILP solving time for typical
applications of about 200 basic blocks exceeds 30 minutes on an ordinary desk-
top computer [Huang and Ghiasi 2006]. As expected, the runtime grows very
fast with increase of program complexity. For example, it took the ILP solver
more than 6 hours to solve problem instances associated with typical applica-
tions of about 500 basic blocks.

In order to accelerate the solution time, it is reasonable to employ heuristics
to reduce the number of constraints in the ILP instance. This would result in a
tradeoff between the quality of the solution (energy savings) and solution time
that might lead to an acceptable balance of the two. In our study, we filtered
out the constraints associated with basic blocks that do not significantly con-
tribute to total energy consumption of the application. For example, eliminating
some constraints in the case of the susan testbench allowed us to solve the ILP
instance on the order of tens of seconds while degrading the energy consump-
tion by 12%. However, the gap in energy consumption between the original-ILP
and simplified-ILP increases with the growth of application size. Consequently,
heuristics applied on top of ILP-based approaches should be viewed as tempo-
rary solutions that somewhat push the limitations, rather than deliver truly
scalable strategies.

5. EFFICIENT AND SCALABLE MODE SWITCHING

In addition to compilation time, the ILP-based approach has yet another prob-
lem. The ILP formulation mainly depends on the control flow behavior of the
train input. The solution of the train input will be optimal. However, the opti-
mal setting for train input is suboptimal for different inputs. We cannot have
consistent energy savings as we apply different inputs. Once the actual input
significantly differs from the train input, we not only have ignorant energy sav-
ings, but also violate the deadline of the application. Therefore, we develop an
efficient and scalable mode switching algorithm to overcome the compilation-
time problem and acquire consistent energy savings while we apply various
inputs.

The ILP-based approach cannot have consistent energy savings for test in-
puts because its operating mode setting is fixed based on the control flow be-
havior of the train input. Once we apply some inputs having different control
flow behavior from the train input, the fixed operating mode setting will kill
the energy savings. Therefore, we proposed an algorithm called CPIM (check-
point insertion method) which inserts the check-points to the program stati-
cally. However, these check-points can determine the next scaling frequency
by checking the existence of the slack. Thus, although we insert these check-
points statically, our operating mode setting is still adjusted dynamically as we
apply different inputs. According to our experimental result, our proposed al-
gorithm is slightly worse than the ILP-based approach as we apply train input.
However, it outperforms the ILP-based approach as we apply various different
inputs. Another important contribution is the shrinkage of compilation time for
large applications. We will describe CPIM in detail in this section.
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5.1 Optimal Scaling Frequency

Our compiler optimization goal is to minimize the application’s total energy con-
sumption by judiciously inserting mode-switch instructions in the code while
guaranteeing the execution deadline of the application. We also consider the
energy and latency penalties of switching between modes. We develop a very
intuitive algorithm that guarantees meeting the execution deadline of the
application.

The basic idea of our method is the following: At each point of execution, by
knowing the maximum (i.e., worst-case) number of cycles required to finish the
execution of the application and the time that is left before violating the dead-
line, the next operating frequency Fnext would be the slowest possible frequency
that guarantees executing the application without violating the deadline.

Fnext = WCRC + Sd

TL
, (1)

where WCRC denotes the worst-case required cycles from that specific point
to finish the execution of the application, TL stands for “time left” in seconds,
and Sd refers to the delay penalty, in cycles, for switching between two modes.
The motivation for this scaling equation is to spread the required cycles so as
to execute the application over the remaining time. In other words, we try to
run the processor as slowly as possible to meet the deadline for the workload
at hand. This equation is proved to be theoretically optimal if continuous fre-
quencies are available [Qu 2001]. In practice, however, processors can only run
at a number of discrete frequencies and the available frequency immediately
larger than Fnext would be the right choice.

5.2 WCRC Calculation Algorithm

In order to utilize this equation and obtain the next scaling frequency for each
node of the control flow graph, we need to estimate both WCRCs for each node
of the application CFG.

