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Abstract

A new information-theoretic learning algorithm is introduced for kernel-based topographic map formation. The kernels are allowed to

overlap and move freely in the input space, and to have differing kernel ranges. We start with Linsker’s infomax principle and observe that it

cannot be readily extended to our case, exactly due to the presence of kernels. We then consider Bell and Sejnowski’s generalization of

Linsker’s infomax principle, which suggests differential entropy maximization, and add a second component to be optimized, namely,

mutual information minimization between the kernel outputs, in order to take into account the kernel overlap, and thus the topographic map’s

output redundancy. The result is joint entropy maximization of the kernel outputs, which we adopt as our learning criterion. We derive a

learning algorithm and verify its performance both for a synthetic example, for which the optimal result can be derived analytically, and for a

classic real-world example. q 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Self-organizing maps; Kernel-based topographic maps; Information-based learning; Joint entropy maximization; Incomplete gamma distribution

kernel

1. Introduction

One way to improve the density estimation properties,

the noise tolerance, or even the biological relevance of the

self-organizing map (SOM) algorithm (Kohonen, 1982,

1995), is to equip the lattice neurons with local kernel

functions, such as Gaussians, rather than winner-take-all

(WTA) functions. We further call such lattices kernel-based

topographic maps (Fig. 1). An early example is the elastic

net of Durbin and Willshaw (1987), which can be viewed as

an equal-variance Gaussian mixture density model, fitted to

the data points by a penalized maximum likelihood term. In

recent years, algorithms that adopt a probabilistic approach

have been introduced by Bishop, Svensén, and Williams

(1998) (Generative Topographic Map, based on con-

strained, equal-variance Gaussian mixture density modeling

with equal mixings), Utsugi (1997) (also using equal

mixings of equal-variance Gaussians), and Van Hulle

(1998, 2000) (equiprobabilistic maps using equal mixtures

of Gaussians with differing variances). Furthermore, we

should also mention the fuzzy membership in clusters

approach of Graepel, Burger, and Obermayer (1997), and

the maximization of local correlations approach of Xu and

co-workers (Sum, Leung, Chan, & Xu, 1997), both of which

rely on equal-variance Gaussians. Graepel, Burger, and

Obermayer (1998) also proposed a still different approach to

kernel-based topographic map formation by introducing a

non-linear transformation that maps the data points to a

high-dimensional ‘feature’ space, and that, in addition,

admits a kernel function, such as a Gaussian, with fixed

variance, as in the (kernel-based) support vector machines

(Vapnik, 1995). This idea was recently taken up again by

András (2001), but with the purpose of optimizing the map’s

classification performance, by individually adjusting the

(Gaussian) kernel radii using a supervised learning

algorithm. Another approach is offered by the local density

estimation (LDE) algorithm (Van Hulle, 2002), which

individually adapts the centers and radii of the Gaussian

kernels to the assumed Gaussian local input density. Finally,

the original SOM algorithm itself has been regarded as an

approximate way to perform equivariance Gaussian mixture

density modeling by Utsugi (1997), Yin and Allinson (2001)

and Kostiainen and Lampinen (2002), and others.

The question is now: how to develop kernel-based

topographic maps that optimize an information-theoretic

criterion, such as Linsker’s infomax principle?1 The kernels
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should be allowed to move freely in the input space,

possibly with differing kernel ranges, so as to model the

local input density. The obvious answer is to express the

average mutual information integral in terms of the kernel

output densities, or probabilities when they are discretized,

and adjust the kernel parameters so that the integral is

maximized. However, such an approach rapidly becomes

infeasible in practice: (1) topographic maps typically

contain several tens to hundreds of neurons, and (2) several

neurons in the map can be jointly active, due to their

overlapping activation kernels. Indeed, with respect to the

second argument, Linsker (1989) already needed to restrict

himself to binary neurons (in a WTA network), in order to

facilitate the computation of the average mutual information

integral. A different information-theoretic approach is to

minimize the Kullback-Leibler divergence (also called

relative- or cross-entropy) between the true and the

estimated input density, an idea that has been introduced

for kernel-based topographic map formation by Benaim and

Tomasini (1991), using equal-variance Gaussians, and

extended more recently by Yin and Allinson (2001) to

Gaussians with differing variances.

In this article, we will introduce a new learning

algorithm for kernel-based topographic map formation

that is aimed at maximizing the map’s joint entropy. This is

achieved by maximizing the (differential) entropies of the

kernel outputs individually, which also maximizes the

information transfer through each kernel, given that also

the mutual information between the kernel outputs needs to

be minimized. The latter is achieved heuristically by

having a competitive stage in the learning process, the

presence of which is, together with the neighborhood

function, essential for topology-preserving map formation.

The article is organized as follows. In Section 2, we

develop our information-theoretic approach to kernel-

based topographic map formation. Then, in Section 3, we

introduce our self-organizing learning algorithm. In

Section 4, we discuss the correspondence with other

algorithms for kernel-based topographic map formation. In

Section 5, we assess the density estimation and the joint

entropy performances for two example cases: a synthetic

example, for which the theoretically-optimal joint entropy

result can be derived analytically, and a real-world

example, for which the theoretically-optimal result is not

known, but which is commonly considered for bench-

marking in the density estimation literature. Finally, we

conclude the article in Section 6.

