Melvyn B. Nathanson: Mathematics Papers

1971

1. Derivatives of binary sequences, SIAM J. Appl. Math. 21 (1971), 407-412. 1972
2. An exponential congruence of Mahler, Amer. Math Monthly 79 (1972), 55-57.
3. On the greatest order of an element in the symmetric group, Amer. Math Monthly 79 (1972), 500-501.
4. Complementing sets of n-tuples of integers, Proc. Amer. Math. Soc. 34 (1972), 71-72.
5. Shift dynamical systems over finite fields, Proc. Amer. Math. Soc. 34 (1972), 591-594.
6. Sums of finite sets of integers, Amer. Math. Monthly 79 (1972),1010-1012
7. Integrals of binary sequences, SIAM J. Appl. Math. 23 (1972), 84-86.

1973
8. On the fundamental domain of a discrete group, Proc. Amer. Math. Soc. 41 (1973), 629-630.
1974
9. Catalan's equation in $K(t)$, Amer. Math. Monthly 81 (1974), 371-373.
10. Minimal bases and maximal nonbases in additive number theory, J. Number Theory 6 (1974), 324-333.
11. Approximation by continued fractions, Proc. Amer. Math. Soc. 45 (1974), 323-324.

1975
12. Maximal asymptotic nonbases (with P. Erdős), Proc. Amer. Math. Soc. 48 (1975), 57-60.
13. Products of sums of powers, Math. Mag. 48 (1975), 112-113.
14. Linear recurrences and uniform distribution, Proc. Amer. Math. Soc. 48 (1975), 289-291.
15. An algorithm for partitions, Proc. Amer. Math. Soc. 52 (1975), 121-124
16. Oscillations of bases for the natural numbers (with P. Erdős), Proc. Amer. Math. Soc. 53 (1975), 253-258
17. Round metric spaces, Amer. Math. Monthly 82 (1975), 738-741.
18. Essential components in discrete groups, Amer. Math. Monthly 82 (1975), 834

1976
19. Polynomial Pell's equations, Proc. Amer. Math. Soc. 56 (1976), 89-92.
20. Partial products in finite groups, Discrete Math. 15 (1976), 201-203.
21. Partitions of the natural numbers into infinitely oscillating bases and nonbases (with P. Erdős), Comment. Math. Helv. 51 (1976), 171-182.
22. Piecewise linear functions with almost all points eventually periodic, Proc. Amer. Math. Soc. 60 (1976), 75-81.
23. Difference operators and periodic sequences over finite modules, Acta Math. Acad. Sci. Hungar. 28 (1976), 219-224.
24. Mellin's formula and some combinatorial identities (with S. Chowla), Monatsh. Math. 81 (1976), 261-265.
25. Prime polynomial sequences (with S. D. Cohen and P. Erdős), J. London math. Soc. (2) 14 (1976), 559-562.
1977
26. Permutations, periodicity, and chaos, J. Combinatorial Theory Ser. A 22 (1977), 61-68.
27. s-maximal nonbases of density zero, J. London Math. Soc. (2) 15 (1977), 29-34.
28. Nonbases of density zero not contained in maximal nonbases (with P. Erdős), J. London Math. Soc. (2) 15 (1977), 403-405.
29. Asymptotic distribution and asymptotic independence of sequences of integers, Acta Math. Acad Sci. Hungar. 29 (1977), 207-218.
30. Oscillations of bases in number theory and combinatorics, in: Number theory day (Proc. Conf., Rockefeller Univ., New York, 1976), Lecture Notes in Math., Vol. 626, Springer, Berlin, 1977, pages 217-231.
1978
31. Multiplication rules for polynomials, Proc. Amer. Math. Soc. 69 (1978), 210-212.
32. Sets of natural numbers with no minimal asymptotic bases (with P. Erdős), Proc. Amer. Math. Soc. 70 (1978), 100-102.
33. Monomial congruences, Monatsh. Math. 85 (1978), 199-200.
34. Representation functions of sequences in additive number theory, Proc. Amer. Math. Soc. 72 (1978), 16-20.
1979
35. Bases and nonbases of squarefree integers (with P. Erdős), J. Number Theory. 11 (1979), 197-208.
36. Additive h-bases for lattice points, in: Second International Conference on Combinatorial Mathematics (New York, 1978), Ann. New York Acad. Sci. 319 (1979), 413-414.
37. Systems of distinct representatives and minimal bases in additive number theory (with P. Erdős), in: Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979), Lecture Notes in Math., Vol. 751, Springer, Berlin, 1979, pages 89-107.
38. Classification problems in K-categories, Fund. Math. 105 (1979/80), 187197.