In general, the software timing analysis used to calculate the WCET of an
embedded application can also be used to estimate the WCRC of the program.
However, we should avoid performing exhaustive path enumeration approach in
order to reduce the compilation time of the large embedded application. There-
fore, we next present a WCRC calculation algorithm which is simple and time
efficient. Our algorithm is similar to the nonenumeration approach proposed
in Suhendra et al. [2006]. We calculate the WCRC for each loop in the program
by tracking its heaviest path and calculate the WCRC for entire program by
traversing the control flow structure of the program in a bottom-up manner. We
assume that the worst-case execution time (WCET) over the input data space,
as well as the input associated with it, is known. Note that this assumption is
not unreasonable because guaranteeing the execution time without knowledge
of the WCET and associated input is not feasible [Li et al. 1999].

The concept of our proposed algorithm is described as follows. We use two
bottom-up traversals to calculate the WCRC for each control flow edge of the
program. The first traversal calculates the WCRC for loops inside the program.
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Fig. 1. WCRC calculation algorithm.

In order to find the WCRC for each loop, we calculate the latency of the heaviest
acyclic path, which is that acyclic path inside the loop with the largest latency.
The first traversal keeps track of the longest path inside the loop in bottom-
up order. As we acquire the latency of the heaviest acyclic path of the loop
which is equal to h, and the loop execution bound, which is equal to e, the
WCRC for the loop is equal to h∗ e. As for nested loops, our algorithm will start
from the innermost. The first traversal reports the WCRC for each loop. Then,
we replace each loop structure of the program by a dummy basic block. The
latency of the dummy basic block is equal to the WCRC of its corresponding loop
structure acquired in the first traversal. Finally, another bottom-up traversal
of the program structure is made to estimate the WCRC for each control flow
edge of the program.

Figure 1 illustrates our algorithm in detail. Function WCRC—Estimation
is the bottom-up tracer which calculates and reports the WCRC for each point
inside the DAG structure. A pre—edge—wcrc(u) inside the function denotes the
WCRC of precedent edges of the basic block u. Its value is equal to the maxi-
mum value of successive edges of the basic block u plus the latency of the latter.
Function WCRC—Main(M) separates the estimation step for different proce-
dures. For each procedure, the WCRCs of individual loops are first estimated.
As we estimate the WCRC of the procedure, the loops inside the procedure are
treated as black boxes with weights equal to their WCRCs. Likewise, while we
estimate the WCRC of the entire program, the procedures inside the program
are treated as black boxes with weights equal to their WCRCs. Our proposed
algorithm is time efficient and simple to implement. Its complexity is O(m),
where the m is the number of edges in the control flow graph.

We develop a fast and effective algorithm to calculate the WCRC by travers-
ing the graph in reverse order, assuming that the worst-case execution time
(WCET) over the input data space and the input associated with it are known.
Note that this assumption is not unreasonable because guaranteeing the execu-
tion time without knowledge of the WCET and associated input is not feasible
[Li et al. 1999].
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Fig. 2. Example function of a check-point.

5.3 Check-Point Insertion

After determining WCRC values for all CFG edges, we instrument the code to
access the time elapsed and number of cycles executed so far from the operating
system. We also need to consider the penalty required for accessing the oper-
ating system. We assume that we consume 100 cycles for accessing the time
elapsed and number of cycles executed.

Capturing the number of cycles executed so far enables the compiler to de-
termine the remaining cycles at each point. The number of remaining cycles
is simply the maximum number of cycles required (or the WCRC at the entry)
minus the number of cycles executed so far. Note that the number of remaining
cycles is a function of the input data, and not generally equal to WCRC.

However, the two become equal for some input data only for nodes on the
critical execution path. Comparing WCRC and remaining cycles provides a
sense of criticality: If the remaining cycles are larger than WCRC, there is
some slack available. Depending on the amount of slack, Eq. (1) could be used
to determine and switch to the next frequency.

The aforementioned steps are implemented at particular points of execution
in regions called check-points. Figure 2 illustrates an example check-point and
its function. Let us assume that the worst case required cycles determined by
WCRC analysis for edges G and H are 9,000 and 6,000, respectively. Further-
more, we assume that basic block 1 requires 1,000 cycles to run. This means
that the critical path of the application and the WCRC at the entry of pro-
gram snippet shown in Figure 2 is 10,000 cycles. As shown in Figure 2, we
insert check-points for edges, G and H to update the counters used to track
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Fig. 3. Check-points are inserted onto selected edges.

the number of remaining cycles. When the execution goes to check-point G,
the number of remaining cycles is 10,000–1,000 = 9,000, because 1,000 cycles
are spent for executing basic block 1. Check-point G finds that the number of
remaining cycles is no greater than WCRC at that check-point. This means it
is not safe to lower the frequency at this moment because it would violate the
deadline.

