
1298 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 6, JUNE 2014

On Queue Length and Link Buffer Size
Estimation in 3G/4G Mobile Data Networks

Stanley C. F. Chan, K. M. Chan, K. Liu, and Jack Y. B. Lee

Abstract—The emerging mobile data networks fueled by the world-wide deployment of 3G, HSPA, and LTE networks created new
challenges for the development of Internet applications. Unlike their wired counterpart, mobile data networks are known to exhibit
highly variable bandwidth. Moreover, base stations are often equipped with large buffers to absorb bandwidth fluctuations to prevent
unnecessary packet losses. Consequently to optimize protocol performance in mobile data networks it is essential to be able to
accurately characterize two key network properties: queue length and buffer size of the bottleneck link. This work tackles the
challenge in estimating these two network properties in modern mobile data networks. Using extensive trace-driven simulations
based on actual bandwidth trace data measured from production mobile data networks, we show that existing queue-length and link
buffer size estimation algorithms no longer work well in bandwidth-varying networks. We develop a novel sum-of-delays algorithm
which incorporates the effect of bandwidth variations into its estimation. Extensive trace-driven simulation results show that it can
accurately estimate the queue length and link buffer size under both fixed and varying bandwidth conditions, outperforming existing
algorithms by up to two orders of magnitude.

Index Terms—Queue length, link buffer size, estimation algorithm, sum-of-delays, mobile data networks, passive and active
estimations

1 INTRODUCTION

IT is well-known that the performance of Internet trans-
port and application protocols depends heavily on the

characteristics of the underlying network links, and in
particular, the bottleneck link. Apart from the impact of
competing traffic, a bottleneck link has three primary
parameters, namely link bandwidth, buffer size, and queue
length. Many previous works have investigated methods
to estimate these link parameters, for example link band-
width estimation [1]–[3], link buffer size estimation [4]–[6],
and queue length estimation [7]–[9].

A common assumption among these previous works is
that the link bandwidth is constant, which is largely valid
for wired networks as the physical link typically has a fixed
transmission data rate. However with the rapidly emerg-
ing mobile data networks such as 3G [10], HSPA [11], and
LTE [12], this assumption is no longer valid.

To illustrate, Fig. 1 plots the measured bandwidth of a
production 3G network over a time interval of 10 seconds
where there is only a single UDP data flow going from a
wired server to a 3G-connected receiver. It is evident that
unlike fixed network, mobile data network can exhibit sig-
nificant bandwidth fluctuations over a short timescale (also
over longer timescales, not shown here) due to fluctua-
tions in radio conditions, interference from other wireless

• The authors are with the Department of Information Engineering, Chinese
University of Hong Kong, Hong Kong.
E-mail: {ccf008, ckm011, lk008, yblee}@ie.cuhk.edu.hk.

Manuscript received 24 Apr. 2012; revised 31 Aug. 2013; accepted 27 Sep.
2013. Date of publication 3 Oct. 2013; date of current version 29 May 2014.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier 10.1109/TMC.2013.127

devices, contention among multiple users in the same cell,
device mobility, etc. In addition, modern mobile networks
typically implement link-layer retransmission to recover
frame losses. Consequently a frame loss will translate into
longer transmission time, resulting in a sudden bandwidth
drop as observed by the receiver. These pose a new chal-
lenge to existing link property estimation algorithms as
the assumption of fixed link bandwidth clearly no longer
holds.

This work tackles the above-mentioned challenge by
developing a novel sum-of-delays (SoD) algorithm to esti-
mate link buffer size of the network and queue length of
the underlying network connection. In contrast to previ-
ous works, SoD does not assume network bandwidth to
be constant (as in [4]–[6]), or rely on indirect bandwidth
estimation via TCP’s congestion window (as in [7]–[9]).
Instead, SoD measures the actual bandwidth from ACK tim-
ings and keeps track of the sequence of past measurements
so that it can compensate for link bandwidth variations in
estimating link buffer size and queue length.

SoD can be implemented using both active estimation –
commonly employed in network measurement tools, and
passive estimation – which eliminates the need for send-
ing extra measurement packets and simply measures the
in-band data packet timings to perform estimation. The
latter approach enables the integration of the estimation
algorithm into existing transport protocols such as TCP to
optimize flow and congestion controls.

Through extensive trace-driven simulations using actual
bandwidth traces captured from production 3G networks
we show that the proposed estimation algorithm out-
performs existing link buffer size estimation algorithms
such as max-min [4]–[6] and loss-pair [6] by multiple

1536-1233 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CHAN ET AL.: ON QUEUE LENGTH AND LINK BUFFER SIZE ESTIMATION IN 3G/4G MOBILE DATA NETWORKS 1299

Fig. 1. Measured bandwidth of a production 3G network.

orders of magnitude in terms of estimation errors and also
achieve better accuracy than existing queue length estima-
tion algorithms like the Vegas method [7] and the FAST
method [8] in delay-based TCP variants.

An accurate estimation of the link buffer size and queue
length for a traffic flow has a number of significances to
mobile communications. First, transport protocols such as
TCP were originally designed for wired networks of which
the link buffer size is shared and is often small (e.g., in
the order of tens of kilobytes per port). This is no longer
the case in mobile data networks where link buffer at the
base station is allocated on a per-user basis with buffer size
often in hundreds of kilobytes, causing TCP to perform sub-
optimally [13]. Therefore knowledge of the link buffer size
and queue length will enable the development of a new
generation of TCP variants which take mobile networks’
large link buffer size into account to optimize throughput
performance in mobile data networks.

On the other hand, queue length has a direct impact to
data delivery delay. Thus for real-time applications such
as live video streaming (e.g., news, sports, and concerts),
voice-over-IP, and audio/video conferencing, knowledge
of the queue length can be exploited to (a) design new
rate-adaptation algorithms to balance throughput and delay
for better quality of experience; or (b) design mobile net-
work resource allocation algorithms to allocate bandwidth
resources not just based on bandwidth demand, but also
based on delay constraints as well.

Second, many application protocols employ feedbacks
from receivers to regulate the traffic flow. The existence
of a large link buffer may introduce substantial delay
to the feedbacks and potentially cause stability problems
in closed-loop control protocols. Again knowledge of the
link buffer size will enable these protocols to compen-
sate for the extra delays to ensure stability over mobile
networks.

Third, the ability to estimate queue length at the bot-
tleneck link opens up a new way for mobile operators
to monitor the performance of their subscribers and cell
sites. Due to mobile network’s inherent bandwidth fluc-
tuations, link/transport layer throughput may not be a
good metric to reflect the utilization and congestion expe-
rienced by mobile subscribers. By passively monitoring the
queue lengths of on-going or past traffic flows, the network
operator can then obtain a more realistic picture of the net-
work’s utilization and the service quality perceived by their
subscribers.