2. Information-theoretic approach

As pointed out in Section 1, maximizing the average

mutual information integral is not a feasible option for

kernel-based topographic map formation. Another possi-

bility is the generalization, introduced by Bell and

Nomenclature

A discrete lattice consisting of N formal neurons

d number of dimensions in V-space

Dwi update of kernel center of neuron i

Dsi update of kernel radius of neuron i

hs learning rate for kernel radii

hw learning rate for kernel centers (‘weights’)

hðvÞ (sigmoidal) output function

Gð·Þ gamma distribution

Hðy1Þ differential entropy of y1

Hðy1; y2Þ joint entropy of y1 and y2

i a neuron’s label

ip neuron winning the competition

Iðy1; y2Þ mutual information between y1 and y2

JE joint entropy

k number of quantization intervals (of kernel

output)

Kð·Þ kernel output function

L neighborhood function

MI mutual information

MSE mean squared error

N number of lattice neurons

pðvÞ input density distribution

px2 ð·Þ chi-squared distribution

pyi
ð·Þ density of kernel output yi of neuron i

Pða; xÞ (complement of the) incomplete gamma

distribution of x with a degrees of freedom

P̂ðvliÞ neuron i’s posterior probability of activation

ri neuron i’s lattice coordinate

s standard deviation (of Gaussian distribution)

si kernel radius neuron i

sL neighborhood function range

sL0 initial neighborhood range

SOM Kohonen’s Self-Organizing (feature) Map

t simulation time (time step)

tmax maximum number of time steps

V d-dimensional space of input signals

v ¼ ½v1;…; vd� input vector in d-dimensions

WTA winner-takes-all

wi ¼ ½wi1;…;wid� kernel center (‘weight vector’) of i-

th neuron in d dimensions

yi kernel output of neuron i

Fig. 1. Kernel-based topographic maps. Example of a 2 £ 2 map (cf.

rectangle in V-space) for which each neuron has a Gaussian kernel as output

function. For each neuron, a circle is drawn with center the neuron weight

vector and radius the kernel range.
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Sejnowski (1995), of Linsker’s infomax principle to non-

linear (i.e. sigmoidal) output functions (in the zero-noise

limit, i.e. uncorrupted by any known noise source). They

showed that the mutual information between input and

output is maximized when the output entropy is maximized.

The entropy is called ‘differential’ entropy since it only

holds with respect to some reference such as the discretiza-

tion accuracy of the inputs and the outputs. The mutual

information between input and output is maximized by

maximizing the differential entropy only, which will be

achieved when the output activity distribution is uniform

(we assume that the output has bounded support). As a result

of maximizing the differential entropy, when assuming an

unimodal input density, for the argument’s sake, the high

density part of the input matches the sloping part of the

neuron’s output function hðvÞ: In other words, the non-linear

transformation hðvÞ; v [ V # R; that makes the output

distribution uniform is the cumulative distribution function

(repartition function):

hðvÞ ¼
ðv

21
pðxÞdx; ð1Þ

with pð·Þ the input density. Note that the derivative of hðvÞ

corresponds to the input density distribution.

It is clear that this principle cannot directly be applied to

kernel-based output functions. Indeed, hðvÞ in Eq. (1) is a

global output function: it increases monotonously when in

the input v goes from 21 to 1. What we need is a localized

output function, a kernel function, such as a Gaussian. In

addition, since we have multiple neurons in a topographic

map, the kernels are likely to overlap, even if they would

have bounded supports in the input space. The overlap

makes the neural outputs statistically dependent and, hence,

the lattice output distribution redundant. We can formulate

this dependency in information-theoretic terms as the

mutual information between the neural outputs. Consider

a lattice consisting of two neurons with outputs y1 and y2.

Their joint entropy can be written as:

Hðy1; y2Þ ¼ Hðy1Þ þ Hðy2Þ2 Iðy1; y2Þ; ð2Þ

with Hðy1Þ and Hðy2Þ the differential entropies of the neuron

outputs, and Iðy1; y2Þ the mutual information between them.

Maximizing the joint entropy Hðy1; y2Þ consists of max-

imizing the differential entropies while jointly minimizing

Iðy1; y2Þ: Indeed, when the differential entropies would be

maximized individually, then the converged kernels will

coincide completely, and the mutual information will be

maximal. Conversely, the mutual information will be

minimal when the neurons are inactive for every sample

drawn from the input distribution, but then the differential

entropies will also be minimal. Hence, the learning

algorithm needs to find a trade-off between the two

contributing factors in Eq. (2).

2.1. Kernel definition

As motivated by Bell and Sejnowski (1995), the mutual

information that the output yi of neuron i contains about its

input v; Iðyi; vÞ; v [ V # Rd; is maximal when the

differential entropy of yi; HðyiÞ; is maximal. When assuming

that the kernel output has bounded support, the differential

entropy HðyiÞ will be maximal when the output distribution

is uniform. This is achieved when the kernel function

corresponds to the cumulative distribution function (reparti-

tion function) of the kernel’s input density.

