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Abstract. We developed an automated system that registers chest CT
scans temporally. Our registration method matches corresponding ana-
tomical landmarks to obtain initial registration parameters. The initial
point-to-point registration is then generalized to an iterative surface-to-
surface registration method. Our “goodness-of-fit” measure is evaluated
at each step in the iterative scheme until the registration performance is
sufficient. We applied our method to register the 3D lung surfaces of 11
pairs of chest CT scans and report promising registration performance.1

1 Introduction

Chest computed tomography (CT) has become a well-established means of diag-
nosing primary lung cancer and pulmonary metastases and evaluating response
of these malignant lesions to treatments. Diagnosis and prognosis of cancer gen-
erally depend upon growth assessment of pulmonary lesions on repeat CT stud-
ies [44, 29]. Chest CT scans can also be used for lung cancer screening, which has
been proposed by some but is still controversial. Bronchogenic cancer remains
the leading cause of cancer death in the United States, killing 160,000 people
a year. The overall 5-year survival rate is now 15% [20], but early detection
and resection can improve the prognosis significantly. For example, the 5-year
survival rate for Stage I cancer is 67% [28].

Our long-term objective is to develop an image analysis system that supports
the radiologist in detecting and comparing pulmonary nodules in repeated CT
studies in a clinical setting. Such a system must solve the classical problems
in medical image analysis – segmentation, detection, and registration – for the
important domain of chest CT images. References [5] and [19] describe our pre-
liminary system that automatically segments the thorax, lungs, and structures
1 The support of the Office of Naval Research, National Science Foundation, and
Radiological Society of North America is gratefully acknowledged.
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within the lungs, and detects nodules in axial chest CT images. In this system,
human intervention is needed to register the CT studies. In the current paper, we
focus on automating the registration task and introduce a method for automatic
three-dimensional (3D) alignment of lung surfaces in repeat CT scans.

A large body of literature has been published on registration techniques. Ref-
erences [8] and [40] provide excellent surveys. Registration methods in the med-
ical image domain focus primarily on the brain, e.g., [1, 9, 10, 12, 14, 21–23, 39,
41, 46], but also other organ systems, such as spine [13, 31], foot [34], breast [36,
43], and prostate [3].

Registration of images within the same modality, e.g., CT with CT or mag-
netic resonance (MR) with MR, and across modalities has been addressed. CT
images have been correlated with MR images [22, 23, 33, 35] and positron emis-
sion tomography (PET) with MR images [18, 23, 30, 32, 33, 37, 38] for the brain.
MR and CT scans of the head have been registered to the patient skin surface
depth data obtained by a laser range scanner [12]. Bone scans have been reg-
istered with bone films [34] for the foot. CT studies of the thorax have been
registered to PET studies [45] and bronchoscopic images [7].

Some registration approaches ensure that data sets are obtained with prospec-
tive attention to patient positioning, for example, through head fixation; others
retrospectively reorient image sets using fixed external skin-surface or bone-
implanted fiducial markers [11, 24, 26]. Techniques have been developed to reg-
ister points to points [16] or surfaces [4, 25, 26, 30], and correlate subimages [2,
17, 42]. Often only a small misalignment of the images is assumed [2]. Other
registration methods require some manual input to compensate for rotational
and translational differences between two studies [18, 30].

Registration of chest radiographs has been addressed by Kano et al. [17]. To
the best of our knowledge, an automated system to register chest CT images
temporally has not been developed yet. Registration of thoracic CT studies is
challenging, since patient position and orientation varies each time a study is
obtained. Other obstacles are differences in inspiratory volumes. The patient’s
thorax is imaged when the patient is in maximal inspiration for the entire scan.
Not all patients, however, can comply with this request.

In this paper, the lung surfaces of two CT scans are segmented and registered
for 11 patients. The scans were taken solely for clinical reasons and without
external fiducial markers or any particular attention to patient position. We
first describe an anatomical landmark-based registration method in Sections 2.1
– 2.3. We then generalize it to surface-to-surface registration in Section 2.4. In
Section 2.5, we improve the method using an iterative registration algorithm that
is based a registration scheme by Besl [4]. We then report registration results
for 11 pairs of chest CT scans in Section 3 and conclude with a discussion in
Section 4.
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2 Methods

Registration techniques relate points in two different data sets to each other.
The geometric nature of a registration transformation can be described by its
“elasticity” [40]. The degree of elasticity increases from rigid to affine to curved
mappings. Rigid-body transformations describe translations and rotations within
the image plane. Affine transformations map straight lines to straight lines and
therefore allow scaling and skewing of the data in addition to rotation and trans-
lation. Curved transformations map straight lines into curves, for example with
polynomial mappings or other deformations.