The rest of the paper is organized as follows: Section 2
re-examines existing algorithms for estimating link buffer

TABLE 1
Summary of Notations

size and queue length, and evaluates their accuracies when
applied to mobile data networks; Section 3 presents the
proposed sum-of-delays estimation algorithm. Section 4
evaluates the sum-of-delays algorithm and compares it to
existing algorithms; Section 5 summarizes the study and
outlines some future work.

2 BACKGROUND AND RELATED WORKS

In this section we re-examine two well-known algorithms
on link buffer size estimations, namely max-min [5], [6] and
loss-pair [6], and the queue length estimation algorithms
used in TCP Vegas [7], FAST TCP [8], and TCP Veno [9]

We consider the system model depicted in Fig. 2 where
a single sender transmits packets via a bottleneck link to
a receiver. None of the bottleneck link’s parameters are
known a priori and the propagation delays are constant.

The goal is to estimate the queue length continuously,
denoted by qi, and link buffer size, denoted by L, at the
sender via observation of the acknowledgement packet
arrival times. Table 1 summarizes the notations used in the
following discussions.

2.1 Link Buffer Size Estimation
Liu and Crovella [6] proposed the max-min method to esti-
mate the link buffer size from the estimated transmission
delay and the differences between maximum and minimum
round-trip times (RTTs). Claypool et al. [5] further incorpo-
rated the max-min method into a measurement tool for use
in access networks.

The principle of both max-min [5], [6] and loss-pair [6]
methods is to use RTT as a mean to measure the link buffer
size. Specifically, let P = Pd1 + Pd2 be the total downlink
(from sender to receiver) propagation delay, T be the trans-
mission delay for one packet, and U be the uplink (from
receiver to sender) delay, which are all constant. Next let
qi be the queueing delay experienced by packet i at the
bottleneck link, and ni be the number of packets already
queued-up at the bottleneck link buffer upon its arrival
at the queue. Then we can compute the RTT for packet
i, denoted by rtti, from

rtti = P + T + U + qi. (1)

1300 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 6, JUNE 2014

In a fixed-bandwidth link, the queueing delay of packet
i is simply equal to the total time to de-queue the ni packets
already in the queue plus the residual transmission time,
denoted by δ, for the packet already in service, i.e.,

qi = niT + δ. (2)

Given the link buffer size L, we have ni ≤ L−1. Also the
residual transmission time is bounded by δ ≤ T. Therefore
the maximum queueing delay, denoted by qmax, is given by

qmax = max {(L − 1)T + δ}
= LT.

(3)

The minimum queueing delay is simply equal to zero.
As the propagation and transmission delays are constant
we can then compute the maximum and minimum RTTs
from

rttmax = P + T + U + qmax (4)

rttmin = P + T + U. (5)

Substituting (3) and (5) into (4), we have

rttmax = rttmin + LT. (6)

Similarly, substituting (2) and (5) into (1), we have

rtti = rttmin + niT + δ. (7)

Rearranging terms in (6), we can determine the link
buffer size from [4],

L = rttmax − rttmin

T
. (8)

With knowledge of measured link capacity (C) and
known packet size (S), we could compute the estimated
transmission delay (T) from

T = S/C (9)

and determine the link buffer size accordingly:

L = (rttmax − rttmin)C
S

. (10)

The max-min method [5], [6] is designed for active esti-
mation where the sender sends a series of measurement
packets through the bottleneck link at a rate higher than
the link bandwidth to induce queue overflow. The receiver
returns an acknowledgement (ACK) packet to the sender
for every packet received. The sender can then measure the
minimum RTT rttmin, maximum RTT rttmax, and link band-
width C from the ACK packet arrival times. With S known
the sender can compute L using (10). The estimation pro-
cess can also be done by the receiver and the interested
readers are referred to the work by Hirabaru [4] for more
details.

From (10) we can see that the accuracy of the max-min
method hinges upon the accuracy in measuring the three
parameters, namely rttmax, rttmin, and C. In particular, if
there is other cross traffic sharing the same bottleneck link,
the RTT measurements will be modulated by the competing
flows.

Liu and Crovella [6] tackled this problem in their
improved loss-pair method. First, they only capture the
RTTs of the two packets just before and after a loss event.

This filters out samples not related to buffer overflow at the
bottleneck link. Second, they analyze the distribution of the
samples to determine their mathematical mode to further
filter out noises due to cross traffic. These two techniques
improved the accuracy of the loss-pair method.

2.2 Queue Length Estimation
To the best of the authors’ knowledge there is no known
measurement tool designed solely for queue length esti-
mation purpose. The reason being that unlike link buffer
size, which is a physical network property, queue length
can vary from time to time depending on many param-
eters, including offered traffic load, traffic characteristic,
link capacity, and so on. Therefore queue length mea-
surement is meaningful only in the context of the actual
data flow generated by the transport and/or application
protocols.

Some TCP variants do implement algorithms to either
implicitly or explicitly estimate the queue length at the
bottleneck link for congestion control purpose. One well
known example is TCP Vegas [7] which employs an
algorithm to estimate the queue length from the con-
gestion window size and the difference between current
and minimum round-trip times (RTTs). Similar algorithms
have also been adopted in FAST TCP [8] and TCP
Veno [9].

These queue-length estimation algorithms are inherently
passive in that only the actual data and ACK packet tim-
ings are used for estimating the queue length. No extra
measurement packets are generated in the process.

During operation, the TCP sender continuously mea-
sures the RTT, denoted by rtti, and records the congestion
window size, denoted by cwndi, at the time ACK packet i
is received. It then keeps track of the minimum rttmin by

rttmin = min {rtti|∀i} (11)

and then computes the estimated queue length, denoted by
n′

i, from [7]:

n′
i = cwndi

rtti
(rtti − rttmin), (12)

where cwndi/rtti is the estimated bandwidth and (rtti −
rttmin) is the queueing time. Hence their product is the
estimated queue length.

One shortcoming of the Vegas method is that it uses
the current congestion window size to estimate the queue
length in the previous RTT. In case the congestion window
size changes significantly from the last RTT the estimation
accuracy will suffer. This is why TCP Vegas only performs
queue length estimation during the congestion avoidance
phase where the congestion window size changes slowly.

FAST TCP [8] addressed this shortcoming by keeping
track of the past congestion windows, and using the one
at the time of the original data transmission instant to
compute (12). This improves accuracy and also enables
FAST TCP to estimate queue length during both slow-start
and congestion avoidance phases. Nevertheless, neither the
Vegas nor the FAST algorithm can be applied in TCP’s
loss recovery phase as the congestion window size by
then no longer correlates with the network bandwidth
available.

CHAN ET AL.: ON QUEUE LENGTH AND LINK BUFFER SIZE ESTIMATION IN 3G/4G MOBILE DATA NETWORKS 1301

Fig. 2. System model for bottleneck link buffer size estimation.