On the other hand, if the execution goes to check-point H, the number of
remaining cycles is still 10,000–1,000 = 9,000, however, the WCRC for the
execution of the rest of the program is 6,000 cycles. This means that instead
of operating under the original frequency, which must be greater than or equal
to 9,000/TL, we can scale down the frequency to 6,000/TL without violating
the deadline. After scaling down the frequency, the execution continues and we
set the number of remaining cycles from 9,000 to 6,000. Essentially, the mode
switching check-point can be thought of as a virtual entry point for the rest of
the application.

In the preceding example, we intentionally ignored the delay penalty asso-
ciated with switching between modes. Let us assume Sd is the switching delay
in cycles. As we take the latency penalty into account, the functionality of the
check-point only needs a small modification. In this case, instead of compar-
ing the number of remaining cycles to WCRC, the check-point would compare
remaining cycles to WCRC + Sd , where Sd is the switching delay in cycles.
If the number of remaining cycles are reasonably larger than WCRC + Sd ,
it means that we can scale down the frequency. If the worst-case remaining
cycles are larger than WCRC but not reasonably larger than WCRC + Sd , the
mode-switch will not be executed. However, we will not waste the existing slack
because the execution slack is captured in the number of remaining cycles, and
can be utilized in upcoming check-points.

We can insert check-points on three type of edges. The first type is forward
branches (see Figure 3(a)). The reason is that branching might create changes
in the number of remaining cycles. In addition, check-points can be inserted
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on the edges that immediately follow a loop body (see Figure 3(b)). The reason
we insert check-points here is that it is likely to have slack right after the loop
because the actual number of iterations in the loop can be less than the iter-
ations in the worst case. The third option is to insert check-points in the first
basic block of the loop. By adding check-points in the first basic block, we can
exploit the slack for each iteration of the loop. We set the minimum distance
between two check-point during check-point insertion, thereby avoiding the
redundant switch penalty brought by check-points. The minimum distance be-
tween two check-points needs to be larger than the average switching penalty.
We usually set the minimum distance between check-points to be about 10–20
times the average switching penalty. If the next desired frequency is between
two processor frequencies, we set the process to run at the faster frequency
to ensure meeting the deadline constraint. However, calculating the elapsed
time take this into account, and ultimately incorporate it into TL at upcoming
check-points.

We will have a huge switch penalty when we have too many check-points in
the application or insert them into the wrong place. The easiest way of solv-
ing this issue is to set minimum distance between two check-points. Loops are
another source of repeated the switch penalties. We intend to avoid insert-
ing check-points in the first basic block of the loop unless the size of loop is
large.

A challenge for our heuristic is the discreteness in operating voltages and
frequencies, that is, we cannot select our next frequency arbitrarily. Our scheme
for calculating the number of remaining cycles and elapsed time enables us to
efficiently address this issue.

In order to determine WCRC values and insert check-points, our algorithm
visits each edge of the application CFG only three times. Therefore, its runtime
complexity is O(m), where m is the number of edges in the application control
flow graph. For real applications, control flow graphs are sparse graphs in which
the number of control flow edges grows linearly with the number of nodes (i.e.,
basic blocks). Consequently, our algorithm runs very efficiently and is readily
scalable to large applications.

6. QUANTITATIVE ANALYSIS AND VALIDATION

6.1 Experimental Setup

In order to explore the effectiveness of our technique, we have developed two
compilation flows based on the aforementioned algorithms, namely, the ILP-
based strategy and check-point insertion method (CPIM). Both of the compil-
ers generate executable code for our target processor. Figure 4 illustrates our
experimental setup for the CPIM.

We use the MachineSUIF compiler framework [Smith and Holloway 2002]
to extract the control flow graphs of the applications. We simulate program
performance and energy to estimate the power and latency of application basic
blocks by using our XTREM-based cycle-accurate DVS+ABB simulator [Huang
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Fig. 4. The setup of experiments for the check-point insertion method (CPIM).