1980
39. Sumsets of measurable sets, Proc. Amer. Math. Soc. 78 (1980), 59-63.
40. Connected components of arithmetic graphs, Monatsh. Math. 89 (1980), 219-222.
41. Minimal asymptotic bases for the natural numbers (with P. Erdős), J. Number Theory 12 (1980), 154-159.
42. Sumsets contained in infinite sets of integers, J. Combin. Theory Ser. A 28 (1980), 150-155.
43. Lagrange's theorem with $N^{1 / 3}$ squares (with S. L. G. Choi and P. Erdős), Proc. Amer. Math. Soc. 79 (1980), 203-205.
44. Arithmetic progressions contained in sequences with bounded gaps, Canad. Math. Bull. 23 (1980), 491-493.
45. Waring's problem for sets of density zero, in Analytic number theory (Philadelphia, Pa., 1980), Lecture Notes in Math., Vol. 899, Springer, Berlin, 1981, pages 301-310.
46. Lagrange's theorem and thin subsequences of squares (with (P. Erdős), in: Contributions to Probability, Academic Press, New York, 1981, pages 3-9.

1982

47. Review of Gauss: A Biographical Study, W. K. Bühler, Math. Intelligencer 4 (1982), 208-209.

1983

48. Largest and smallest maximal sets of pairwise disjoint partitions, J. Number Theory 17 (1983), 103-112.
1984
49. The exact order of subsets of additive bases, in: Number Theory (New York, 1982), Lecture Notes in Math., Vol. 1052, Springer, Berlin, 1984, pages 273-277.
1985
50. Cofinite subsets of asymptotic bases for the positive integers (with J. C. M. Nash), J. Number Theory 20 (1985), 363-372.
1986
51. Divisibility properties of additive bases, Proc. Amer. Math. Soc. 96 (1986), 11-14
52. Waring's problem for finite intervals, Proc. Amer. Math. Soc. 96 (1986), 15-17.
53. Independence of solution sets in additive number theory (with P. Erdős), in: Probability, statistical mechanics, and number theory, Adv. Math. Suppl. Stud., Vol. 9, Academic Press, Orlando, FL, 1986, pages 97-105.
1987
54. A short proof of Cauchy's polygonal number theorem, Proc. Amer. Math. Soc. 99 (1987), 22-24
55. An extremal problem for least common multiples, Discrete Math. 64 (1987), 221-228.
56. Multiplicative representations of integers, Israel J. Math. 57 (1987), 129136.
57. Thin bases in additive number theory, in: Journées Arithmétiques de Besançon (Besançon, 1985), Astérisque 147-148 (1987), 315-317, 345.
58. Problems and results on minimal bases in additive number theory (with P. Erdős), in: Number Theory (New York, 1984-1985), Lecture Notes in Math., Vol. 1240, Springer, Berlin, 1987, pages 87-96.
59. A generalization of the Goldbach-Shnirel'man theorem, Amer. Math. Monthly 94 (1987), 768-771.
60. Sums of polygonal numbers, in: Analytic number theory and Diophantine problems (Stillwater, OK, 1984), Progr. Math., Vol. 70, Birkhäuser Boston, Boston, 1987, pages 305-316.
61. Sumsets containing infinite arithmetic progressions (with P. Erdős and A. Sárközy), J. Number Theory 28 (1988), 159-166.
62. Partitions of bases into disjoint unions of bases (with P. Erdős), J. Number Theory 29 (1988), 1-9.
63. Minimal asymptotic bases with prescribed densities (with P. Erdős), Illinois J. Math. 32 (1988), 562-574.
64. Simultaneous systems of representatives for families of finite sets, Proc. Amer. Math. Soc. 103 (1988), 1322-1326.
65. Minimal bases and powers of 2, Acta Arith. 49 (1988), 525-532.