2.3 Performance over Fixed Networks
In this section we re-examine the performance of exist-
ing link buffer size estimation algorithms and queue-length
estimation algorithms using a simulator implemented in
NS2 [14]. In this section we first evaluate them in their
intended network model where the bottleneck-link band-
width is fixed.

Link buffer size estimation: We implemented the max-min
and loss-pair algorithms using UDP as the transport pro-
tocol using the network model as depicted in Fig. 2. The
simulation parameters in Table 2 are set according to typ-
ical values in production 3G networks. We did conduct
additional simulations with different delay parameters and
found the results to be consistent. Note also that we did not
introduce packet loss into the simulations for two reasons.
First, max-min and loss-pair are inherently insensitive to
packet loss as they primarily rely on measuring the max-
imum and minimum RTT over large number of samples.
Second, the Vegas/FAST algorithms were not designed to
operate in TCP’s loss recovery phase so introducing ran-
dom packet loss will have no impact to their estimation
process as it is not performed during TCP’s loss recovery
phase at all. Thus for consistency we employ zero packet
loss rate in all simulations.

We define two performance metrics called absolute and
relative link buffer size estimation errors, denoted by EA, ER
respectively to evaluate the algorithms’ performance:

EA = estimated link buffer size
−actual link buffer size (13)

ER = EA

actual link buffer size
× 100%. (14)

Fig. 3 plots the estimation errors for max-min and loss-
pair in active estimation for bottleneck link with buffer size
ranging from 100 to 1000 packets. Not surprisingly the algo-
rithms perform well in fixed-bandwidth networks. Their

TABLE 2
Summary of Simulation Parameters

Fig. 3. Relative link buffer size estimation errors for fixed bottleneck link
bandwidth (link buffer size, relative error, fixed bandwidth).

accuracies also improve as link buffer size increases (i.e.,
due to increases in the denominator of (14)).

Queue-length estimation: We implemented two queue-
length estimation algorithms, namely the Vegas algorithm
in TCP Vegas [7] and the FAST algorithm in FAST TCP [8],
both using passive estimation. In addition, we also imple-
mented the Vegas algorithm over TCP CUBIC [16]. In this
case the TCP flow operates according to TCP CUBIC but
the RTTs and congestion window size measurements are
then fed into the Vegas algorithm to compute the estimated
queue length. This special combination enables us to eval-
uate the performance of the Vegas estimation algorithm
over one of the most widely deployed TCP variants in the
Internet.

We define a relative queue length estimation error QR
and absolute queue length estimation error QA as the
performance metric:

QA = estimated queue length

−actual queue length (15)

QR = QA

average queue length
× 100%. (16)

Fig. 4(a) plots the estimation errors for the three cases for
bottleneck link buffer size ranging from 100 to 1000 packets.
There are two anomalies. First, FAST TCP achieved the best
accuracy in all cases except the case with a link buffer size
of 100 packets where the estimation error jumped to around
60%. This is due to a parameter setting in FAST TCP [8]
which specifies the target number of inflight packets to
maintain for the data flow. As the default value accord-
ing to [8] is 100 packets it means FAST TCP will easily
overflow the bottleneck link’s buffer if the latter’s size is
close to or below the parameter value. As a result tuning
of FAST TCP’s parameter will have a significant impact on
the performance of queue-length estimation.

Second, the results suggest that the Vegas algorithm
when applied to a TCP Vegas flow in fact underperformed
the same when applied to a TCP CUBIC flow. This is due to
differences between TCP Vegas’s and TCP CUBIC’s conges-
tion control algorithms. Specifically, TCP Vegas is designed
to maintain a small number of packets (around 6 in our
simulations) in the bottleneck link buffer. By contrast, TCP
CUBIC is far more aggressive and in our simulations TCP
CUBIC maintained an average queue length at around 90%

1302 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 6, JUNE 2014

Fig. 4. (a) Relative queue length estimation errors, and (b) Absolute
queue length deviation in different TCP variants for fixed bottleneck link
bandwidth (queue length, relative error, fixed bandwidth).

of the link buffer size. Thus the larger denominator in (14)
results in lower estimation errors for TCP CUBIC.

If we compare the estimation error in absolute num-
ber of packets as shown in Fig. 4(b) we can see that TCP
CUBIC did exhibit higher absolute errors when compared
to TCP Vegas and FAST TCP, especially for large link
buffer sizes. This is because in TCP CUBIC, the congestion
window grows faster for larger window sizes. Large link
buffer size allows the congestion window to grow larger
before buffer overflow occurs, thus causing higher estima-
tion errors in computing (12) where the current congestion
window size is used in place of the previous RTT’s win-
dow size. FAST TCP does not suffer from this problem as
it records the sequence of past window sizes and uses the
correct one in computing (12), hence maintaining consis-
tent estimation accuracy for a wide range of link buffer
sizes.

2.4 Performance over Bandwidth-Varying Networks
In this section we apply the existing link buffer size and
queue length estimation algorithms to mobile data net-
works. The only difference from the fixed network model
in the previous section is that the link bandwidth C is
no longer constant, but time-varying subject to the effect
of fading and signal interferences. To capture the actual
bandwidth variations in production 3G/HSPA networks
we conducted measurements by transmitting UDP data-
grams from the sender to the receiver at a rate higher than

Fig. 5. Relative link buffer size estimation errors for varying bottleneck
link bandwidth (L is the actual link buffer size) (link buffer size, relative
error, variable bandwidth).

the link bandwidth, and then recording the UDP datagram
arrival timings at the receiver. As the link was flooded
with packets all link bandwidth had been utilized and
by counting the number of packet arrivals we obtained a
time series of actual link bandwidth availability. It is worth
noting that this time series data incorporated the proper-
ties of the entire link layer, including bandwidth/resource
allocation algorithms, scheduling algorithms, and link-layer
retransmissions.

In the simulator the radio link modulated its bandwidth
according to this bandwidth time series data to replicate the
bandwidth fluctuations. Each data point is the average of
10 simulations, each employing a different link bandwidth
time series obtained from production 3G/HSPA networks.

We first evaluate the max-min and loss-pair link buffer
size estimation algorithms in Fig. 5. It is clear that both
algorithms exhibited significantly higher estimation errors
compared to the fixed-bandwidth case.

Max-min in particular degraded significantly with esti-
mation errors increasing from ∼50% to ∼130% as the
link buffer size decreased. This is because the estimation
algorithm cannot distinguish between queueing delay and
variations in transmission time due to bandwidth varia-
tion. As smaller link buffer sizes result in shorter queueing
delays, the relative impact of transmission time variations
will increase as link buffer size decreases. It is worth noting
that loss-pair degraded less compare to max-min because
it does not base its estimation on the worst-case mea-
surement, but determines the mathematical mode of the
measured samples to filter out noises.