Assume that the input density distribution is a d-

dimensional, radially-symmetrical Gaussian with mean

½m1;…;md�; and standard deviation s. The distribution of

the Euclidean distances to the mean of the Gaussian can be

obtained as follows. For a unit-variance Gaussian, x WPd
j¼1 ðvj 2 mjÞ

2; v ¼ ½vj�; is known to obey the chi-squared

distribution with u ¼ 2 and a ¼ d=2 degrees of freedom

(Weisstein, 1999):

px2 ðxÞ ¼

xðd=2Þ21 exp 2
x

2

� �

2d=2G
d

2

� � ; ð3Þ

for 0 # x , 1; and with Gð·Þ the gamma distribution. Let

r ¼
ffiffi
x

p
; then pðrÞ ¼ 2rpx2ðr2Þ; following the fundamental

law of probabilities. After some algebraic manipulations,

we can write the distribution of the Euclidean distances as

follows:

pðrÞ ¼

2rd21 exp 2
r2

2

 !

2d=2G
d

2

� �
;

ð4Þ

or when the input Gaussian’s standard deviation is s:

pðrÞ ¼

2
r

s

� �d21

exp 2

r

s

� �2

2

0
BBB@

1
CCCA

2d=2G
d

2

� � : ð5Þ

The distribution is exemplified in Fig. 2 (thick and thin

continuous lines). The mean of r equals

mr ¼

ffiffi
2

p
sG

d þ 1

2

� �

G
d

2

� � ;

which can be approximated as
ffiffi
d

p
s for d large, using the

approximation for the ratio of the gamma functions by

Graham, Knuth, and Patashnik (1994); the second moment

around zero equals ds2:

Finally, the kernel is defined in accordance with the

cumulative distribution of pðrÞ; which is the (complement of
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the) incomplete gamma distribution:

yi ¼ Kðr;wi;siÞ ¼ P
d

2
;

r2

2s2
i

 !
;

G
d

2
;

r2

2s2
i

 !

G
d

2

� � : ð6Þ

The kernel functions for d ¼ 1;…; 10 are plotted in Fig. 2

(thick and thin dashed lines). When evaluating yi in terms of

the input v; a radially symmetrical kernel is obtained, which

gradually becomes bell-shaped, when d increases (cf.,

rightmost thin dashed line in Fig. 2). It should be noted

that this kernel can be used for regression purposes, e.g. as

in a radial basis function type of network, since it is capable

of ‘universal approximation’, in the sense of Park and

Sandberg (1993) (see Appendix A). We will not further

consider regression in this article, but rather concentrate on

density estimation.

3. Self-organizing learning algorithm

Consider a lattice A of N neurons and corresponding

Gaussian kernels Kðv;wi;siÞ; i ¼ 1;…;N: Consider first

the adaptation of the kernel center. The entropy of the

kernel output of neuron i can be written as:

HðyiÞ ¼ 2
ð1

0
pyi

ðxÞln pyi
ðxÞdx; ð7Þ

with pyi
ð·Þ the kernel output density which, in turn, can

be written as a function of the distribution of the kernel

input r:

pyi
ðyiÞ ¼

prðrÞ

›yi

›r

����
���� : ð8Þ

After substitution of the latter into Eq. (7), we obtain:

HðyiÞ ¼ 2
ð1

0
prðrÞln prðrÞdr þ

ð1

0
prðrÞln

›yiðrÞ

›r

����
����dr: ð9Þ

Since the first term on the right hand side does not

depend on the kernel center, we only need to further

concentrate on the second term, which in fact,

corresponds to the expected value of its ln component.

Our on-line stochastic gradient ascent-learning rule for

the kernel center is then derived as follows:

Dwi ¼ hw

›H

›r

›r

›wi

¼ hw

›yi

›r

� �21 ›

›wi

›yi

›r

� �
; ð10Þ

with hw the learning rate, and with:

›yi

›r
¼

22

G
d

2

� � rd21

ð
ffiffi
2

p
siÞ

d21
exp 2

r

s

� �2

2

0
BBB@

1
CCCA; ð11Þ

of which also the derivative with respect to wi is

needed. Substitution leads to the following learning

rule:

Dwi ¼ hw

v 2 wi

s2
i

; ð12Þ

where we have omitted the additional term

ðd 2 1Þ
v 2 wi

kv 2 wik
2
;

in order to simplify the rule, since it converges towards the

same result. The learning rule for the kernel radius si can be

derived directly (thus, without simplifications):

Dsi ¼ hs

›H

›si

¼ hs

1

si

kv 2 wik
2

ds2
i

2 1

 !
; ð13Þ

with hs the learning rate.

These learning rules are not yet complete: indeed, since

they are identical for all neurons, we will obtain identical

solutions for the kernel centers and radii. The differential

entropy of each kernel’s output will be maximal, but since

the kernels are further identical, their overlap will be

maximal and their outputs maximally statistically depen-

dent. In order to reduce the statistical dependency, and to let

the kernels span the input space, we need an additional

component in the learning process. We can formulate

statistical dependency in information-theoretic terms as the

mutual information between kernel outputs. Hence, we

maximize the differential entropy of the kernel outputs

given that we also need to minimize the mutual information,

in order to cope with statistical dependency. This dual goal

is captured by maximizing the joint entropy of the kernel

outputs: Hðy1; y2;…; yNÞ ¼
PN

i¼1 HðyiÞ2 Iðy1; y2;…; yNÞ:

We will perform mutual information minimization

heuristically by putting kernel adaptation in a competitive

learning context. We opt for an activity-based competition

Fig. 2. Distribution functions of the Euclidean distance r from the mean of a

unit-variance, radially symmetrical Gaussian input density Eq. (5),

parameterized with respect to the dimensionality d (continuous lines),

and the corresponding complements of the cumulative distribution

functions Eq. (6) (dashed lines). The functions are plotted for d ¼

1;…; 10 (from left to right); the thick lines correspond to the d ¼ 1 case.
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between the lattice neurons: ip ¼ arg max;i[A yi; (‘winner-

takes-all’, WTA).2 In this way, the winning neuron’s kernel

will decrease its range—in particular when it is strongly

active—and, thus, decrease its overlap with the surrounding

kernels. We will verify later whether such an heuristic is

reasonable, by verifying the algorithm’s performance for a

case for which the theoretically-optimal result can be

derived analytically.