1989

66. On the maximum density of minimal asymptotic bases (with A. Sárközy), Proc. Amer. Math. Soc. 105 (1989), 31-33.
67. A simple construction of minimal asymptotic bases (with X.-D. Jia), Acta Arith. 52 (1989), 95-101.
68. Sumsets containing k-free integers, in Number Theory (Ulm, 1987), Lecture Notes in Math., Vol. 1380, Springer, New York, 1989, pages 179-184.
69. Combinatorial pairs, and sumsets contained in sequences, in: Combinatorial Mathematics: Proceedings of the Third International Conference (New York, 1985), Ann. New York Acad. Sci. 555 (1989), 316-319.
70. Additive problems in combinatorial number theory, in: Number Theory (New York, 1985/1988), Lecture Notes in Math., Vol. 1383, Springer, Berlin, 1989, pages 123-139.
71. Sumsets containing long arithmetic progressions and powers of 2 (with A. Sárközy), Acta Arith. 54 (1989), 147-154.
72. Long arithmetic progressions and powers of 2, in Théorie des nombres (Quebec, $P Q, 1987$), de Gruyter, Berlin, 1989, pages 735-739.
73. Additive bases with many representations (with P. Erdős), Acta Arith. 52 (1989), 399-406.
74. Two applications of combinatorics to number theory, in: Graph theory and its applications: East and West (Jinan, 1986), Ann. New York Acad. Sci. 576 (1989), 408-410.
1990
75. Simultaneous systems of representatives and combinatorial number theory, Discrete Math. 79 (1990), 197-205.
76. Extremal properties for bases in additive number theory, in: Number Theory, Vol. I (Budapest, 1987), Colloq. Math. Soc. János Bolyai, Vol. 51, North-Holland, Amsterdam, 1990, pages 437-446.
77. Best possible results on the density of sumsets, in: Analytic number theory (Allerton Park, IL, 1989), Progr. Math., Vol. 85, Birkhäuser Boston, Boston, 1990, pages 395-403.
1992
78. On a problem of Rohrbach for finite groups, J. Number Theory 41 (1992), 69-76
79. The simplest inverse problems in additive number theory, in: Number theory with an emphasis on the Markoff spectrum (Provo, UT, 1991), Lecture Notes in Pure and Appl. Math., Vol. 147, Dekker, New York, 1993, pages 191-206
1994
80. An inverse theorem for sums of sets of lattice points, J. Number Theory 46 (1994), 29-59
81. Addition theorems for σ-finite groups (with X.-D. Jia), in: The Rademacher legacy to mathematics (University Park, PA, 1992), Contemp. Math., Vol. 166, Amer. Math. Soc., Providence, RI, 1994, pages 275-284.
1995
82. Inverse theorems for subset sums, Trans. Amer. Math. Soc. 347 (1995), 1409-1418.
83. Independence of solution sets and minimal asymptotic bases (with P. Erdős and P. Tetali), Acta Arith. 69 (1995), 243-258.
84. Adding distinct congruence classes modulo a prime (with N. Alon and I. Z. Ruzsa), Amer. Math. Monthly 102 (1995), 250-255.
1996
85. The polynomial method and restricted sums of congruence classes (with N. Alon and I. Z. Ruzsa), J. Number Theory 56 (1996), 404-417.
86. On the sum of the reciprocals of the differences between consecutive primes (with P. Erdős), in: Number theory (New York, 1991-1995), Springer, New York, 1996, pages 97-101.
87. Finite graphs and the number of sums and products (with X.-D. Jia), in: Number theory (New York, 1991-1995), Springer, New York, 1996, pages 211-219.
1997
88. On sums and products of integers, Proc. Amer. Math. Soc. 125 (1997), 9-16.
89. Ballot numbers, alternating products, and the Erdős-Heilbronn conjecture, in: The mathematics of Paul Erdős, I, Springer, Berliln, 1997, pages 199217.