If we take a link buffer size of 300 packets for compar-
ison, then the estimation errors for max-min and loss-pair
increased from −0.3% to ∼90%, and from −0.4% to ∼10%
respectively when moving from a fixed-bandwidth network
to a mobile data network. It is clear from the results that
the existing link buffer size algorithms, max-min and loss-
pair, were designed for network with fixed bottleneck link
bandwidth and consequently are not suitable for use in the
emerging mobile data networks where bandwidth-varying
radio link is the norm rather than the exception.

Next we re-examine queue length estimation algorithms,
namely the Vegas estimation algorithm applied to TCP
Vegas and TCP CUBIC, and the FAST algorithm in FAST

CHAN ET AL.: ON QUEUE LENGTH AND LINK BUFFER SIZE ESTIMATION IN 3G/4G MOBILE DATA NETWORKS 1303

Fig. 6. (a) Relative queue length estimation errors, and (b) Absolute
queue length deviation in different TCP variants for varying bottleneck
link bandwidth (queue length, relative error, variable bandwidth).

TCP. Fig. 6(a) and (b) plot the percentage of estima-
tion errors, and absolute estimation errors for the three
cases. Comparing Fig. 6(a) with Fig. 4(a) we can see that
when going from fixed-bandwidth network to varying-
bandwidth network all three algorithms exhibited higher
estimation errors, with FAST TCP degraded the most (from
0.5% to ∼15%), follows by Vegas over TCP CUBIC (from
∼3% to ∼4%), and lastly Vegas over TCP Vegas (from ∼14%
to 15%).

Apart from the higher estimation errors, the algorithms
are limited to queue length estimation during TCP’s slow-
start (Vegas and FAST) and congestion-avoidance (FAST)
phases only. This is due to their reliance on the congestion
window size as a mean to estimate the network bandwidth.
When congestion is detected the congestion window will be
cut drastically and thus can no longer serve as a reliable
estimate of the network bandwidth. This could severely
limit their application to some mobile data networks in case
not all random packet losses can be successfully recovered
by link-layer retransmissions. We tackle these challenges in
the next section by developing a novel algorithm which
does not rely on congestion window size in estimating the
link buffer size and queue length.

3 SUM-OF-DELAYS METHOD

The primary source of inaccuracies in the max-min and
loss-pair is the assumption of constant network bandwidth.

Fig. 7. Revised system model to incorporate the effect of bottleneck link
bandwidth variations.

Even though the Vegas/FAST algorithms do indirectly esti-
mate bandwidth via the TCP congestion window size, the
estimation is nonetheless far from accurate. By contrast,
we argue that instead of indirectly estimating the network
bandwidth, it is in fact possible to directly measure the band-
width from ACK packet timings. Moreover, by keeping
track of the series of past bandwidth measurements, we
can then compensate for the impact of network bandwidth
variations in performing link buffer size and queue length
estimations. We describe below a new sum-of-delays (SoD)
method which incorporates this principle in link buffer size
and queue length estimations.

Fig. 7 depicts the revised network model for a network
with varying bottleneck link bandwidth. Note that varia-
tions in the link bandwidth will manifest as variations in
packet transmission time. Specifically, the packet transmis-
sion time is equal to the packet size divided by the average
bandwidth when the packet was transmitted by the bot-
tleneck link. Let ti be the transmission time for packet i,
then we can incorporate the effect of bandwidth variations
through the series {ti}, which can be computed from the
measured ACK packet inter-arrival times for packets i and
(i − 1), denoted by ri and ri−1 respectively:

ti = ri − ri−1 (17)

provided that the link does not become idle during this
time.

Consider the scenario when packet i arrives at the bottle-
neck link to find that there are ni packets already queueing,
plus packet (i − ni − 1) currently being transmitted. Then
the queueing delay of packet i, denoted by qi, is equal to
the total time to de-queue all ni packets, i.e., the summation
of transmission delays of packet (i − 1) to (i − ni), plus the
residual time to transmit packet (i − ni − 1), denoted by δi:

qi = ti−1 + ti−2 + · · · + ti−ni + δi. (18)

Note that the residual transmission time δi is bounded from
above by the packet’s transmission delay and bounded
from below by zero, i.e.,

0 ≤ δi ≤ ti−ni−1 (19)

Substituting the bounds of (19) into (18), we can then
obtain the corresponding bounds for qi:

ti−1 + ti−2 + · · · + ti−ni ≤ qi ≤ ti−1 + ti−2 + · · ·
+ ti−ni + ti−ni−1

or
i−1∑

k=i−ni

tk ≤ qi ≤
i−1∑

k=i−ni−1

tk. (20)

1304 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 6, JUNE 2014

Now our goal is to determine ni, which is the queue
length at the time packet i arrives at the bottleneck link. In
(20) the transmission delays {tk} can be computed from the
measured ACK packet inter-arrival times using (17). The
remaining unknown term is qi.

Unfortunately the queueing time qi cannot be measured
directly due to bandwidth variations. However it is possi-
ble to obtain a lower bound for qi. Specifically, the RTT
for packet i as measured by the sender is equal to the
sum of its queueing delay (qi), transmission time (ti) and
propagation delays:

rtti = qi + ti + U + Pd1 + Pd2 (21)

and the minimum RTT measured will be equal to

rttmin = min{qi + ti|∀i} + U + Pd1 + Pd2 . (22)

Subtract (22) from (21) we can then eliminate the unknown
terms (i.e., propagation delay U + Pd1 + Pd2):

rtti − rttmin = qi + ti − min{qi + ti|∀i}
< qi + ti ∵ qi ≥ 0, ti > 0.

(23)

Rearranging terms we then have a lower bound for qi:

qi > rtti − rttmin − ti (24)

with all three terms in the R.H.S. known to the sender.
To relate (24) to ni we note that qi must also satisfy the

upper bound in (20). Hence we can obtain an estimate of ni
by increasing it from ni = 0, 1, . . . , until the R.H.S. of (20)
becomes larger than the lower bound in (24), i.e., satisfying
both bounds:

n′
i = min

⎧
⎨

⎩ni

∣∣∣∣∣∣

i−1∑

k=i−ni−1

tk ≥ (rtti − rttmin − ti) ,∀ni = 0, 1, . . .

⎫
⎬

⎭.

(25)

The smallest ni that satisfies both bounds then become the
estimated queue length n′

i.
Note that in practice TCP receiver may implement

delayed ACK, generating only one ACK for every two
packets received. To tackle this we can compute (25) only
for cases where the required ti (and hence ri−1) is available,
i.e., roughly at half the frequency. The summation term in
(25) may not be affected though as we can compute the
sum of say, ti−1 and ti−2 from ri−1 − ri−3, without the need
for ri−2. In the worst case the estimation will be off by at
most one packet.

Finally, the link buffer size can then be computed from
the maximum of all queue length estimates:

L′ = max
{
n′

i|∀i
} + 1. (26)

We thoroughly evaluate SoD’s estimation accuracy in the
next section.