Finally, we need to supply topological information to the

learning process. We will do this in the traditional way by

not only updating the kernel parameters of the winning

neuron, but also of its lattice neighbors (cooperative stage).

Hence, the complete learning algorithm becomes:

Dwi ¼ hwL i; ip;sL

� � v 2 wi

s2
i

; ð14Þ

Dsi ¼ hsL i; ip;sL

� � 1

si

kv 2 wik
2

ds2
i

2 1

 !
; ;i; ð15Þ

with L the neighborhood function, a monotonous decreas-

ing function of the lattice distance from the winner, e.g. a

Gaussian:

L i; ip;sL

� �
¼ exp 2

kri 2 ripk
2

2s2
L

 !
; ð16Þ

with sL the neighborhood function range, and ri neuron i’s

lattice coordinate (we assume a discrete lattice with a

rectangular topology). We adopt the following neighbor-

hood cooling scheme:

sLðtÞ ¼ sL0 exp 22sL0

t

tmax

� �
; ð17Þ

with t the present time step, tmax the maximum number of

time steps, and sL0 the range spanned by the neighborhood

function at t ¼ 0.

3.1. Lattice-disentangling dynamics

In order to show the algorithm’s lattice-disentangling

dynamics, we consider the standard case of a square lattice

and a square uniform input density. We take a 24 £ 24

planar lattice and a two-dimensional uniform input density

[0,1].2 The initial weights are randomly chosen from the

same input density. The radii are initialized randomly by

sampling the uniform distribution [0,0.1]. We take

tmax ¼ 2,000,000 and sL0 ¼ 12 and keep the learning rate

fixed at hw ¼ 0:01 and hs ¼ 1024hw. The results are shown

in Fig. 3 for the weights and in Fig. 4 for the radii.

4. Correspondence with other algorithms for kernel-
based topographic map formation

In this section, we will relate our algorithm to other

algorithms for kernel-based topographic map formation,

provided that they develop their kernels in the input space

directly. The soft topographic vector quantization (STVQ)

algorithm (Graepel et al., 1997) is a fixed-point iteration

algorithm (iterative contraction mapping) that performs a

fuzzy assignment of data points to clusters, whereby each

cluster corresponds to a single neuron. The weight vectors

represent the cluster centers, and they are determined by

iterating the following equilibrium equation (put into our

format):

wi ¼

ð
V

v
X

j

Lði; jÞPðv [ CjÞpðvÞdv

ð
V

X
j

Lði; jÞPðv [ CjÞpðvÞdv

; ;i [ A; ð18Þ

with Pðv [ CjÞ the assignment probability of data point v to

Fig. 3. Evolution of a 24 £ 24 lattice with a rectangular topology as a function of time. The outer squares outline the uniform input distribution ½0; 1�2: The

values given below the squares represent time.

2 Note that this definition of the winning neuron differs from the one

resulting from the (minimum) Euclidean distance rule

(ip ¼ arg mini kwi 2 vk), which is more commonly used in topographic

map formation algorithms.
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cluster Cj (i.e. the probability of ‘activating’ neuron j),

which is given by:

Pðv [ CjÞ ¼

exp 2
b

2

X
k

Lðj; kÞkv 2 wkk
2

 !
X

l

exp 2
b

2

X
k

Lðl; kÞkv 2 wkk
2

 ! ; ð19Þ

with b the inverse temperature parameter, and Lði; jÞ the

transition probability of the noise-induced change of data

point v from cluster Ci to Cj: The algorithm can be regarded

as a general model for probabilistic, SOM-based topo-

graphic map formation by putting b!1 in Eq. (19), and

Lði; jÞ ¼ dij in Eq. (19) and/or Eq. (18). For example, the

Soft-SOM (SSOM) algorithm (Graepel et al., 1997) is

obtained by putting Lði; jÞ ¼ dij in Eq. (19), but not in Eq.

(18). Kohonen’s Batch Map version (Kohonen, 1995) is

obtained for b!1 and Lði; jÞ ¼ dij in Eq. (19), but not in

Eq. (18), and for ip ¼ arg minj kv 2 wjk
2

(i.e. distance-

based WTA rule).

Our joint entropy maximization algorithm differs from

the STVQ algorithm in at least three ways. First, the STVQ

kernel represents a fuzzy membership (in clusters) function,

i.e. the softmax function, normalized with respect to the

other lattice neurons. In our case, the kernel represents a

cumulative distribution function, which operates in the input

space, and determines the winning neuron. Second, instead

of using kernels with equal radii, as in the STVQ algorithm,

our radii are individually adapted. Third, the kernels also

differ conceptually since in the STVQ algorithm, the kernel

radii are related to the magnitude of the noise-induced

change in the cluster assignment (thus, in lattice space),

whereas in our case they are related to the radii of the

incomplete gamma distribution kernels and, by conse-

quence, to the standard deviations of the assumed Gaussian

local input densities (thus, in input space).