In this section, we first describe a registration method for anatomical land-
marks that is based on an affine point-to-point transformation that models 3D
rotation and translation, as well as scaling. We then generalize the affine transfor-
mation to curve-to-curve and surface-to-surface registration and finally propose
an iterative scheme to improve the surface-to-surface registration.

2.1 Registration of Anatomical Landmarks

Registration techniques determine the absolute orientation of one data set with
respect to the other. When used in the computer vision or photogrammetry liter-
ature, the term “absolute orientation” generally implies that the 3D coordinates
of corresponding points in the two different data sets are known [15]. For our
3D data sets, it is difficult to establish the anatomical correspondence of most
voxels, even for a human observer. We therefore use the voxels that make up
anatomical landmarks, such as spine and sternum, for our initial registration
method. Note that we do not use external fiduciary markers, since they would
be impractical in a clinical setting.

Bones are rigid anatomical features that can be registered reliably with a
3D affine transformation that models rotation, translation, and scaling. In par-
ticular, the sternum and vertebrae are excellent anatomical landmarks, because
their positions are relatively fixed within the chest. We estimate the 3D position
of anatomical landmarks by identifying the landmarks in the axial images and
calculating their centroids.

We also use the trachea as an anatomical landmark. Although trachea po-
sition and shape change with respiration, we found that the tracheal centroids
in the axial images serve as reliable landmarks for registration of our data sets.
Finally, we also tested the use of structures within the lungs, for example nod-
ules, for registration. Figure 1 shows how the centroids of sternum, trachea, and
a nodule in the left lung are registered in corresponding axial images of two CT
data sets.

We describe a method to detect anatomical landmarks in Section 2.2 and the
3D affine landmark-to-landmark transformation in Section 2.3.

2.2 Correlation-Based Recognition of Anatomical Features.

We use template images of anatomical landmarks, for example, sternum, verte-
bra, and trachea, as shown in Fig. 1, to detect these landmarks in our test data.
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Fig. 1. On the left, template images of the sternum, trachea, and spine are shown. In
the middle, two corresponding CT images are shown that are part of two different CT
studies of the same patient. The landmarks chosen for the initial registration are the
centroids of the sternum, trachea, and a nodule in the left lung. The green test points
in study 2 must be matched to the red model points in study 1. On the right, the best
affine transformation of the green test points is shown in blue.

The template images are created offline by manually cropping subimages of the
features out of a training data set. Although the features look slightly different
in the test data, training and test data generally match well. This is particularly
true if we use a deformable template that can be scaled or rotated.

Let a describe the affine parameters position, scale, and rotation of the tem-
plate. We use the normalized correlation coefficient to find the best estimate of
the affine parameters. In our previous work [6], we showed that the statistically
optimal estimator for the affine parameters takes the form of the normalized cor-
relation coefficient. It quantifies how well the measured data in subimage Iq(x, y)
matches the template feature in q(x, y;a) and serves as a match measure that is
“information conserving” because it exploits all the measured data relevant to
the feature’s recognition. The normalized correlation coefficient is defined by

r(a) =
1

σI(a)σq(a)
(A(a)

∑
(x,y)∈O

Iq(x, y)q(x, y;a)− mI(a)mq(a)), (1)

where mI(a) =
∑

Iq(x, y) and mq(a) =
∑

q(x, y;a) are the respective local im-
age means, σ2

I (a) = A(a)
∑

Iq(x, y)2 − (
∑

Iq(x, y))2 and σ2
q (a) = A(a)

∑
q(x, y;

a)2 − (
∑

q(x, y;a))2 are the respective local variances, and where the sums are
computed over a region O that is the union of all pixels that contain the expected
feature and A = |O| is the number of pixels in O.