4 PERFORMANCE EVALUATION

In this section we evaluate and compare the estimation
accuracy of SoD to existing algorithms using a simula-
tor implemented using NS2 [14]. It is worth noting that
while NS2 already has built-in TCP implementations, their
implementations do deviate from the actual TCP imple-
mentations used in the Internet today in important ways.

TABLE 3
Comparison of Relative Link Buffer Size Estimation Errors for
(a) Active, and (b) Passive Estimation with Fixed Bottleneck

Link Bandwidth

Therefore we chose to implement the simulator based on
actual TCP implementations in current Linux kernels and
also implemented widely-deployed optional TCP features
such as TCP SACK [15] to establish a more realistic platform
for the simulations.

The simulated network topology is depicted in Fig. 7 and
Table 2 summarizes the simulation parameters. For pas-
sive estimation, we employed TCP as the transport and the
sender simply sent data as fast as TCP allowed. We incor-
porated the TCP CUBIC [16] kernel module from Linux
2.6 into the simulator as it is one of the most widely used
TCP variant in use in the Internet. Additionally, we imple-
mented TCP SACK [15] in the simulator to more accurately
model real TCP behavior. For comparison purposes we also
implemented SoD over TCP Vegas [7] by incorporating its
Linux kernel module into NS2.

Finally, as the open source Linux kernel does not cur-
rently implement FAST TCP we employed the FAST TCP
NS2 module developed by the CUBIN Lab [17] in our
simulations.

4.1 Link Buffer Size Estimation for
Fixed-Bandwidth Link

We first consider the baseline case of estimating link buffer
size in a network with fixed bottleneck link bandwidth
using active estimation. Table 3(a) and Fig. 8(a) compare
the estimation error of max-min, loss-pair, and sum-of-
delays algorithms. Not surprisingly both max-min and loss-
pair performed well in this setup, with estimation errors
below 2% in all cases. The proposed sum-of-delays method
achieved very accurate estimation with zero error (to two
decimal places). Moreover, its accuracy is consistent across

CHAN ET AL.: ON QUEUE LENGTH AND LINK BUFFER SIZE ESTIMATION IN 3G/4G MOBILE DATA NETWORKS 1305

Fig. 8. Comparison of relative link buffer size estimation errors for (a)
active estimation, and (b) passive estimation with fixed bottleneck link
bandwidth (link buffer size, relative error, fixed bandwidth).

all link buffer sizes, as opposed to max-min/loss-pair where
the estimation error increases with smaller link buffer
sizes.

Next we investigate passive estimation where no explicit
measurement packets are generated. The estimation is com-
puted solely from the timings of normal data packets which
are controlled and scheduled according to TCP CUBIC’s
flow and congestion control algorithms. While this is not
the original intended applications for max-min/loss pair,
the results in Table 3(b) and Fig. 8(b) show that their per-
formances were not significantly worse than their active
estimation counterparts. The proposed SoD algorithm still
outperformed max-min/loss-pair for most of the link buffer
size ranges (e.g., from 300 to 1000).

4.2 Link Buffer Size Estimation for
Variable-Bandwidth Link

For bandwidth-varying network simulation runs in this and
the following sections, we used 10 sets of actual band-
width trace data captured from a production 3G/HSPA
network to modulate the bandwidth of the bottleneck link
in the simulator (see Fig. 8). The trace data were cap-
tured at a mobile computer connected to a production
3G/HSPA network using a USB 3G/HSPA modem. Thus
the captured traffic traces are subject to and representative
of real-world network conditions such as cross traffic gen-
erated by other mobile users sharing the same cell, radio
signal quality fluctuations, interference from other devices,
etc. The client computer remained stationary during the

Fig. 9. Comparison of relative link buffer size estimation errors for (a)
active estimation, and (b) passive estimation with varying bottleneck link
bandwidth with error bars depicting the standard deviation (link buffer
size, relative error, variable bandwidth).

trace capture process, thus it did not yet incorporate the
effect of mobility-induced bandwidth fluctuations, which
is a subject for future research.

Table 4(a) and (b) compare the mean and standard
deviation of the estimation errors of the three estimation
algorithms under active and passive estimations respec-
tively. The results are also presented visually in Fig. 9(a)
and (b), with the standard deviation indicated by the error
bars.

First, compared to the fixed-bandwidth case the per-
formance of max-min degraded significantly under the
varying-bandwidth case. This is especially significant at
smaller link buffer sizes (e.g., L = 100, 200) where the
estimation errors exceeded 100%. This is due to band-
width variation which resulted in significant variations in
the transmission delays. As the max-min method is based
on the difference between maximum and minimum RTTs
the transmission delay variations significantly distorted the
link buffer size estimates.

Second, the loss-pair algorithm performed substantially
better than max-min under active estimation. This is
because loss-pair does not base its estimation on the worst-
case measurement, but determines the mathematical mode
of the measured samples to filter out noises [6].

Comparing the passive estimation results in Table 4(b)
to the active estimation results in Table 4(a), we observe
that the estimation errors increase further for both max-
min and loss-pair algorithms. By contrast, SoD achieved
a low level of estimation errors, smaller than 0.8 in all
cases, which are two orders of magnitudes lower than

1306 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 6, JUNE 2014

TABLE 4
Comparison of Relative Link Buffer Size Estimation Errors for
(a) Active, and (b) Passive Estimation with Varying Bottleneck

Link Bandwidth

max-min and loss-pair. The reason for SoD’s significant
improvements in estimation accuracy is due to its use of
the measured transmission times which inherently incorpo-
rated the effect of bandwidth variations in computing the
link buffer size. In contrast, max-min and loss-pair esti-
mated the link buffer size from a constant link capacity
(see the constant C in (10)) which introduces substantial
errors when the underlying link bandwidth is no longer
constant.

4.3 Queue Length Estimation for Fixed-Bandwidth
Link

We evaluate queue length estimation algorithms over TCP
flows, i.e., the data flow is regulated by the underlying
TCP’s flow and congestion control modules. Between three
queue-length estimation algorithms (Vegas, FAST, and SoD)
and three TCP variants (CUBIC, Vegas, and FAST), we
investigated six combinations:

• Vegas over TCP CUBIC – queue length estimated
using the Vegas method during the congestion-
avoidance phase of a TCP CUBIC flow;

• Vegas over TCP Vegas – queue length estimated using
the Vegas method during the congestion-avoidance
phase of a TCP Vegas flow;

• FAST over FAST TCP – queue length estimated
using the FAST method during the slow-start and
congestion-avoidance phases of a FAST TCP flow;

• SoD over TCP CUBIC – queue length estimated
using the SoD method during all three phases, i.e.,
slow-start, congestion-avoidance, and loss-recovery
phases of a TCP CUBIC flow;

Fig. 10. Comparison of (a) relative, and (b) absolute queue length
estimation errors in different TCP variants with fixed bottleneck link
bandwidth (queue length, relative error, fixed bandwidth).