Table II. Application Execution Times and MILP Solution Times (sec)

Application # Basic Exec. Time Average MILP Ave. Backtracking Speed

Benchmark Domain Block @600MHz Deadline Solution Time Time Up

dijkstra network 36 32.54 37.42 5.22 0.62 8.42

patricia network 138 52.14 63.38 183 1.38 132.75

susan automotive 203 43.14 52.8 1588 4.64 342.28

jpeg-dec consumer 212 45.41 54.87 1613 4.63 348.49

gsm-dec telecom 556 53.51 65.98 22451 14.69 1528.34

and Ghiasi 2006]. To perform worst-case analysis, we select the most complex
input of each application as its train input.

For each application, there are also a number of simpler input data which
would result in faster program execution. We refer them as test input. By using
the train input to profile the application, we can capture the WCET and max-
imum number of loop iterations. After worst-case analysis, we apply CPIM,
including WCRC analysis and check-point insertion. Finally, we generate the
code and simulate it using our simulation framework to measure the energy
and performance of the generated code.

Table II summarizes the complexity, execution time, and compilation time
for both ILP and CPIM for selected applications from Guthaus et al. [2001].
The selected application domains justify the need for the execution deadline
constraint and realtime operation of the generated code.

Table II reports the baseline execution-time of the applications (using train
input) with no frequency scaling when our proposed processor runs at 600MHz.
In order to investigate the effect of deadline relaxation on the quality of differ-
ent frequency scaling methods, we have carried out extensive experiments us-
ing five different deadlines for each application. The first four are determined
by averaging adjacent execution times (e.g., execution times @800MHz and
@600MHz). For example, the first deadline is equal to the average execution
time of 1GHz and 800MHz frequencies, with no frequency scaling mechanism.
The last (fifth) deadline is set to 95% of the execution time at the slowest mode,
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that is, running the processor at 200MHz. We would like to point out that the
results are very consistent over different deadlines, and the improvements gen-
erally grow with more relaxed ones.

6.2 Experimental Result

We implemented the experimental flows depicted in Figure 4 and generated
code for the five applications listed in Table II. In the first set of experiments,
we tried to quantify the effectiveness of our approach by simulating the perfor-
mance and energy consumption with the same input (train input). The compi-
lation, corresponding simulations, and analysis are performed using the train
input in the first set of experiments. In the second part of our experiment,
we simulate a number of test inputs under the setting determined by the
train input. We have one train data inputs and five test inputs for each ap-
plication. The train input is the one associated with worst-case execution time
(WCET).

The energy optimization techniques used in the experiment are ILP-
based DVS-only (without body bias), ILP-based DVS+ABB, and CPIM-based
DVS+ABB. To better measure the optimality gap of these techniques, we also
adopted the analytical modeling and optimality analysis existing in the litera-
ture [Qu 2001; Xie et al. 2004], and applied it to our testbenches and processor
model. When we calculate this analytical energy lower bound, we make some
assumptions on the theoretical energy model of the processor. First of all, the
ideal energy processor model has no switch latency or energy. Secondly, the
ideal processor has exactly the same frequency-voltage pairs as our realistic
model and cannot switch to other frequencies or voltages arbitrarily. As for
memory, we keep it asynchronous with the processor in our ideal model. Then
we use the simulator to determine the total execution cycles and time, total
idle cycles and time for cache misses, and total cycles and time for processor
operation.

According to Qu [2001], we need only two frequencies in the optimal dis-
crete voltage schedule. We then apply the equation in Qu [2001] to calculate
two consecutive frequencies for the analytical model. By using two consecutive
frequencies and the total time for processor operation, we can get the energy
consumed by the processor operation. As for the energy consumed during cache
misses, we estimate the static energy consumption by applying the total cache-
miss-time to the average static power consumption under zero bias voltage.

Note that the optimal energy dissipation predicted by such analytical mod-
elings is only a lower bound on the amount of energy dissipation using any
dynamic voltage scaling (either intratask or intertask) technique. The bounds
not tight, and in practice not feasible.