We propose a hierarchical method of search for the global peak that computes
the correlation coefficient at different resolution scales. For position estimation,
for example, we choose a grid-based approach which samples the ambiguity sur-
face at every 10th pixel, then around local peaks at every 5th pixel, and then
eventually in the surrounding of maximum peak at every pixel. The ambigu-
ity surfaces for the position estimates of anatomical features have global peaks
with correlations of at least 0.8, which lie far above the expected correlation
E[r(a)] = 0. In addition, once a feature, such as the trachea, is found in an axial
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image, the search space for the same feature in subsequent images can be reduced
significantly. In addition, the template feature q can automatically be updated
online with the cropped image of the detected feature in the previous slice. This
results in high correlations (above 0.9) and reliable estimates of feature position
and size.

2.3 Three-Dimensional Affine Point-to-Point Registration.

Given a voxel x in study 1 and a voxel p in study 2, the general 3D affine
transformation

x = Ap+ x0 (2)

maps p into x, where the 3 × 3 matrix A can be expressed in terms of nine
parameters, three for rotation, three for scaling, and three for skewing. Vector x0

describes the 3D translation between x and p.
In our application, the orientation of the patient’s body on the CT table is

modeled by rotation around the x, y, and z axes. Parameters that model scaling
in the x- and y-dimensions are needed if the field-of-view, i.e., the pixel-width-
to-millimeter ratio, differs between two studies. Scaling is usually uniform in
the x- and y- but not in the z-dimension. Scaling in z is due to the differing
slice thickness and number of slices in the two studies. Note that the scaling
parameters are determined before scan acquisition. We therefore do not need
to invert for the scaling parameters, but instead directly use the field-of-view
and collimation information provided with the scan data. We assume that the
CT scanner does not introduce skewing and preserves the Cartesian (or rectan-
gular) coordinates of 3D points. Then the problem of finding the general affine
transformation between two CT studies reduces to the problem of finding the
rigid-body transformation between the two studies after they have been adjusted
for scaling differences.
The rigid-body transformation T maps p into x,

x = T (p) = Rp+ x0, (3)

where the orthonormal 3× 3 matrix R rotates p into vector Rp, which is then
shifted into x by translation vector x0. We have 12 unknowns (9 matrix coef-
ficients and 3 translation parameters) and only 3 linear equations. So we need
at least 4 corresponding points to compute the unknown transformation pa-
rameters. If we impose the orthonormality condition, we obtain an additional
equation and therefore only need 3 corresponding points. Note that these three
points must not be collinear.

Since there may be errors in the measurement of the points or in the corre-
sponding landmark detection algorithm, a greater accuracy in determining the
transformation parameters can be obtained if more than three points are used.
Given a set X of n points x1, . . . ,xn in study 1 and a set P of corresponding
points p1, . . . ,pn in study 2, our goal is to minimize the sum of square residual
errors

n∑
i=1

‖ei‖2 =
n∑

i=1

‖xi − T (pi)‖2 =
n∑

i=1

‖xi −Rpi − x0‖2 (4)
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with respect to the unknowns R and x0. A closed-form optimal solution to this
least-squares problem was given by Horn [16]. The advantages of his solution
are that an iterative scheme or initial guess are not required. The best possible
transformation is computed in one step. An additional advantage is that the
solution is symmetric, which means that the solution that transforms P into X
is the exact inverse of the solution that transforms X into P .

The best translation vector x̂0 is the difference between the centroid x̄ =
1/n

∑n
i=1 xi of point set X and the centroid p̄ = 1/n

∑n
i=1 pi of point set P

rotated by rotation R :
x0 = x̄−R(p̄). (5)

Therefore, the translation can be computed easily once the rotation is found.
To find the rotation, the coordinates of voxels in X and P are converted into
coordinates of voxels in X ′ and P ′ of coordinate systems that are originated
at the respective centroids, e.g., x′i = xi − x̄ for all xi ∈ X. This reduces the
least-squares problem of Eq. 4 to a minimization of

n∑
i=1

‖x′i −Rp′
i‖2 =

n∑
i=1

‖x′i‖2 − 2
n∑

i=1

x′Ti Rp
′
i +

n∑
i=1

‖p′
i‖2 (6)

with respect to rotation R only, or

max
R

n∑
i=1

x′Ti Rp
′
i. (7)