• SoD over TCP Vegas – queue length estimated
using the SoD method during all three phases, i.e.,
slow-start, congestion-avoidance, and loss-recovery
phases of a TCP Vegas flow;

• SoD over FAST TCP – queue length estimated
using the SoD method during all three phases, i.e.,
slow-start, congestion-avoidance, and loss-recovery
phases of a FAST TCP flow.

Fig. 10(a) and (b) compare the relative and absolute
estimation errors for the six combinations in fixed bottle-
neck link bandwidth networks. Except for the case with
link buffer size of 100 packets, the FAST algorithm out-
performs the two cases with the Vegas estimation algo-
rithm. The FAST algorithm’s anomaly is again due to its
target queue length setting, 100 packets by default, too
close to the link buffer size, thus causing frequent buffer
overflows.

By contrast, the proposed SoD method worked well over
all TCP variants. Table 5 shows that the estimation errors
are no more than 0.1% for all three TCP variants over
all link buffer sizes, demonstrating SoD’s consistent per-
formance despite substantial variations in the underlying
transport protocol.

4.4 Queue Length Estimation for
Variable-Bandwidth Link

Next we investigate the algorithms’ performance in mobile
networks using trace data captured from production
3G/HSPA networks as described in Section 4.2.

Fig. 11(a) and (b) plot the relative and absolute esti-
mation errors for the six combinations over mobile data

CHAN ET AL.: ON QUEUE LENGTH AND LINK BUFFER SIZE ESTIMATION IN 3G/4G MOBILE DATA NETWORKS 1307

TABLE 5
Comparison of Relative Queue Length Estimation Errors for

Different TCP Variants Under Fixed Bottleneck Link
Bandwidth

networks. The same results are also listed in Table 6.
Compared to the fixed bandwidth cases in Section 3, the
estimation errors for all three existing estimation algorithms
increased significantly in variable bandwidth networks. The
degradation in estimation accuracy for FAST over FAST
TCP is particularly significant (e.g., from 0.48% to 14.3%
for L = 300). The reason for this is not yet clear and further
analysis of FAST TCP’s algorithm is warranted to identify
the causes.

In comparison, all SoD cases achieved consistently low
level of estimation errors, under 1% in all cases, thus
outperforming existing algorithms by multiple orders of
magnitude. The reason for SoD’s higher estimation accu-
racy is again due to its use of past measured transmission
times in computing the queue length estimates. By contrast,
both Vegas and FAST algorithms rely on the congestion
window size as an indirect estimate of the link bandwidth
in estimating the queue length (see (12)). This is inherently
inaccurate as the congestion window often underestimates
the link bandwidth during TCP’s slow-start phase, and it
will also eventually overestimate the link bandwidth near
the end of the congestion-avoidance phase. Hence such
errors in tracking the link bandwidth, especially in the pres-
ence of bandwidth variations, substantially degraded the
accuracy in estimating the queue length.

TABLE 6
Comparison of Relative Queue Length Estimation Errors for

Different TCP Variants Under Varying Bottleneck Link
Bandwidth

Fig. 11. Comparison of (a) relative, and (b) absolute queue length
estimation errors in different TCP variants with varying bottleneck link
bandwidth (queue length, relative error, variable bandwidth).

All of the passive estimations in Section 4.1 to 4.4 are
based on TCP data packet timings. However TCP flows
often cannot fully utilize the available link bandwidth, typ-
ically achieving only 30% to 80% link utilization depending
on the link properties. This implies that the bottleneck link
must be idle for a substantial amount of time, thereby
violating the assumption of zero link idle time in the
SoD algorithm (see (17)). Nevertheless the results in these
sections clearly show that its impact is negligible given
SoD’s consistent performance over the three TCP variants
tested.

4.5 Impact of Link Delay Variations
So far the simulations were performed over the topology
in Fig. 7 with constant link propagation delays. In practice,
mobile networks do exhibit some variations in the network
delay due to link-layer retransmissions, channel contention,
or uplink bandwidth fluctuations. This will affect the mea-
sured ACK timings and depending on the extent of delay
variations we expect it to degrade the accuracy of link
buffer size and queue length estimations.

Our measurements of production 3G networks show
that the actual uplink delay variations vary depending
on network conditions, network types, locations, etc., with
standard deviations ranging from 10 to 15 ms. As an exact
model for the uplink delay variation is not available we
approximate the delay variations by replacing the con-
stant delay in the uplink (i.e., U) with a random delay
variation which is normally-distributed with standard devi-
ations ranging from 0 to 20 ms. We also conducted separate

1308 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 6, JUNE 2014

TABLE 7
Comparison of Relative Link Buffer Size Estimation Errors for

Passive Estimation with Varying Bottleneck Link Bandwidth and
Varying Uplink Delay (SoD-TS Implements Uplink Delay

Variation Compensation Using TCP Timestamps)

simulations using actual uplink delay trace data and found
the results to be consistent, with SoD performing slightly
better under the trace-driven simulations.

Table 7 summarizes the results for link buffer size esti-
mation. The results show that delay variations do have
some impact to the estimation accuracy. Nonetheless in
all cases simulated, SoD not only achieved lower estima-
tion error than min-max and loss-pair, but also exhibited
significantly lower variations in estimation errors.

Table 8 summarizes the results for queue length esti-
mation. Under TCP CUBIC both the Vegas and SoD esti-
mation algorithms degraded slightly with higher delay
variations. At the range of delay variations in practice
(i.e., σ − 10 ∼ 15 ms) SoD substantially outperformed the
Vegas algorithm and is able to maintain the estimation error
to below 2%. By contrast, the cases for TCP Vegas and FAST
TCP all degraded substantially in the presence of delay
variations, with TCP Vegas particularly significant. This is
due to TCP Vegas’ design to maintain only a small number
of packets in the bottleneck link. Consequently the queue-
ing delay under TCP Vegas is much shorter than other TCP
variants, and thus the errors introduced by delay variations
are relatively more significant.

Overall, in the presence of delay variations, SoD can
still achieve significantly better accuracy for link buffer
size estimation (1∼2 order of magnitude). For queue length
estimation, SoD’s accuracy is robust when applied to TCP
CUBIC, which is one of the most widely deployed TCP
variants in the Internet. The applications to TCP Vegas and
FAST, however, are less positive.