1998
90. Linear forms in finite sets of integers (with S.-P. Han and and C. Kirfel), Ramanujan J. 2 (1998), 271-281.
1999
91. Inverse theorems and the number of sums and products (with G. Tenenbaum), in: Structure theory of set addition, Astérisque 258 (1999), 195-204.
92. Number theory and semigroups of intermediate growth, Amer. Math. Monthly 106 (1999), 666-669.
2000
93. Partitions with parts in a finite set, Proc. Amer. Math. Soc. 128 (2000), 1269-1273.
94. N-graphs, modular Sidon and sum-free sets, and partition identities, Ramanujan J. 4 (2000), 59-67.
95. Convexity and sumsets (with G. Elekes and I. Z. Ruzsa), J. Number Theory 83 (2000), 194-201.
96. Growth of sumsets in abelian semigroups, Semigroup Forum 61 (2000),149153.

2002
97. Polynomial growth of sumsets in abelian semigroups (with I. Z. Ruzsa), J. Theor. Nombres Bordeaux 14 (2002), 553-560.

2003

98. Unique representation bases for the integers, Acta Arith. 108 (2003), 1-8.
99. A functional equation arising from multiplication of quantum integers, J. Number Theory 103 (2003), 214-233.

2004

100. The inverse problem for representation functions of additive bases, in: Number theory (New York, 2003), Springer, New York, 2004, pages 253-262.
101. On the ubiquity of Sidon sets, in: Number theory (New York, 2003), Springer, New York, 2004, pages 263-272.
102. Generalized additive bases, Konig's lemma, and the Erdos-Turan conjecture, J. Number Theory 106 (2004), 70-78.
103. Formal power series arising from multiplication of quantum integers, in: Unusual applications of number theory, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Vol. 64, Amer. Math. Soc., Providence, RI, 2004, pages 145-167.
104. Representation functions of additive bases for abelian semigroups, Int. J. Math. Math. Sci. (2004), 29-32.
105. Quantum integers and cyclotomy (with A. Borisov and Y. Wang), J. Number Theory 109 (2004), 120-135.
2005
106. Every function is the representation function of an additive basis for the integers, Port. Math. (N.S.) 62 (2005), 55-72.

2006
107. Quadratic addition rules for quantum integers (with A. V. Kontorovich), J. Number Theory 117 (2006), 1-13.
108. A new upper bound for finite additive bases (with S. Gunturk), Acta Arith. 124 (2006),235-255.
109. Additive number theory and the ring of quantum integers, in: General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science, Vol. 4123, Springer, Berlin, 2006, pages 505-511.
2007
110 Affine invariants, relatively prime sets, and a phi function for subsets of $\{1,2, \ldots, n\}$, Integers 7 (2007), A1: 1-7.
111. Sets with more sums than differences, Integers 7 (2007), A5: 1-24.
112. Density of sets of natural numbers and the Lévy group (with R. Parikh), J. Number Theory 124 (2007), 151-158.
113. Linear quantum addition rules, in: Combinatorial Number Theory, de Gruyter, Berlin, 2007, pages 371-380.
114. Problems in additive number theory, I, in: Additive Combinatorics, Amer. Math. Soc., Providence, 2007, 263-270.
115. Binary linear forms over finite sets of integers (with K. O’Bryant, B. Orosz, I. Z. Ruzsa, and M. Silva), Acta Arith. 129 (2007), 341-361.
116. Representation functions of bases for binary linear forms, Funct. Approx. Comment. Math. 37 (2007), 341-350.
117. Asymptotic estimates for relatively prime subsets of $\{m+1, \ldots, n\}$ (with B. Orosz), Integers 7 (2007).