In the kernel-based maximum entropy learning rule

(kMER) (Van Hulle, 1998), the kernel outputs are

thresholded (0/1 activations) and, depending on these binary

activations, the kernel centers and radii are adapted. In the

joint entropy maximization algorithm, both the activation

states as well as the definition of the winning neuron ip in the

learning rules Eqs. (14) and (15) depend on the continu-

ously-graded kernel outputs.

Our joint entropy maximization algorithm is also

different from the LDE algorithm (Van Hulle, 2002). The

LDE algorithm updates the kernel centers as well as the

kernel radii. The learning rule for the kernel centers is:

Dwi ¼ hwLði; i
p
;sLÞ

ðv 2 wiÞ

s2
i

Kðv;wi;siÞ; ð20Þ

with Kð·Þ a Gaussian kernel, and that for the kernel radii:

Dsi ¼ hsLði; i
p
;sLÞ

1

si

kv 2 wik
2

s2
i

2 rd

 !
Kðv;wi;siÞ;

ð21Þ

with r a scale factor, and with the winning neuron defined as

ip ¼ arg max;i[A ðKðv;wi;siÞÞ: Hence, not only the learn-

ing rules of the two algorithms differ, but also their kernel

definitions.

Finally, there is an interesting point of correspon-

dence with the learning algorithm suggested by Yin and

Allinson (2001). They started with Benaim and

Tomasini’s idea of adapting the kernel centers in such

a manner that the Kullback-Leibler divergence of the

map’s output is minimized (Benaim & Tomasini, 1991),

and extended it by also adapting the kernel radii. When

assuming equal mixings of radially symmetrical Gaus-

sians, their learning rules for the kernel centers and

radii become (using their simplifications):

Dwi ¼ hwP̂ðvliÞðv 2 wiÞ; ð22Þ

Dsi ¼ hsP̂ðvliÞ kv 2 wik
2
2 ds2

i

� �
; ;i; ð23Þ

which look structurally similar to Eqs. (14) and (15),

respectively, on condition that P̂ðvliÞ is regarded as a

Fig. 4. Evolution of the kernel radii corresponding to Fig. 3.
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neighborhood function. In fact, this is exactly what Yin

and Allinson consider as the role of P̂ðvliÞ (p. 408).

Following their derivation, P̂ðvliÞ represents neuron i’s

posterior probability of activation, which is a function

of the neurons’ Gaussian kernels, hence, their neighbor-

hood function is expressed in input space coordinates.

There are three marked distinctions with our learning

rules. First, in our case, P̂ðvliÞ ¼ diip ; with ip the neuron

that wins the competition. Second, we still have a

separate term Lð·Þ for our neighborhood function, Eq.

(16), which is expressed in lattice space coordinates

(thus, not in input space coordinates). Third, in Yin and

Allinson’s case, the winning neuron ip is the one for

which P̂ðvliÞ is maximal, ip ¼ arg max;i[A P̂ðvliÞ; thus a

density-based rule, instead of an activity-based rule, as

in our case. In Section 5, we will show by simulations

that these distinctions lead to quite different kernel

distributions.

5. Simulations

5.1. Theoretically-optimal joint entropy performance

What is now the joint entropy maximization performance

of our algorithm? And what is the effect of the heuristic we

have adopted for minimizing the mutual information? In

order to address these questions, we consider the standard

normal distribution, since for this case the theoretically

optimal joint entropy JE and mutual information MI can be

expressed analytically:

MI ¼ log2 2N þ 2
N 2 1

N
log2

N

N 2 1
þ

1

N

� �
þ log2

1

2N

þ ðN 2 2Þ
3

2N
log2

2N

3
þ

2N 2 3

2N
log2

2N

2N 2 3

� �

ðbitsÞ;

ð24Þ

JE ¼ log22N ðbitsÞ; ð25Þ

with the second term in MI being present for N . 2 only,

and with k the number of intervals (bins) into which we

uniformly quantize the kernel outputs. Fig. 5 shows JE and

MI as a function N, parameterized with respect to k; the

plots for the k . 2 cases are determined by optimizing the

kernel parameters numerically for a Gaussian distribution

centered at the origin and with unit variance, Gð0; 1Þ: We

observe that MI continues to increase when N increases, and

quickly becomes larger than JE.

We run our joint entropy maximization algorithm 20

times for each ðN; kÞ combination shown in Fig. 5, given the

G(0,1) input distribution, and plot the mean and standard

deviations for the JE and MI obtained (Fig. 5, thin

continuous lines). We observe that the difference between

the theoretical and the obtained JE curves is small (the

curves almost completely coincide). We also observe that

there is a larger spread on the MI results than on the JE

results, but the difference between the average and the

theoretical MI curves is again small.

5.2. Density estimation performance

The next question is the density estimation performance

of our algorithm. Since each kernel is adapted under the

assumption that the input density is locally Gaussian, with

mean the corresponding neuron’s kernel center, and

standard deviation the neuron’s kernel radius, we can

estimate the input density pðvÞ in a way similar to the classic

Variable Kernel density estimation method (Silverman,

1992):

p̂ðvÞ ¼
XN
i¼1

exp 2
kv 2 wik

2

2ðsiÞ
2

 !