There is a solution to the problem of uplink delay varia-
tions – TCP’s timestamp option [18]. This option, which
is widely implemented by mobile devices [19], includes

TABLE 8
Comparison of Relative Queue Length Estimation Errors for

Different TCP Variants Under Varying Bottleneck Link
Bandwidth and Varying Uplink Delay (SoD-TS

Implements Uplink Delay Variation Compensation
Using TCP Timestamps)

Fig. 12. Comparison of estimation errors versus estimation duration for
active estimation with fixed bottleneck link bandwidth of 7.2Mbps.

two timestamp fields in the TCP header for storing the
transmission timestamp and for echoing the timestamp
received from the peer host. Using the receiver’s ACK
timestamps and the ACK arrival times, the sender can
then estimate the uplink delay variations and compen-
sate for them in computing the link buffer size and queue
length. We implemented this into the simulator (including
receiver timestamp clock rate estimation) and summa-
rized the results under SoD-TS in Table 7 and 8. Using
TCP timestamp SoD achieves significantly lower estima-
tion errors for both link buffer size and queue length
estimation in the presence of uplink delay variations.
The only requirements are the availability of TCP times-
tamp implementation [19] and sufficiently fine timestamp
granularity.

4.6 Convergence
It takes time for the estimation algorithms to collect mea-
surement data to improve estimation accuracy. In this
section we investigate the convergent rates for max-min,
loss-pair, and SoD in both fixed and variable bandwidth
networks, using active and passive estimation.

We first consider the baseline scenario of active esti-
mation in a fixed-bandwidth network. Fig. 12 plots the
relative estimation error for bottleneck link bandwidth of
7.2Mbps. There are two observations. First, all three algo-
rithms remained accurate once they converged. Second,
max-min and SoD converged faster than loss-pair, due to
the latter’s design to determine the estimation from the
mathematical mode of the collected samples.

Next we consider the case of passive estimation (over
TCP CUBIC) in a fixed-bandwidth network. Fig. 13 plots
the relative estimation error for bottleneck link bandwidth
of 7.2Mbps. Compare to the active estimation case SoD
converged faster than max-min as the latter depends on
accurate estimate of the link bandwidth. In passive esti-
mation TCP begins with a low transmission rate (TCP
Slow-Start) and hence the link bandwidth parameter can-
not be accurately estimated until TCP has ramped up its
transmission rate at a later time.

Moving on to varying bandwidth environment the
results are more interesting. Figs. 14 and 15 compare the
algorithms in active and passive estimation respectively.
One notable observation is that the max-min algorithm did
not converge at all. Beginning with an underestimated link

CHAN ET AL.: ON QUEUE LENGTH AND LINK BUFFER SIZE ESTIMATION IN 3G/4G MOBILE DATA NETWORKS 1309

Fig. 13. Comparison of estimation errors versus estimation duration for
passive estimation with fixed bottleneck link bandwidth of 7.2Mbps.

Fig. 14. Comparison of estimation errors versus estimation duration for
active estimation with varying bottleneck link bandwidth.

buffer size, the estimated link buffer size increased con-
tinuously to become overestimation after about 5 seconds.
The reason being that max-min assumes constant packet
transmission time which is not true in a bandwidth-varying
network. The bandwidth variations modulated the trans-
mission time, thus introduced errors into the estimated
result. As max-min’s estimation is based on the difference
between maximum and minimum measurement samples
the difference will clearly increase with more samples col-
lected. This again shows that the max-min algorithm, not
being designed for bandwidth-varying networks, is not
suitable for use in mobile data networks. By contrast, the
proposed SoD algorithm performed consistently and was
able to arrive at an accurate estimation within 4∼5 sec-
onds, even in the extreme case of passive estimation over
bandwidth-varying network.

TABLE 9
Relative Estimation Errors for Queue Length Estimation in

Different TCP Variants Under Fixed Bottleneck Link
Bandwidth

Fig. 15. Comparison of estimation errors versus estimation duration for
passive estimation with varying bottleneck link bandwidth.

4.7 Limitations in Passive Estimation
As discussed in Section 2.2 and 2.3 the Vegas queue-length
estimation algorithm is limited to TCP’s congestion-
avoidance phase, and FAST TCP’s algorithm limited to
TCP’s slow-start and congestion-avoidance phases. By con-
trast, the proposed SoD algorithm can be applied to all
three phases of TCP as it does not rely on TCP’s congestion
window in its estimation.

To further investigate their performances in different
TCP phases we table the estimation errors separately
for the three TCP phases in Tables 9 and 10 for fixed
(C = 7.2Mbps, L = 700 packets) and variable (averaged
over 10 sets of bandwidth traces) bandwidth cases respec-
tively. Not only that SoD works for all three phases, it
consistently outperformed Vegas and FAST algorithms by
multiple orders of magnitude. SoD’s consistent accuracy
in the loss recovery phase will be a particularly desir-
able property in mobile data networks in cases where
random packet losses cannot be fully recovered by link-
layer retransmissions. Devising ways to exploit this prop-
erty for use in mobile data networks warrants further
research.

Finally, as shown from the above simulation results, the
proposed sum-of-delays algorithm consistently achieved
very low estimation errors in both link buffer size and
queue length estimation, no more than 2% in most cases,
even under the most challenging conditions. This confirms
that by incorporating the measured transmission delays
in estimating the link buffer size and queue length, we
can effectively incorporate and compensate for bandwidth
variations at the bottleneck link.

TABLE 10
Relative Estimation Errors for Queue Length Estimation in

Different TCP Variants Under Varying Bottleneck Link
Bandwidth

1310 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 6, JUNE 2014

5 SUMMARY AND FUTURE WORK

This work developed a novel sum-of-delays algorithm
for estimating link buffer size and queue length in
bandwidth-varying networks such as mobile data net-
works. Knowledge of the link buffer size can be exploited
at various layers to enhance the performance of network
applications, or for monitoring/management of the net-
work. For example, transport layer protocols such as TCP
can be modified to integrate the sum-of-delays algorithm
to perform passive estimation of the link buffer size so
that the latter can be exploited in its congestion control
algorithm to improve bandwidth utilization while still pre-
venting network congestion. Our initial results showed
that by utilizing the estimated queue length in congestion
control (as opposed to using packet loss events) we can
potentially improve the TCP throughput by over 50% com-
pared to TCP CUBIC even at a random packet loss rate
as low as 0.1%. A full treatment of the topic is beyond
the scope of this paper and will be reported in a separate
work.

At the application layer, the sum-of-delays algorithm can
also be employed to incorporate the link buffer size infor-
mation into congestion control, resource allocation, traffic
policing, rate adaptation, error control, and so on. Much
work remains to be done to fully explore the potentials of
such applications.

The proposed sum-of-delays method can be extended in
two directions. First, the version investigated in this work
relies on the sender to carry out the measurements and link
buffer size estimation – sender-based estimation. In certain
applications it may not be practical to modify the sender
and in such cases it will require the estimation to be done at
the receiver – receiver-based estimation. Whether receiver-
based estimation is feasible and its performance compared
to sender-based estimation is a subject for future research.