The solution of this maximization problem is

R =




q2
0 + q2

x − q2
y − q2

z 2(qxqy − q0qz) 2(qxqz − q0qy)
2(qyqx − q0qz) q2

0 − q2
x + q2

y − q2
z 2(qyqz − q0qx)

2(qzqx − q0qy) 2(qzqy + q0qx) q2
0 − q2

x − q2
y + q2

z


 , (8)

where q = (q0, qx, qy, qz) is the unit eigenvector that corresponds to the maximum
eigenvalue of the symmetric matrix

N =




sxx + syy + szz syz − szy szx − sxz sxy − syz

syz − szy sxx − syy − szz sxy + syz szx + sxz

szx − sxz sxy + syz −sxx + syy − szz syz + szy

sxy − syx szx + sxz syz + szy −sxx − syy + szz


 ,

(9)
and skl is the kl-th component of outer-product matrix S =

∑n
i x

′
ip

′T
i .

In Figure 1, the centroids of the sternum, trachea, and a nodule in study 1,
shown in red, make up the model set X = {x1,x2,x3} and the corresponding
centroids in study 2, shown in green, make up the test set P = {p1,p2,p3}. First
we compute the rotation matrix using Eq. 8, then the translation parameters
using Eq. 5, and finally the transformation T of P into X using Eq. 3, which is
illustrated in blue in Fig. 1. We use Eq. 4 to report the “goodness of fit.”
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2.4 Three-Dimensional Affine Shape Registration.

In this paper, we focus on the surface of the lung parenchyma that is segmented
from the full 3D data set using the method described in our earlier work [19,
5]. Figure 2 demonstrates a 3D view of the lung surface. The lung parenchyma
was segmented on each of the axial images of a low-dose chest CT scan. The
scan was reconstructed at 1.0 mm intervals and with a 1.25 mm slice thickness.
Our algorithm identifies the lung borders of the parenchyma and uses them to
construct the 3D surface view of the lung parenchyma. Our goal is to register the
lung surfaces segmented on an initial CT scan to the lung surfaces segmented
on another CT scan of the same patient obtained at a later time.

Fig. 2. 3D visualization of the lung. Top left image: coronal view of both lungs. Top
right image: top-down axial view of one lung. Bottom images: wire-frame visualization
of one lung.

The point-to-point registration algorithm described above provides the ab-
solute orientation of one point set P with respect to the other point set X. It
assumes that the correspondence between points xi and pi, for each i, has been
established. For certain points, for example the centroids of the sternum in cor-
responding axial slices, correspondence can be determined with relatively high
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confidence, but for other point pairs, their correspondences are not as easily es-
tablished. For example, a lung border point in the apex of study 1 corresponds
to some border point in the apex of study 2, but which point generally cannot
be determined, even by a human observer. This is true for points that are pixels
on curves in corresponding 2D axial images, as well as voxels on 3D surfaces.
We therefore define the correspondence C of two points on different curves or
surfaces by their distances to each other and the rest of the points. In particular,
test point pi corresponds to model point xj = C(pi), if their Euclidean distance
is the shortest among all distances between pi and any point in X, i.e.,

C(pi) = xj for which ‖xj − pi‖ = min
xk∈X

‖xk − pi‖. (10)

Note that C is not a symmetric mapping, i.e., the corresponding test point pr =
C(xj) of model point xj is not necessarily pi, since the shortest distance among
all distances between xj and any point in P ,

min
ps∈P

‖xj − ps‖, (11)

may be shorter than ‖xj−pi‖. Using the definition for correspondence in Eq. 10,
we can match two curves or two surfaces to each other that contain a different
number of pixels or voxels.

The correspondence definition in Eq. 10 is reliable if the two data sets are
close to each other, in particular, if they have been registered. This creates a
paradoxical situation: we would like to register corresponding points, but need
to register them first in order to establish their correspondences. To resolve this
situation, we solve the registration and correspondence problems concurrently.
We developed an iterative approach based on Besl’s iterative closest-point algo-
rithm [4].