Nð2pÞd=2sd
i

: ð26Þ

In order to assess the density estimation performance of our

algorithm, we will consider a synthetic and a real-world

example. The synthetic example is the aforementioned

standard normal distribution example; the real-world

example is a classic benchmark for density estimation

algorithms. Furthermore, we will also run the other kernel-

based topographic map formation algorithms mentioned in

Section 4: the algorithm of Yin and Allinson (2001), the

STVQ and SSOM algorithms (Graepel et al., 1997), the

Fig. 5. Theoretically-optimal joint entropy (JE) Eq. (25) (thick continuous

lines) and mutual information (MI) Eq. (24) (thick dashed lines) for the case

of a one-dimensional, univariate Gaussian plotted as a function of the

number of neurons N. The JE and MI are plotted for k ¼ 2; 4; 8; 16; 32

quantization levels, starting with k ¼ 2 curves at the bottom and moving

upwards. The thin continuous lines and their error bars correspond to the

mean and the standard deviations of the mutual information found in 20

simulation runs. The mean joint entropy curves coincide with the

theoretically-expected curves; the error bars are not shown since they are

everywhere smaller than 2.2 £ 1022.
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kMER algorithm (Van Hulle, 1998), and the LDE algorithm

(Van Hulle, 2002).

5.2.1. Synthetic example

We train a nine neuron, one-dimensional lattice in one-

dimensional space and take hw ¼ 0:001; hs ¼ 0:1hw;

tmax ¼ 1,000,000 and sL0 ¼ 4:5: Note that, albeit the

input is Gaussian, the distribution of inputs that activate a

given kernel will be non-Gaussian, due to our activity-based

competition rule. The density estimate p̂ðvÞ and the original

Gaussian distribution pðvÞ are shown in Fig. 6(A). We

observe a good correspondence between p̂ðvÞ and pðvÞ: The

mean squared error (MSE) is 9.35 £ 1025 when calculated

for 100 uniform positions in the range shown. When we

quantize the kernel outputs into k ¼ 2 intervals, then the

joint entropy is 4.14 bits and the mutual information 1.32

bits.

In the case of Yin and Allinson’s learning algorithm, we

use the same learning rate, cooling scheme, and number of

iterations as in our joint entropy maximization algorithm.

The resulting density estimate p̂ðvÞ is shown in Fig. 6(B).

The MSE equals 1.09 £ 1023, the joint entropy 3.18 bits,

and the mutual information 0.56 bits (also for k ¼ 2

intervals). The MSE performance improves if the neighbor-

hood range does not vanish (p. 407 in Yin & Allinson,

2001). If we optimize for this range, then we obtain a MSE

of 1.18 £ 1024, with 3.85 bits joint entropy and 3.67 bits

mutual information. We observe that the increase in joint

entropy goes at the expense of a more rapid increase in

mutual information, as expected.

In the case of the other algorithms mentioned in Section

4, we run all simulations on the same input data, using the

cooling scheme of our joint entropy maximization algor-

ithm, except for the SSOM and STVQ algorithms. For the

STVQ algorithm, we take for the neighborhood function

radius sL ¼ 0:5; and for the equal and constant kernel radii

1=b ¼ 0:01; as suggested in (Graepel et al., 1997). We also

adopt these parameter values for the SSOM algorithm, since

it is in fact a limiting case of the STVQ algorithm.

Furthermore, again for the SSOM and STVQ algorithms,

since they do not adapt their kernel radii, we look for the

(common) kernel radius that optimizes the MSE between

the estimated and the theoretical distributions. In this way,

we at least know that a better MSE result cannot be

obtained. We also optimize the rs parameter of kMER in

this way, for the same reason. The joint entropy, mutual

information and MSE results are all summarized in Table 1,

together with the algorithms’ parameters. Note that, in the

case of the Yin and Allinson algorithm, we list the range-

optimized MSE result mentioned earlier.

Finally, for comparison’s sake, we also list the

theoretical-optimal joint entropy and mutual information

Fig. 6. One-dimensional, unit-variance Gaussian input density (thick dashed line) and the estimates (thick continuous lines) obtained with our learning

algorithm (A) and Yin and Allinson’s (B) when nine kernels are used (thin continuous lines). Abbreviation: pd ¼ probability density.

Table 1

Performance of our joint entropy maximization algorithm (‘max(JE)’), and that of five other kernel-based topographic map algorithms (see text), when N ¼ 9

kernels are developed on a standard normal input distribution. The parameter settings of the algorithms are listed. The performance is measured in terms of the

joint entropy (JE) and the mutual information (MI) of the kernel outputs (k ¼ 2 quantization levels), and the MSE between the obtained and the theoretical

density distributions. Both the JE and MI are expressed in bits

Algorithm Parameters JE MI MSE

max(JE) hw ¼ 0:001; hs ¼ 0:1hw 4.14 1.32 9.35 £ 1025

Yin and Allinson hw ¼ 0:001; hs ¼ 0:1hw 3.85 3.67 1.18 £ 1024

STVQ 1=b ¼ 0:01; sL ¼ 0:5; sopt ¼ 0:555 3.59 2.42 1.99 £ 1023

SSOM 1=b ¼ 0:01; sL ¼ 0:5; sopt ¼ 0:520 3.78 2.03 1.99 £ 1023

LDE hw ¼ 0:01; hs ¼ 0:1hw 3.90 3.15 7.05 £ 1024

kMER hw ¼ 0:001; rr ¼ 1; rs ¼ 4:58 4.01 4.01 1.75 £ 1024

Theoretical – 4.17 1.39 –
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performances (row labeled ‘theoretical’), which were

discussed in Section 5.1. We observe in Table 1 that our

joint entropy maximization algorithm (‘max(JE)’) not only

yields the highest joint entropy value, but also achieves it

with the lowest mutual information value, thus with the

lowest degree of kernel overlap or map output redundancy.