Second, the sum-of-delays method could also be used
to continuously estimate the queue length at the bottle-
neck link in addition to estimating the link buffer size.
Knowledge of the queue length will be useful to the
design of new congestion control algorithm for use in
both transport and application protocols. In addition to
bandwidth probing and congestion recovery, it is also
possible to employ queue length information to further
improve the packet loss recovery mechanism, to implement
non-uniform bandwidth sharing mechanisms, etc.

Finally, unlike packet loss, queue-length information is
an early indicator of network conditions, and as such, could
be very useful to application-layer adaptation mechanisms
such as adaptive video stream, multimedia conferencing,
and any applications which are bandwidth- and delay-
sensitive. The proposed Sum-of-Delay algorithm offers a
new avenue for implementing intelligent application-layer
adaptation algorithms that can proactively react to changes
in network conditions (as opposed to passively react to)
to provide consistent quality-of-service over current and
future mobile data networks.

ACKNOWLEDGMENTS

The authors sincerely thank the associate editor and
the anonymous reviewers for their insightful comments

and suggestions in improving this paper. The experimen-
tal results in this paper were made possible through
the support of our industry collaborators. They sincerely
thank them for their generous support. This work was
funded in part by the Innovation and Technology Fund
(ITS/014/10 and ITS/146/11) provided by the Innovation
and Technology Commission, HKSAR1. An early version of
this work covering only link buffer size estimation was pub-
lished in the 7th IEEE International Conference on Wireless
and Mobile Computing, Networking and Communications
(WiMob 2011), Shanghai, China, October 10–12, 2011.

REFERENCES

[1] A. Akella, S. Seshan, and A. Shaikh, “An empirical evaluation of
wide-area internet bottlenecks,” in Proc. ACM IMC, New York,
NY, USA, Oct. 2003.

[2] K. Lakshminarayanan and V. Padmanabhan, “Some findings on
the network performance of broadband hosts,” in Proc. ACM IMC,
New York, NY, USA, Oct. 2003.

[3] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell,
“pathChirp: Efficient available bandwidth estimation for network
paths,” in Proc. PAM, 2003.

[4] M. Hirabaru, “Impact of bottleneck queue size on TCP protocols
and its measurement,” IEICE Trans. Inf. Syst., vol. E89-D, no. 1,
Jan. 2006, pp. 132–138.

[5] M. Claypool, R. Kinicki, M. Li, J. Nichols, and H. Wu, “Inferring
queue sizes in access networks by active measurement,” in Proc.
5th PAM, Antibes Juan-les-Pins, France, 2004.

[6] J. Liu and M. Crovella, “Using loss pairs to discover network
properties,” in Proc. ACM SIGCOMM, New York, NY, USA, 2001,
pp. 127–138.

[7] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP vegas:
New techniques for congestion detection and avoidance,” in Proc.
SIGCOMM, London, U.K., Oct. 1994, pp. 24–35.

[8] S. Hegde et al., “Fast TCP in high speed networks: An experi-
mental study,” in Proc. GridNets, San Jose, CA, USA, Oct. 2004.

[9] C. P. Fu and S. C. Liew, “TCP veno: TCP enhancement for wire-
less access networks,” IEEE J. Sel. Areas Commun., vol. 21, no. 2,
pp. 216–228, Feb. 2003.

[10] V. K. Garg, Wireless Network Evolution: 2G to 3G. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2001.

[11] E. Dahiman, S. Parkvall, J. Skold, and P. Beming, 3G Evolution:
HSPA and LTE for Mobile Broadband, 2nd ed. Boston, MA, USA:
Academic Press, 2008.

[12] D. Astely et al., “LTE: The evolution of mobile broadband,” IEEE
Commun. Mag., vol. 47, no. 4, pp. 44–51, Apr. 2009.

[13] K. Liu and J. Y. B. Lee, “Mobile accelerator: A new approach to
improve TCP performance in mobile data networks,” in Proc. 7th
IEEE IWCMC, Istanbul, Turkey, Jul. 2011.

[14] NS2 Network Simulator [Online]. Available:
http://www.isi.edu/nsnam/ns/

[15] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An extension
to the selective acknowledgement (SACK) option for TCP,” RFC
2883, 2000.

[16] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-
speed TCP variant,” in Proc. Int. Workshop Protocols FAST Long
Distance Netw., New York, NY, USA, 2005.

[17] FAST TCP ns2 Module [Online]. Available:
http://www.cubinlab.ee.unimelb.edu.au/ns2FASTtcp/

[18] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high
performance,” RFC 1323, May 1992.

[19] E. Halepovic, J. Pang, and O. Spatscheck, “Can you GET me now?
Estimating the time-to-first-byte of HTTP transactions with pas-
sive measurements,” in Proc. ACM Conf. IMC, Boston, MA, USA,
Nov. 2012, pp. 115–122.

1. Any opinions, findings, conclusions or recommendations
expressed in this material/event (or by members of the project team)
do not reflect the views of the Government of the Hong Kong Special
Administrative Region, the Innovation and Technology Commission
or the assessment panel of the Innovation and Technology Support
Programme of the Innovation and Technology Fund.

CHAN ET AL.: ON QUEUE LENGTH AND LINK BUFFER SIZE ESTIMATION IN 3G/4G MOBILE DATA NETWORKS 1311

Stanley C. F. Chan received his B.Eng. and
M.Phil. degrees in information engineering from
the Chinese University of Hong Kong, Shatin,
Hong Kong, in 2008 and 2011, respectively.
From 2008 to 2011, he was a member of
the Multimedia Communications Laboratory of
CUHK where he participated in the research of
mobile communications and protocol optimiza-
tion. He currently works in the industry in Hong
Kong.

K. M. Chan received his B.Eng. degree in infor-
mation engineering from the Chinese University
of Hong Kong, Shatin, Hong Kong, in 2010. He
is currently a research student at the Multimedia
Communications Laboratory of CUHK where he
participated in the research of protocol optimiza-
tion and media streaming.

K. Liu received his B.Eng. and Ph.D. degrees
in Information Engineering from the Chinese
University of Hong Kong, Shatin, Hong Kong,
in 2008 and 2013, respectively. He is currently
an Assistant Professor at the Advanced System
Group under the Key Laboratory of Computer
System and Architecture in the Institute of
Computing Technology, Chinese Academy of
Science, Beijing, China, where he participated in
the research of protocol optimization and cloud
computing.

Jack Y. B. Lee (M’95–SM’03) received his
B.Eng. and Ph.D. degrees in information engi-
neering from the Chinese University of Hong
Kong, Shatin, Hong Kong, in 1993 and 1997,
respectively. He is currently an Associate
Professor in the Department of Information of the
Chinese University of Hong Kong. His research
group focuses on research in multimedia com-
munications systems, mobile communications,
protocols, and applications. He specializes in
tackling research challenges arising from real-

world systems. He works closely with the industry to uncover new
research challenges and opportunities for new services and applica-
tions. Several of the systems research from his lab have been adopted
and deployed by the industry, and is in daily use by millions of users.

� For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