We first detect anatomical landmarks in studies 1 and 2 and compute the 3D
affine transformation that registers them optimally, as described in Section 2.3.
We then segment the lungs [19, 5] and register them with the transformation pa-
rameters computed for the landmark registration. We establish correspondences
by computing the Euclidean distances between all point pairs of the two data
sets. If the registration error is too large, we register the transformed lung bor-
ders in study 2 to the lung borders in study 1, compute the new correspondences
and registration error, and then iterate. Once the error is sufficiently small, we
terminate the process. Convergence of this iterative algorithm can be shown [4].
The pseudo-code of our method is given below.

2.5 Registration Code

Function LungRegistration takes as inputs 3D voxel data sets CTstudy1 and
CTstudy1 that have been adjusted for field-of-view differences, and a parame-
ter threshold that is used to decide when the function can terminate with a
sufficient registration result. Function LungRegistration outputs the transfor-
mation parameters for translation and rotation. Its local variables are defined
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in lines 2 – 6. For the function calls in lines 7 – 17, we use C-style notation
to distinguish input parameters, for example lung1 in line 14, from parameters
that change during the function call, for example &lungR, &translation, and
&rotation in line 14.

1 Function LungRegistration (CTstudy1, CTstudy2, threshold) {
2 float error;
3 voxelset lung1, lung2, lungR;
4 voxelset landmarks1, landmarks2;
5 voxel translation;
6 3x3matrix rotation;
7 DetectLandmarks(&landmarks1, &landmarks2);
8 RegisterLandmarks(landmarks1, landmarks2,

&translation, &rotation);
9 SegmentLungs(CTstudy1, &lung1);
10 SegmentLungs(CTstudy2, &lung2);
11 RegisterLungsInitially(lung1, lung2,

translation, rotation, &lungR);
12 ComputeCorrespondencesAndError(lung1, lungR, &error);
13 while (error > threshold) {
14 RegisterLungs(lung1, &lungR, &translation, &rotation);
15 ComputeCorrespondencesAndError(lung1, lungR, &error);
16 }
17 OutputResults(translation, rotation);
18 }

Variables lung1 and lung2 can either contain the voxels that make up the
right and left lungs in the respective CT studies, which means that both lungs
will be registered together, or they can contain the voxels of only the right
or the left lungs. In the second case, LungRegistration must be called twice,
once for the right, and once for the left lung registration. Figure 3 shows the
results of joint and separate lung registrations for the 2D case, Fig. 4 the results
of registering 3D data sets that contain ten left lung contours, and Fig. 5 the
results of registering the full 3D lung surfaces of a right lung. Visual inspection
shows that the red measured and blue computed points match well and confirms
the quantitative error analysis.

3 Results

Eleven patients with cancer diagnoses and pulmonary nodules were selected, who
had thoracic CT scans for clinical indications between April 1993 and August
2000. The selected patients each had two CT studies, and a total of 22 CT studies
was evaluated. Ten chest CT scans had been performed helically on GE HiSpeed
Advantage machines (GE Medical Systems, Milwaukee, WI) according to the
standard departmental protocol. The scans were obtained from the lung apices
through the adrenal glands using a 1:1 pitch either with 5mm collimation for the
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Fig. 3. Visualization of 2D lung border registration. On the left, two corresponding CT
slices are shown with their automatically segmented lung contours in red for study 1 and
green for study 2. Three, non-consecutive iterations during the registration process are
illustrated in the middle and right images. The green lung borders are first transformed
to the dark blue contours, then from there to the light blue contours, and finally, after a
few more iterations, to the white contours. In the middle image, the resulting contours
are shown when both left and right lungs are registered together. In the right image,
the resulting contours are obtained from two registration processes, one for the left
lung and one for the right. Note that in both cases, red and white contours match well.

Fig. 4. Visualization of the 3D registration of ten left lung border curves with views
from the lung’s side (shown in the image on the top left), bottom (bottom left image),
and top (right image). The green test points in study 2 are registered to the red model
points in study 1 using the transformation that maps green points to blue points. The
registration error is minimal.
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Fig. 5. On the left, wire models of the right lung for study 1 are shown in red and
study 2 in green. On the right, the transformed lung surface of study 2 is shown in
blue. It matches well with the lung surface of study 1, shown again in red.

entire study or 10mm collimation with 5mm collimation through the hila. One
study was taken on a multi-helical Somatom Volume Zoom CT (Siemens Medical
Systems, Iselin, NJ). The scan was performed using a 1.0 mm collimator and
reconstructed in 1.25 mm increments at 1.0 mm intervals. Table 1 summarizes
the results.