5.2.2. Real-world example

The second example is a classic benchmark in the density

estimation literature. The data set consists of 222 obser-

vations of eruption lengths of the Old Faithful geyser in

Yellowstone National Park, and was compiled by Weisberg

(see Silverman, 1992). We repeat the previous simulations,

using the same parameter settings and lattice sizes, except

for the following modifications. For the Yin and Allinson

algorithm, when optimizing for the neighborhood range, we

aim at maximizing the joint entropy, instead of minimizing

the MSE, since we do not dispose of the theoretical density

distribution. The common kernel radii of the SSOM and

STVQ algorithms are, for the same reason, also optimized

with respect to the joint entropy. In this way, we at least

know that better joint entropy results cannot be obtained

with these algorithms. The results are summarized in

Table 2. We observe that our joint entropy maximization

algorithm performs best in terms of the joint entropy, but

also, that it performs best in terms mutual information.

The density estimate obtained with our joint entropy

maximization algorithm is shown in Fig. 7(A) (thick

continuous line). In order to show the dependence of the

estimate on the number of kernels used, we also plot the

result for N ¼ 25 kernels (Fig. 7(B)). The joint entropy and

mutual information are now 4.57 and 6.06 bits, respectively,

(again, for k ¼ 2 intervals). Finally, for comparison’s sake,

we also consider a more traditional variable kernel density

estimation method, namely, the adaptive unbiased cross-

validation (adaptive UCV) method (Sain & Scott, 1996),

which allocates a kernel at each data point. The adaptive

UCV method has been shown to yield particularly good

results, compared to other methods, on the Old Faithful

geyser data set (Sain & Scott, 1996). The adaptive UCV

result is superimposed on the density estimates shown in

Fig. 7(A) and (B) (thick dashed lines). We observe that the

density estimate for N ¼ 25 more closely approximates the

UCV result. However, one should be aware of the fact that

the UCV result is also an approximation of the unknown

true density distribution.

6. Conclusion

We have introduced a new learning algorithm for kernel-

based topographic map formation that is aimed at

maximizing the map’s joint entropy. The kernel parameters

are adjusted so as to maximize the differential entropies of

the kernel outputs and, at the same time, to minimize the

mutual information between these outputs. The former is

achieved by maximizing the information transfer through

each kernel individually, and the latter, in a heuristic sense,

by having a competitive stage in the learning process. The

kernel output functions approximate the cumulative distri-

butions of the assumed Gaussian local input densities. In the

near future, we intend to explore how the density estimate

formed by the maps can be used for clustering purposes.

Table 2

Performance in the case of the Old Faithful geyser eruption lengths data set.

The performance is measured in terms of the joint entropy (JE) and the

mutual information (MI), for k ¼ 2 quantization levels, and are expressed

in bits

Algorithm Parameters JE MI

max(JE) hw ¼ 0:001; hs ¼ 0:1hw 4.02 1.36

Yin and Allinson hw ¼ 0:001; hs ¼ 0:1hw 3.90 1.55

STVQ 1=b ¼ 0:01; sL ¼ 0:5; sopt ¼ 0:350 3.50 1.92

SSOM 1=b ¼ 0:01; sL ¼ 0:5; sopt ¼ 0:350 3.84 2.20

LDE hw ¼ 0:01; hs ¼ 0:1hw 3.66 2.33

kMER hw ¼ 0:001; rr ¼ 1; rs ¼ 2:20 3.72 2.25

Fig. 7. Density estimation in the case of the Old Faithful geyser eruption lengths data set. Density estimates obtained with our learning algorithm (thick

continuous lines), using N ¼ 9 kernels (A) and N ¼ 25 kernels (B), and with the adaptive UCV method (thick dashed lines). The individual kernels of our

algorithm are also shown (thin continuous lines).
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Appendix A. Kernel definition and universal

approximation

Consider the following two-layered network for

regression purposes:

OðvÞ ¼
XN
i¼1

WiK
v 2 wi

si

� �
; ðA1Þ

with Oð·Þ the output of the network’s single output node, v

the network’s input, with v [ Rd; N the number of kernel

nodes in the hidden layer, wi and si the center and radius of

the ith kernel node, respectively, and Wi the (scalar) weight

from the ith kernel node to the output node. Note that we

will only consider networks with single outputs and scalar

function approximation; the extension to multiple outputs

and multidimensional function approximation is evident.

Furthermore, we will restrict ourselves to approximation in

L2-space and assume gradient descent learning (on the

squared regression error) for obtaining the network

parameters.

The question is now: is the network supplemented with

our incomplete gamma distribution kernel capable of

approximating arbitrary well any function? Or, in other

words, is such a network broad enough for universal

approximation?