2008
118. Heights in finite projective space, and a problem on directed graphs (with B. Sullivan), Integers 8 (2008), A13: 1-9.
119. Desperately seeking mathematical truth, Notices Amer. Math Soc. 55:7 (2008), 773.
120. Inverse problems for representation functions in additive number theory, Surveys in Number Theory (K. Alladi, ed.), Springer, New York, 2008, pp. 89-117.
121. Stan Tennenbaum at Penn and Rochester, Integers 8:2 (2008), 2-5.
122. Inverse problems for linear forms over finite sets of integers, J. Ramanujan Math. Soc. 23 (2008), 151-165.
123. Perfect difference sets constructed from Sidon sets (with J. Cilleruelo), Combinatorica 28 (2008), 401-414.
2009
124. The Caccetta-Haggkvist conjecture and additive number theory, in Analytic Number Theory: Essays in Honour of Klaus F. Roth, Cambridge Univ. Press, 2009, pp. 347-358.
125. Heights on the finite projective line, Intern. J. Number Theory 5 (2009), 55-65.
126. Supersequences, rearrangements of sequences, and the spectrum of bases in additive number theory, J. Number Theory 129:6 (2009), 1608-1621.
127. Sums of products of congruence classes and of arithmetic progressions (with S. V. Konyagin), Intern. J. Number Theory 5 (2009), 625-634.
128. Maximal Sidon sets and matroids (with J. Dias da Silva), Discrete Math. 309 (2009), 4489-4494.
129. Problems in additive number theory, II: Linear forms and complementing sets of integers, Journal de Théorie des Nombres de Bordeaux 21 (2009), 343-355.
130. Problems in Additive Number Theory, III: in: Combinatorial and Additive Number Theory, Birkhäuser, Basil, 2009, pages 279-297.
131. Desperately seeking mathematical proof, Math. Intelligencer 31:2 (2009), 8-10.
2010
132. Addictive number theory, in: Additive Number Theory, Springer, 2010, pp. 1-8.
133. An inverse problem in number theory and geometric group theory, in: Additive Number Theory, Springer, 2010, pp. 249-258.
134. Cassels bases, in: Additive Number Theory, Springer, 2010, pp. 259-285.

2011
135. Phase transitions in infinitely generated groups, and related problems in additive number theory, Integers 11A (2011), Article 17, pp. 1-14.
136. One, two, many: Individuality and collectivity in mathematics, Math. Intelligencer 33 (2011), 5-8.
137. Bi-Lipschitz equivalent metrics in groups, and a problem in additive number theory, Portug. Math. 68 (2011), 191-203.
138. Semidirect products and functional equations for quantum multiplication, Journal of Algebra and its Applications 10 (2011), 827-834.
139. Geometric group theory and arithmetic diameter, Publ. Math. Debrecen 79 (2011), 563-572.
140. Problems in additive number theory, IV: Nets in groups and shortest length g-adic representations, Internat. J. Number Theory 7 (2011), 1999-2017.
2012
141. Thin bases in additive number theory, Discrete Math. 312 (2012), 20692075.
142. On a partition problem of Canfield and Wilf (with Z. Ljujic), Integers 12A (2012), \#A11, pp. 1-8.

2013

143. On the fractional parts of roots of positive real numbers, American Math. Monthly 120 (2013), 409-429.
144. Dense sets of integers with prescribed representation functions (with J. Cilleruelo), European J. Combinatorics 34 (2013), 1297-1306.
145. Additive systems and a theorem of de Bruijn, Amer. Math Monthly, to appear.
146. Additive number theory applied to linear semigroups with intermediate growth, in: Combinatorial and Additive Number Theory (CANT 2011), Springer, New York, to appear.
147. Adjoining identities and zeros to semigroups, in: Combinatorial and Additive Number Theory (CANT 2011), Springer, New York, to appear.
148. Growth polynomials for additive quadruples and (h, k)-tuples, preprint.
149. Decomposition and limits of de Bruijn's additive systems, preprint.
150. Cantor polynomials for semigroup sectors, preprint.
151. On sequences without geometric progressions (with K. O'Bryant), preprint.
152. A forest for linear fractional transformations and the Gaussian integers, preprint.