3.1 Registration Speed

The advantage of the initial landmark registration is that it significantly increases
the speed of the iterative registration process. Note that we could have merely
guessed an initial transformation by leaving out lines 7 and 8 and switching
lines 11 and 12 in our pseudo-code. However, depending on the size of the data
sets, registration of the full 3D lung surfaces without initial landmark registration
takes in the order of hours on a PC with a 866 MHz Pentium III processor.
Instead of iterating until the registration error falls below a certain threshold,
we fixed the number of iterations to be 25. Figure 6 shows how the error decreases
as a function of iteration index. For one of our data sets, after 25 iterations, the
registration error reduced to 25% of the initial error. For a data set reconstructed
at 5/10/5 mm thickness creating about 2 × 35 lung slices, 25 iterations take
about 2 hours on average. For the data set with 1.25 mm thickness creating
about 2× 200 lung slices, processing 25 iterations took more than 3 days.

Using initial landmark registration, a much smaller number of iterations is
needed to produce sufficient registration results. Including landmark detection
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Table 1: Registration Results

Patient Months Reconstruc- No. Lung Ratio of Rotation Trans-
between tion intervals Slices in Surface Pts. in Euler lation
Studies in mm Studies 1,2 Studies 2/1 Angles (degrees) in cm

1 2 5/10/5 31 31 89% (0.4, 0.0, 6.3) 2.9
2 1 1

2
5 46 53 114% (1.9, -0.1, 3.9) 3.3

3 4 1 196 202 94% (1.0, -4.7, -0.5) 1.6
4 74 10/5/10, 5 27 42 154% (0.5,-0.9, -9.0) 2.6
5 2 5 42 49 115% (0.2, 0.4, -10.3) 4.0
6 4 10/5/10 29 30 88% (-0.4, 1.5, -2.1) 1.6
7 3 1

2
10/5/10 29 30 91% (0.4, 0.9, -6.3) 6.0

8 1 5 30 29 92% (-1.5, -1.2, -2.9) 3.7
9 4 1

2
10/5/10 58 54 98% (-0.5, 1.5, -6.8) 1.9

10 2 5 43 45 105% (-2.4, -4.8, 12.8) 9.5
11 1 1

4
5 48 54 78% (-1.0, 1.6, -12.2) 7.2

and registration, therefore makes our algorithm more practical and cuts the
processing time significantly.
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Sum of Squared Errors

Fig. 6. The sum of squared errors is shown as a function of iteration index for regis-
tration of the lung surfaces of patient 2. The error is reported in units of 108 mm2.

4 Discussion and Conclusions

In our preliminary system [19, 5], image-to-image registration required that the
lung apices were identified manually on the two studies. Human intervention was
also needed to correlate studies with different collimation. To overcome the need
of manual intervention, we developed an automatic 3D registration method that
matches the lung surfaces in repeated CT studies.
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Our lung registration results for the 11 pairs of CT scans are very promising.
The performance or “goodness-of-fit” of our registration method is evaluated
quantitatively by the sum-of-squared-differences measure and qualitatively by
visual inspection. In the future, we will also test whether our system can reliably
register corresponding nodules in repeated chest CT scans and thus become a
clinically useful tool for nodule growth assessment.

We presented a global registration method, which means that any change in
a transformation parameter influences the transformation of the 3D data set as
a whole [40]. In a local transformation, such a change influences only a subset of
the data. In the future, we will design deformable models [27] for lung surfaces
in order to model local transformations that are due to differences in patient
respiration. We will use the deformable model parameters that register lung
border surfaces to address the difficult task of registering structures within the
lung. This will require modeling the deformable shapes of nodules in 3D and
also modeling nodule position as a function of lung surface deformation, since
nodules may move within the lung due to the patient’s respiration.

Landmark detection and registration significantly improve the speed of the
registration process. Since there is a tradeoff between speed and precision of
registration, we will test the impact of resolution reduction on registration per-
formance, in particular, nodule registration. We will also investigate whether
initial registration of a larger set of landmarks will improve registration preci-
sion and speed.

In summary, we have developed a 3D method for registration of lung surfaces
in repeated chest CT scans and applied our method to register the lungs scans
of 11 patients.
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