Figure 5 and Table II show that CPIM reduces the compilation time by more
than three orders of magnitude for large programs, while achieving energy
savings that are very close to the ILP-based results. More importantly, the
results are only about 10–20% away from the theoretical loose bound of energy
savings, which means that our method comes reasonably close to the theoretical
limit of DVS+ABB technology.
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Fig. 5. Energy trend over the technology size for train input.

Fig. 6. Energy trend over the technology size for test inputs.

According to our experiment result, CPIM acquires 14.3% energy savings
for the baseline energy and outperforms ILP-based DVS by about 6.16% on
average under 65nm technology because CPIM also optimizes leakage energy.
Compared to the theoretical energy lower bound, CPIM is about 14.53% worse
than the theoretical value. CPIM outperforms ILP-based DVS and DVS+ABB
techniques by about 11.40% and 8.8%, respectively, on average, under 65nm
technology. Compared to the theoretical energy lower bound, the check-point
method is about 19.65% away from the theoretical value. CPIM has an obvious
advantage over the ILP-DVS technique for advanced technology. The reason is
that CPIM is designed for DVS+ABB optimization.

Figures 5 and 6 illustrate the energy trends over device sizes for our opti-
mized techniques using train input and test input simulation, respectively. The
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chart shows that the difference between baseline and optimized techniques
becomes larger in the advanced technology. Therefore, energy savings will in-
crease greatly as device size shrinks.

6.3 Discussion

Based on the experiment, CPIM can achieve the same energy savings as the
other methods, but reduces the compilation time greatly. This is because the ILP
technique is based on integer linear programming, which grows exponentially
with problem instance complexity. On the other hand, CPIM runtime depends
on the number of basic blocks (i.e., control flow edges) in the application. Based
on this observation, the complexity of CPIM will be in O(m), where m denotes
the total number of edges in the application CFG. The CPIM visits all edges of
the CFG three times, and runs in linear time of input size.

CPIM acquires even more energy savings when we test our optimal setting
by executing different inputs. Different from the ILP technique, our heuristic
will assign the operating mode of the processor based on the execution progress.
If the execution progress goes to the noncritical path, the check-point can deter-
mine whether it is worth executing a mode-switch based on the existing slack.
If the slack is not sufficient to outperform the switch latency, the check-point
will not execute the mode-switch instruction. The check-point executes mode-
switch instructions only when it is worthwhile to do so. Therefore, CPIM will
not waste the slack in the meaningless mode switch instruction. If the check-
point does not execute the mode-switch instruction, the executing overhead of
the check-point is relatively slight. However, the ILP-based technique inserts
mode-switch instructions whose target operating mode are fixed to the edge
of CDFG. Every fixed mode-switch instruction will be executed, regardless of
existence of slack. Therefore, a difference in the control flow behavior between
the train input and test input might downgrade the energy savings.

Since CPIM exploits the energy savings of the application by adaptively uti-
lizing the existing slack, it is closer to the theoretical limit of the energy savings
when executing test inputs. However, ILP comes slightly closer to the theoret-
ical limit of the energy savings when executing the train input. The reason is
that ILP is the optimal solution for train input, while its static operating mode
setting cannot acquire optimal energy savings for different test inputs.

When we have some small slack which cannot be used to scale down the pro-
cessor frequency, the check-point will leave these small slacks in the worst-case
remaining cycles and these can usually be used in the future. This mechanism
increases the opportunities to make use of slack and reduce the waste of the
slack when the number of scaling frequencies is few.

7. CONCLUSIONS

We present a methodology to combine dynamic voltage scaling and adaptive
body biasing during compilation of an application targeting a DVS+ABB-
enabled embedded processor. Compiler-level analysis is particularly useful
for embedded and realtime systems that demand lightweight operating sys-
tems. Additionally, compilers can exploit program execution trace information
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that is not visible to the operating system, hence can assist dynamic voltage
schedulers.

We develop a compiler framework that quickly and efficiently generates code
for a DVS+ABB-enabled processor. Experimental results advocating the effec-
tiveness of our approach show that the energy dissipation gap between leakage-
aware and conventional DVS grows with technology scaling. Moreover, they
show that our compiler’s result come reasonably close to the theoretical limits
of energy savings using this method.
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