According to Proposition 1 in Park and Sandberg (1993),

our kernel should satisfy the following two conditions in L2-

space:ð
Rd

KðvÞdv – 0;
ð
Rd

lKðvÞl2dv , 1: ðA2Þ

Proof. Since we are only considering kernels individu-

ally, and since each kernel is radially symmetrical around its

center, we simplify the notation of our kernel as KðvÞ;

instead of Kðv;wi;siÞ; or even as KðzÞ; with z ¼ lv 2
wil=

ffiffi
2

p
si:

Condition 1. Since KðvÞ . 0; ;v [ Rd ;
Ð
Rd KðvÞdv .

0: Hence, condition 1 is satisfied.

Condition 2:

1-dimensional case. For the d ¼ 1 case, we have that

KðzÞ ¼ Pð1=2; z2Þ ¼ erfcðzÞ ¼ 1 2 erfðzÞ:

Since KðvÞ # 1 ;v [ R; we have that lKðvÞl2 # KðvÞ;

;v [ R; and hence,
Ð
R lKðvÞl2dv #

Ð
R KðvÞdv: Further-

more, since our kernel is radially symmetric: K2ðzÞ , KðzÞ;

;z [ ð0;1Þ:

We have the following upper bound for the erf function

(Weisstein, 1999, p. 561):

expðz2Þ
ð1

z
expð2t2Þdt #

1

z þ

ffiffiffiffiffiffiffiffiffiffi
z2 þ

4

p

r ; ;z [ ½0;1Þ:

ðA3Þ

Now since

erfðzÞ ¼ 1 2
2ffiffi
p

p
ð1

z
expð2t2Þdt;

we can re-write the previous equation as follows:

erfðzÞ $ 1 2
2ffiffi
p

p
expð2z2Þ

z þ

ffiffiffiffiffiffiffiffiffiffi
z2 þ

4

p

r ; ;z [ ½0;1Þ: ðA4Þ

Since KðzÞ ¼ erfcðzÞ ¼ 1 2 erfðzÞ; we obtain the following

upper bound, after some algebraic manipulations:

KðzÞ #
2ffiffi
p

p
expð2z2Þ

z þ

ffiffiffiffiffiffiffiffiffiffi
z2 þ

4

p

r # expð2z2Þ; ;z [ ½0;1Þ:

ðA5Þ

Hence, since lKðzÞl2 # KðzÞ; ;z; we have that:ð1

0
lKðzÞl2dz #

ð1

0
KðzÞdz ,

ð1

0
expð2z2Þdz; ðA6Þ

and since:

expð2z2Þ ¼ ðpÞd=2G 0;
1ffiffi
2

p

� �
; ðA7Þ

with Gð0; 1=
ffiffi
2

p
Þ the d-dimensional, radially symmetrical

Gaussian with zero-mean and standard deviation 1=
ffiffi
2

p
; we

have that:ð1

0
lKðzÞl2dz ,

1

2
ðpÞd=2 , 1: ðA8Þ

d-dimensional case. We construct the following upper

bound for our kernel in the d-dimensional case, KðzÞ ¼

Pðd=2; z2Þ; with

z ¼
kv 2 wikffiffi

2
p

si

:

we take KupðzÞ W 1; for z [ ½0; aÞ; and KupðzÞ W erfcðz 2 aÞ

for z [ ½a;1Þ; i.e. a shifted erfc function, shifted over a

distance a $ 0:

It is clear that, when KupðzÞ $ KðzÞ; for z [ ½0;1Þ; and

when
Ð1

0 KupðzÞ is finite, then
Ð1

0 KðzÞ will also be finite.

This is already satisfied for z [ ½0; aÞ since KupðzÞ ¼ 1 $

KðzÞ: Hence, we only have to show that there exists a

positive, finite shift a so that KupðzÞ $ KðzÞ for z [ ½a;1Þ.
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We have that:

KupðzÞ ¼ erfcðz 2 aÞ ¼
2ffiffi
p

p
ð1

z
expð2ðt 2 aÞ2Þdt

¼
2ffiffi
p

p
ð1

z
expð2ta 2 a2Þ·expð2t2Þdt: ðA9Þ

For our kernel KðzÞ; we rewrite the incomplete gamma

distribution as follows:

P
d

2
; z2

� �
¼

G
d

2
; z2

� �

G
d

2

� � ¼
1

G
d

2

� � ð1

z2
sðd=2Þ21 expð2sÞds

¼
2

G
d

2

� � ð1

z
td21 expð2t2Þdt; (A10)

where we have substituted s for t2:

We will achieve KupðzÞ $ KðzÞ; when the non-common

arguments in the integrals Eqs. (A9) and (A10) satisfy:

expð2ta 2 a2Þffiffi
p

p $
td21

G
d

2

� � :
Based on the series expansion of exp we have that, in

conservative sense:

ð2ta 2 a2Þd21

ðd 2 1Þ!
ffiffi
p

p .
td21

G
d

2

� � :
Since these arguments represent straight lines, as a function

of t, the one on the left-hand side will remain above the one

on the right-hand side when

a .

ffiffi
p

p
ðd 2 1Þ!

G
d

2

� �
0
BB@

1
CCA

1=ðd21Þ

;

i.e. a positive and finite shift of the erfc function in KupðzÞ

for z [ ½a;1Þ:
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